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ABSTRACT 

Modern world is a competitive one. It’s very important for any manufacturing organization to keep pace 

with dynamic conditions of the competitive world. The ability of any organization to make optimum 

decision, now-a-days, is very important in the face of increasing competition from a number of 

competitors. Hence, continuous quality improvement and optimum decision making are the success keys 

for any organization. Also, optimum utilization of time and available resources are the other main factors 

that contribute to the success of an organization. In a highly competitive and volatile market, supply chain 

management (SCM) is the main deciding factor for the growth of an organization. It is described as a 

chain linking each element from customer and supplier through manufacturing and services so that flow 

of material, money and information can be effectively managed to meet the business requirement. It is the 

oversight of materials, information, and finances as they move in a process from supplier to manufacturer 

to wholesaler to retailer to consumer. It involves coordinating and integrating these flows both within and 

among companies. Product design, manufacturing and distribution strategies may change frequently and 

rapidly for the sake of it. The challenge for a company is not only how to continue to maintain a 

technically advanced and competitive product but also how to reduce the design, development and 

manufacturing time in line with demands of the market. Quality, cost, lead-time and service level are the 

four performance measures in a supply chain. For a supply chain to be resilient, it has to operate under 

smart manufacturing environment. Smart manufacturing is a broad category of manufacturing with the 

goal of optimizing concept generation, production, and product transaction. While manufacturing can be 

defined as the multi-phase process of creating a product out of raw materials, smart manufacturing is a 

subset that employs computer control and high levels of adaptability. Smart manufacturing aims to take 

advantage of advanced information and manufacturing technologies to enable flexibility in physical 

processes to address a dynamic and global market. It enables all information about the manufacturing 
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process to be available when it is needed, where it is needed, and in the form that it is needed across entire 

manufacturing supply chains, complete product lifecycles, multiple industries, and small, medium and 

large enterprises. There is increased workforce training for such flexibility and use of the technology 

rather than specific tasks as is customary in traditional manufacturing. The broad definition of smart 

manufacturing covers many different technologies. Some of the key technologies in the smart 

manufacturing movement include big data processing capabilities, industrial connectivity devices and 

services, and advanced robotics. 

Advanced Manufacturing Technology (AMT) plays a pivotal role to obtain a smart supply chain. The 

significant contribution of AMT is to achieve strategic objectives and improved competitiveness of 

manufacturing organizations. AMTs represent numerous modern technologies such as Computer Aided 

Design, Computer Aided Manufacturing, Flexible Manufacturing System, Computer Aided Process 

Planning, Artificial Intelligence, Robots, and Just-In-Time etc. Selection of the proper AMT amongst 

these is a very important issue for any manufacturing organization. The benefits that AMT offers to the 

manufacturing organizations are: Improved Productivity, Greater Flexibility, Reduced lead times, 

Improved Quality, Reduced Inventories, Improved Product design, Reduced Costs, Improved 

Competitiveness, Increased Customer Satisfaction, and sustainable green environment. The quest for all 

these has driven many manufacturing organizations to opt for AMT. The most important outcome of this 

is very evident from the fact that there has been a paradigm shift from mass production to mass 

customization. Although, the adoption of AMT is beneficial to manufacturing organizations, at the same 

time, it is very risky as well. It involves a major investment and a high degree of uncertainty. 

Considerable attention is needed within the organization while implementing the AMT. So, before 

investing on AMT, manufacturing organization must assess its strengths and weaknesses. Thus, 

identification of factors in selecting a particular AMT is very crucial for the organizations. The factors 

chosen must have long-term effects on the performance of the organization and it must make profit out of 

it. 
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The aim of this research is to develop a flexible, robust and resilient supply chain to achieve customer 

satisfaction and move towards a green eco-friendly environment, to contribute to the development of 

society and largely the mankind as a whole.   

The scope of this investigation is directed towards researching the models for decision making support in 

smart supply chain management under uncertainties from fuzzy type. The models have to simulate human 

decision making by means of applying soft computing in the form of fuzzy logic, fuzzy AHP, fuzzy 

TOPSIS, fuzzy Dempster-Shafer theory, Design of Experiment (DOE), EVAMIX, COPRAS-G, k-Means 

clustering, Fuzzy Taguchi loss function, Fuzzy VIKOR and others. Smart Manufacturing aims to be an 

idealized practice in manufacturing. It involves the integration in all steps of the product fabrication 

process. The aim being a more harmonious development process utilizing data to develop intelligent 

technology to expedite new and higher quality goods. If adopted, intelligent networks of manufacturing 

will see results in influencing business both domestically and worldwide. Business models can be more 

easily conceptualized around the integration of every step of the development process i.e.  invention, 

manufacturing, transportation and retailing. The eventual goal being a more flexible, adaptive and 

reactive approach to participating in competitive markets. Companies may be forced to adapt or adopt the 

practice to compete, further stirring up the market. A large expectation of the premise also resides on the 

collaboration of multidisciplinary professionals including scientists, engineers, statisticians, economists 

etc. establishing a fundamental resource for 'smart' business ventures. 

The research originality lies in the fact that, different innovative methods have been used for the 

performance evaluation of resilient supply chain. The methods or combination of them, used here have 

not been reported in earlier research work.   

To conclude this, a resilient supply chain has been analyzed by taking care of the integral parts of a 

supply chain individually. Be it selection of appropriate supplier, be it selection of modern advanced 

technology or be it selection of warehouse, all these aspects have been taken care of, in this research, thus, 

in turn, making it a purposeful research work.  
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1. INTRODUCTION 

Supply chain management is one of the most talked about topics in today’s manufacturing world. The 

manufacturing sector is facing a lot of challenges in today’s volatile market environment. So, a supply 

chain has to be flexible and at the same time resilient as well. To achieve these, all the areas that 

contribute to a robust supply chain, has to be taken care of. The present study aims to develop a robust 

supply chain. And for this, the three levels of supply chain namely, selection of appropriate supplier 

(upstream), selection of optimum advanced technology (middle stream) and selection of warehouse 

location (downstream), have been taken care of, in this study. Also, the effects on environment from 

industrialization are as important as any. So, this aspect has also been taken care of, by taking factors 

related to environmental issues while making solutions to the selection and evaluation problems, such 

that, it could lead to a green supply chain.   

1.1. Overview 

Modern world is a competitive one. It’s very important for any manufacturing organization to keep pace 

with dynamic conditions of the competitive world. The ability of any organization to make optimum 

decision, now-a-days, is very important in the face of increasing competition from a number of 

competitors. Hence, continuous quality improvement and optimum decision making are the success keys 

for any organization. Also, optimum utilization of time and available resources are the other main factors 

contributing to the success of an organization. In a highly competitive and volatile market, supply chain 

management (SCM) is the main deciding factor for the growth of an organization. It is a chain that links 

customer to supplier. The same is done through manufacturing and services. Material, money and 

information flow are effectively managed to meet the business requirements. A typical flow chain is 

shown in the following Figure 1.1. 
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Figure 1.1. Product/service flow chain 

In an organization, not only material, but, information and finances also move from supplier to 

manufacturer in a process. Then these go to wholesaler, retailer and lastly, the consumer. The flow chain 

oversights the same. It coordinates and integrates these flows within the organization. Product design, 

manufacturing and distribution strategies might change. 

customarily due to this. In this kind of circumstances, the challenge for a company is to continue 

producing a technically advanced and competitive product. At the same time, design, development and 

manufacturing time need to be reduced in line with demands of the market. The four performance 

measures in a supply chain are production cost, product quality, product lead times and after sales service.  

1.2.  Resilient Supply Chain 

Now-a-days, manufacturing systems face unrivalled challenges imposed by highly demanding constraints. 

They range from high product customization to the demand for lower cost to increasing product standard 

to significant oscillation in market demands. Traditional manufacturing systems can no longer cope with 

the scenario. It requires to be upgraded to new manufacturing paradigms that meet the challenges better. 

The monolithic, rigid structures don’t suffice to meet the requirements thrown by manufacturing 

environments demanding flexibility, productivity, robustness, reconfigurability and responsiveness. New 

and more modern manufacturing techniques like holonic manufacturing system (HMS), reconfigurable 
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manufacturing system (RMS), multi-agent system (MAS), bionic manufacturing system (BMS), fractal 

manufacturing system (FMS), evolvable manufacturing system (EMS) etc. have emerged into the 

manufacturing space.  The urgent requirement of achieving overall sustainability has aroused due to some 

already prevailing and some emerging causes such as environmental concerns, diminishing non-

renewable resources, strict legislation, inflated energy costs, increasing customer preferences for eco-

friendly products. In the midst of high turbulence in today’s uncertain market, supply chain vulnerability 

has grown significantly in organizations. The threat of erosion for a supply chain is greater than ever due 

to risks that include natural disaster, terrorism, cyber attacks and so on. These could yield to a substantial 

loss in each and every aspect of organization, be it productivity, be it profitability, or be it competitive 

advantage. That is where, the resilient supply chain (Figure 1.2) works in whole kit and boodle.  

 

 

Figure 1.2. Resilient supply chain: strategic approach (M. Blos, H. M. Wee, W-H Yang,2012)  
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It supposes to be the ability of a substance to get back to its original form after deformation. There have 

been some industrial revolutions in the domain of manufacturing and supply chain in the past few years. 

However, Industries together with the researchers and policy makers have promoted an upcoming 

industrial revolution. A German strategic initiative known as industry 4.0, has been focused at generating 

factors that are intelligent. Here, the three key things like internet of things (IoT), cloud manufacturing, 

cyber-physical systems (CPS), transform the manufacturing processes such that they are able to 

communicate real time and take smart decisions in conjunction with humans, machines and sensors. 

There has been a rapid evolution of radio technologies since the inauguration of analogue cellular systems 

termed as 1st generation or simply 1G, back in 1980s. Now, the progress is towards fifth generation or 5G. 

It commits to bring the reliability, scalability, latency, edgeless computing to the existing system hands 

down and that is needed for several IoT applications. Stupendous success depends on ethos, pathos and 

logos as expounded and propounded by Socrates, a Greek philosopher, 2500 years ago. Thus, many 

manufacturing organizations today are presented with a number of supply chain strategies. Appropriate 

and lucrative decision making in industrial environment is the key to sustainable development in today’s 

market scenario. Moreover, environmental aspects in terms of emission of harmful gases, logistic costs 

have forced supply chain managers to reinvent and renovate their distribution strategies. They look for a 

suitable decision support aid that would possibly extract the best solution out of the problem.  

1.2.1. Smart Manufacturing 

For a supply chain to be resilient, it has to operate under smart manufacturing environment. It is a 

broadened manufacturing process with a goal to optimize concept generation and product transaction. 

Conventional manufacturing process is the multi-phase process of creating a product from raw materials, 

whereas, the main feature of smart manufacturing is high levels of adaptability by commissioning 

computer control and advanced information. It enables flexibility in physical processes to address the 

globally dynamic market. All the information about the manufacturing process remains available and can 

be accessed anytime, from anywhere and in any form. It is available through complete product life cycle 



8 
 

across entire manufacturing supply chains. To achieve such levels of flexibility and usage of modern 

technology, as opposite to customary specific tasks in traditional manufacturing, increased workforce 

training is highly needed.   

1.2.1.1. General Description 

In recent years, the paradigm of "manufacturing as an ecosystem" has emerged, which has been 

conceptualized as a system beyond the manufacturing plant site. The term "smart" generates data and 

information throughout the product lifecycle with the goal of creating a flexible manufacturing process 

that allows businesses to respond quickly to changing demand at low cost without harming the 

environment. And the company you are using is included. This concept requires a lifecycle perspective in 

which the product is designed for efficient production and recycling. Through Smart Manufacturing, all 

information about the manufacturing process is available when and when needed, in the entire 

manufacturing supply chain, the entire product lifecycle, and in many industries, small businesses and 

large enterprises. The Smart Manufacturing Leadership Coalition (SMLC) is building the technology and 

business infrastructure to facilitate the development and deployment of smart manufacturing systems 

across the manufacturing ecosystem. One of the previous definitions of advanced manufacturing 

companies is: "intensified application of advanced intelligence systems to enable rapid manufacturing of 

new products, dynamic response to product demand, and real-time optimization of manufacturing 

production and supply-chain networks (SMLC 2011)." This idea is represented by smart factories that 

rely on interoperable systems, Multiple scale dynamic modeling and simulation, intelligent automation, 

extensible multi-level cybersecurity, networked sensors. These companies leverage data and information 

throughout the life cycle of their products with the goal of creating flexible manufacturing processes that 

respond quickly to changing demand at low cost, not only for the enterprise but also for the environment. 

These processes facilitate the flow of information from all business functions within the enterprise and 

manage connections with external suppliers, customers and other stakeholders within the enterprise. 

1.2.1.2. Current Technology 
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The extensive definition of smart manufacturing covers several technologies. Key technologies in the 

smart manufacturing movement include processing of big data, advanced robotics, connectivity devices in 

industrial service. 

a) Processing of big data 

Smart manufacturing uses big data analytics to improve complex processes and manage supply chains. 

Big data processing refers to a method of collecting and understanding large data sets in terms of what is 

known as 3 Vs, velocity, variety, and volume. Velocity refers to the frequency of data collection. This can 

be done concurrently with the application of previous data. Variety represents the different types of data 

that can be processed. Volume refers to the amount of data. Big data analytics enables businesses to move 

from reactive to predictive practices using smart production. This is a change aimed at improving the 

efficiency of the process and the performance of the product. 

b) Advanced robotics 

Advanced robots are also known as smart machines. They can operate autonomously and communicate 

directly with manufacturing systems. By evaluating sensory input and distinguishing between different 

product configurations, they can solve problems and make decisions independently of humans. These 

robots have artificial intelligence that can complete work beyond what is programmed to be the first and 

can be learned from experience. These machines are flexible enough to be reconfigured and repurposed. 

This feature provides the ability to respond quickly to design changes and innovations, which is more 

competitive than most traditional manufacturing processes. An area of concern though, is the safety and 

well-being of the workers interacting with the robot system. Measures have been taken to separate 

conventional robots from the human workforce, but it opens up opportunities for the development of 

robots' cognitive abilities, such as cobots, i.e. robots that work collaboratively with human workforce. 

Figure 1.3 shows the usage of advanced robotics in automotive production plant. 
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Figure 1.3. Advanced robotics in automotive production (source: Wikipedia.org) 

c) Industrial connectivity devices and services  

Internet capabilities enable businesses to increase consolidation and data storage. By adopting cloud 

software, businesses can access highly configurable computing resources. This allows to quickly create 

and release servers, networks, and other storage applications. The enterprise integration platform allows 

manufacturers to track statistics such as system history and workflow to collect data broadcast from their 

systems. Open communication between the manufacturing device and the network can be implemented 

via an Internet connection. This, circumscribes everything from tablets to machine automation sensors 

and allows machines to adjust their processes based on inputs from external devices. 

1.2.1.3. Benefits and Aim 

Smart manufacturing aims to become an ideal practice in the manufacturing field. This includes 

integration at every stage of the product manufacturing process. The goal is to leverage data and develop 

intelligent technologies through a more harmonious development process to rapidly develop new, higher 

quality products. The benefits are:  

a) New and Innovative business practices 



11 
 

On successful adoption, manufacturing intelligent networks could see results affecting domestic and 

global business. Business models can be more easily conceptualized at all stages of the development 

process, be it Invention, be it manufacturing, be it transportation or retail. The ultimate goal is a more 

flexible, adaptive and responsive approach to participating in the highly competitive market. Companies 

need to adapt or adopt practices for competition, which can further stimulate the market. The great 

expectation of the premise is also the coopetition between technicians, intermediaries and consumers. 

Setting up an interdisciplinary network of experts (also known as the Internet of Things) of scientists, 

engineers, statisticians, economists, etc. is a fundamental resource for “smart” startups. 

b) Elimination of workplace hazards and workforce inefficiencies 

Smart manufacturing also helps to investigate workplace inefficiencies and support worker safety. 

Efficiency optimization is a major focus on employers of "smart" systems that are performed using data 

research and intellectual learning automation. One can build intelligent, interconnected "smart" systems, 

set performance goals, determine if it is achievable and identify failures or inefficiencies through failed 

performance goals. In general, automation can reduce inefficiencies due to human error. And Artificial 

Intelligence (AI), which generally evolves, eliminates the inefficiencies of previous models. 

Worker safety is enhanced by an increasing number of integrated networks of safe and innovative designs 

and automation. This is under the notion that automation reduces the exposure of mature technicians to 

hazardous environments. If successful, the lack of human oversight and user direction for automation 

soars safety concerns in the workplace. 

1.2.1.4. Industry 4.0 

Industry 4.0 is a high-tech strategic project of the German government advocating the computerization of 

traditional industries such as manufacturing. The goal is an intelligent factory (Smart Factory) that 

features adaptability, resource efficiency and ergonomics. It also makes integration of business partners 
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with customers in business and value processes. The technology base consists of CPS and IoT. This kind 

of "intelligent manufacturing" makes excellent usage of the following: 

 Wireless network, during product assembly and distant communications. 

 The last generation sensor, located along the same product (Internet of Things) as the supply chain. 

 Refines large amounts of data, to control all stages of product construction, distribution, and use.  

1.3.  Levels of Supply Chain 

1.3.1. Upstream:  selection of appropriate supplier that grows business  

Supply chain management and supplier selection are receiving great deal of attention in competitive 

environment that is prevailing currently in manufacturing world. The purchase function is seen as the 

strategic approach in different sectors. The performance of a manufacturing organization now-a-days is 

largely dependent on the buyer and supplier relationship. A long term buyer-supplier relationship makes 

way for a resilient supply chain which makes it hard for the competitors to topple. Suppliers play an 

important role in growing a business. Organizations need to work hand-in-hand with logistic partner to 

give best service to their customers and achieve excellence. This includes converting natural resources, 

raw materials and parts into finished products that are delivered to end customers. A resilient flow chain 

should have the desired agility, risk management culture, strategic advancement and collaboration to go 

with it. Smart manufacturing also enables data and information about the whole supplier evaluation 

procedure to be available whenever it’s required, wherever it’s required and in the form it’s required 

across the entire value chain.  

1.3.2. Middle stream: selection of advanced technology which is flexible and robust in all 

situations 

In today's manufacturing world, Advanced Manufacturing Technologies (AMT) play a pivotal role in 

organization’s growth. Implementation of AMT offers the advantage of producing and delivering 

products as demanded by the customer, in a shorter lead time with the help of latest advanced 
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technologies, so that efficiency can be maintained. These technologies include the following: Computer-

Aided Design (CAD), Computer Aided Manufacturing (CAM), industrial robotics, automated material 

handling systems, group technology, Flexible Manufacturing Systems (FMS), Rapid Prototyping (RP) 

processes and Computer Numerically Controlled (CNC) machines. These not only provide flexibility but 

at the same time yield greater productivity as well. In terms of flexibility and productivity, AMTs are in a 

whole different league.  These are capable of adapting to changes in product variety with a very short lead 

time while maintaining the efficiency as well as the cost effectiveness. This is where AMT scores ahead 

of conventional manufacturing technologies and by a considerable margin.  With the advancement in 

civilization, the traditional production technologies are increasingly being replaced by advanced 

technologies. The outcomes of this supplement are high productivity, improved reliability, greater 

flexibility and increased efficiency. This transition is very prominent from the fact that there has been a 

paradigm shift of the customer order decoupling point (CODP) towards highly customized product from 

mass production as depicted in figure 1.4. 
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Figure 1.4. CODP shift: Modern manufacturing concept 

Again, CODP is an important factor in manufacturing design as well as supply chain. It is a point in the 

material flow where a particular product is links to a specified order from customer, which can typically 

be buy-to-order (BTO), make-to-order (MTO), assemble-to- order (ATO) and make-to-stock (MTS), 

having different ratios of production lead time (P) and delivery lead time (D). CODP is also known as 

order penetration point (OPP). Make-to-stock (MTS) and Buy-to-order (BTO) are diametrically opposite 

in the present scenario. In case of MTS, the product is least customized and easily available as in case of a 
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finished product. The responsiveness is very high. On the other hand, it is evident that BTO is highly 

customized product as customer comes down to the selection level of raw material to be used in the 

finished product. The responsiveness of procurement of that exotic material from different sources in 

proper amount poses a big challenge for the organizations to meet up the demand.  

1.3.3. Downstream: selection of appropriate warehouse location 

Stupendous success depends on ethos, pathos and logos as expounded and propounded by Socrates, a 

Greek philosopher, 2500 years ago. Thus, many manufacturing organizations today are presented with a 

number of supply chain strategies. Appropriate and lucrative decision making in industrial environment is 

the key to sustainable development in today’s market scenario. Moreover, environmental aspects in terms 

of emission of harmful gases, logistic costs have forced supply chain managers to reinvent and renovate 

their distribution strategies. They look for a suitable decision support aid that would possibly extract the 

best solution out of the problem. In a supply chain design, the location of warehouse is one of the most 

critical and fundamental decisions to be made. This contributes enormously to the performance of the 

supply chain. The problem has received considerable attention in the past few years in manufacturing 

world. It focuses on a number of warehouses and selecting the optimum one with respect to the various 

criteria suitable for the manufacturing unit such that they could minimize the cost associated with 

manufacturing. The decision process is highly complex and involves incomplete information. That leads 

to uncertainty and fuzziness in the given problem. That is where, fuzzy multi-criteria decision making 

(MCDM) has a huge part to play and choose the optimum warehouse location.  
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2. REVIEW OF THE PAST RESEARCH WORK 

The objective of this section is as follows: 

a) to depict the past works and findings in the area of supply chain management.  

b) to analyse the areas covered in these past researches. 

c) To analyse the areas that are yet to be addressed in the past researches. 

There have been many researches in the past that put emphasis on the evaluation of resilient supply chain 

and selection problems in different areas, by multi-criteria decision making (MCDM) and outranking 

approaches that deal with uncertainties, and also different contextual comparative studies amongst them.  

Supplier selection in today’s volatile market environment has gained a lot of attention in literature.  

Chen et. al. suggested a supplier selection problem on fuzzy MCDM. They used fuzzy technique for 

ordered preference by similarity to ideal solution (TOPSIS) to measure the closeness co-efficient and 

subsequent ranking of the suppliers.  

An MCDM model was developed by Buyukozkan et. al. for the evaluation of strategic alliance partner in 

logistic value chain.  

A supplier selection model was developed by Deng & Chan with the applications of Dempster-Shafer 

theory of evidence (DST) and fuzzy set theory (FST).  

A multi-criteria evaluation model was proposed Buyukozkan & Cipci for the evaluation of green 

supplier for an organization. They used a hybrid fuzzy MCDM tool comprising of analytic network 

process (ANP), decision making trial and evaluation laboratory (DEMATEL) and TOPSIS to evaluate 

suppliers relevant to the green supply chain network.  
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An integrated fuzzy MCDM model was developed by Liao & Kao for the evaluation of supplier in a 

watch firm. Integration of TOPSIS and MCGP made way for evaluators in setting different aspiration 

levels in the problem.  

There have been a handful of researches undertaken in recent times for the performance assessment of 

AMTs as well as other decision making problems. Different MCDM and outranking approaches have 

found relevance to the likes of selection and evaluation models.  

Yurdakul developed a model based on AHP and goal programming for the evaluation of CIM (Computer 

Integrated Manufacturing) technologies.  

Al-Ahmari developed a multi- criteria approach for the evaluation of modern technologies by using fuzzy 

set theory and AHP.  

Mohanty & Desmukh proposed a framework in solving a firm’s investment justification problem in 

advanced technologies. Their integrated model was based on AHP and Nominal Group Technique (NGT). 

Kengpol & O’Brien developed a tool for decision aid in the selection of AMT eying product 

development at a rapid pace. They utilized AHP, cost/benefit and statistical analysis in achieving the goal.  

A technology selection algorithm was proposed by Chan et. al.  by integrating AHP, fuzzy multi- criteria 

decision making (FMCDM) and fuzzy cash flow analysis. They incorporated a factor namely fuzzy 

appropriate index in the problem.  

An extensive and potential usage of AHP was shown by Yusuff et. al.  in predicting advanced technology 

implementation. They have proven the ability of AHP method in structuring a complex decision problem 

that includes multi- person, multi- attribute, multi- period in a hierarchy. The whole implementation 

process was segregated into four main modules namely the institutionalization, acceptance, reutilization 

and infusion modules. Safei et. al. proposed a combined AHP, K-means clustering algorithm in 

preserving a proper ranking order. The clustering result proved to be more accurate than that of the 
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normal weighted K- Means. Panapakidis & Christoforidis developed a methodology using TOPSIS, 

multi- criteria decision analysis (MCDA) for selecting optimal clustering algorithm for load profiling 

applications. Ince et. al.  utilised a combination of AHP and TOPSIS in evaluating learning objects (LOs) 

and their descriptive metadata from web- based intelligent learning object framework (LOR).  

Nath and Sarkar exhibited a distance based TOPSIS methodology in fuzzy environment for the 

assessment of AMT.  

Fernandez and Perez analyzed and brought out a model of occupational risk measurement pertaining to 

advanced technology innovation.  

Teti proposed a model for manufacturing pertaining to zero defect in machining with a unique solution of 

signal processing and decision theory.   

Rohrmus et. al. came up with a model of advanced carbon-based manufacturing with environment 

friendly green raw materials and green production to contribute to a safer and greener future.  

Efthymiou et. al. introduced a semantic technology approach that could facilitate the knowledge storage 

and extraction in terms of past production processes configuration in manufacturing, product design and 

process planning.  

Nath & Sarkar developed a Denovo perspective for the performance evaluation of AMTs. They made a 

comparative study of two MCDM tools namely PROMETHEE and DST of evidence based on the basic 

ideas of TOPSIS.  

Chuu proposed two models for the implementation of AMT. He utilized fuzzy multi-attribute analysis in 

group decision making for the same. The mathematical frameworks involved a fusion method of fuzzy 

information that was performed by MEOWA (maximum entropy ordered weighted averaging) operators. 

A scientific approach involving analytic hierarchy process (AHP) and fuzzy AHP as MCDM tools was 

presented by Al-Ahmari for the selection and evaluation of AMTs.  The suggested methodology 
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combined two databases namely manufacturing organization database and AMTs database for the 

upliftment of the model.  

Ahmed et. al. addressed a multi-period investment problem in selection, allocation of modern 

manufacturing technology that could replace traditional ones over a long-range planning horizon. They 

applied linear programming (LP) relaxation solution to a multi-period mixed-integer programming, 

capacity shifting heuristic and probability analysis.  

A multi-criteria mathematical model based on data envelopment analysis (DEA) and assurance region 

(AR) was formed by Liu for the selection of FMS.  

A model on group decision support, based on consensus, was developed by Choudhury et. al. for the 

selection of advanced technology. They used proximity measure, consensus measure and multi-agent 

system (MAS) based negotiation to resolve the problem.  

A distance-based fuzzy MCDM approach was proposed by Karsak to evaluate alternatives to flexible 

production systems. Both economic performance indices and strategic performance variables are at a 

strong decision-making stage integrated into the above approach. 

A fuzzy multipurpose programming approach for choosing an FMS was presented by Karsak and 

Kuzgunkaya. They incorporated fuzzy set theory in the proposed approach to cope with the vagueness 

and uncertainty in production environment that could affect investments in future.   

Karsak and Tolga developed an algorithm based on fuzzy MCDM for the implementation of AMT. 

Preference ratings of experts for economic, strategic criteria and alternatives were aggregated in 

measuring fuzzy suitability indices and subsequent ranking of alternatives.  

A fuzzy ANP-VIKOR model was proposed by Demirel and Yucenur for the selection of cruise port site. 

The study also compared the fuzzy ANP and VIKOR method results.  
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Fouladger et. al. developed model on selection of project portfolio, based on the implementation of an 

organized framework in fuzzy VIKOR platform.  

A group MCDM model using fuzzy VIKOR was proposed by Mirahmadi and Teimoury for the 

selection and evaluation of suppliers.  

Ramachandran and Alagumurthi  proposed fuzzy VIKOR approach for lean manufacturing facilitator 

selection problem. This method provided the advantage of taking decision which was closer to the ideal 

solutions.  

Samantra et. al. developed a vendor selection model based on the application of fuzzy logic combining 

with the VIKOR method. 

Brans and Vincke proposed principles for a new family of outranking methods. They considered six 

possible extensions of PROMETHEE based on extensions of notion of criteria.  

A new approach based on PROMETHEE II mathematical method multi-criteria evaluation was developed 

by Tomic et. al.  for supply chain logistic evaluation.  

Macharis et. al.  discussed the strengths and weaknesses of PROMETHEE and AHP methods regarding  

design of decision hierarchy and determination of weights.  

An outranking-based multi-factor-sorting evaluation modeling and robustness analysis framework was 

developed by Kadzinski and Ciomek. This general framework was based on mixed integer linear 

programming (MILP). They implemented the same in the likes of outranking models specific for Electre 

and PROMETHEE.  

An approach based on PROMETHEE and MCDA was developed by Jedrkiewicz et. al.  in order to 

perform ranking of analytical procedures for determination of chloropropanols in soy sauces. The analysis 

was performed in three different scenarios namely metrological, economic and environmental.  
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An integrated data envelopment analysis-multi-criteria decision aid (DEA-MCDA) model was developed 

by Bagherikahvarin and Smet to restrict weight values of a classic DEA model by using tools from 

MCDA and increase the discrimination power of DEA. The stability intervals based on PROMETHEE II 

was used in this approach as weight constraints in DEA.  

A mathematical model based on PROMETHEE and multi-criteria analysis was developed by Stamatakis 

et. al. to facilitate Photovoltaic integration in buildings, which combined benefits from shading, power 

generation and esthetics. This model evaluates the most proper shading device when the photovoltaic 

system is mounted on it.  

A mathematical model combining ANP and PROMETHEE was developed by Kilic et. al. for selection of 

the optimum Enterprise Resource Planning (ERP) system in enterprises. ANP was used to determine the 

criteria weights and these were utilized by PROMETHEE in optimal ranking of alternative system 

choices.  

A new hybrid fuzzy MCDM method based on fuzzy ANP, fuzzy DEMATEL and fuzzy PROMETHEE 

was developed by Khorasaninejad et. al. to choose the best Prime Mover (PM) in a thermal power plant.  

Development and use of work recovery expander in place of expansion valve in trans-critical CO2 

refrigeration and air conditioning system was proposed by Singh & Dasgupta . They put the qualitative 

data from literature survey through selective multi-attribute decision making (MADM) techniques in the 

likes of AHP, TOPSIS, and PROMETHEE for the evaluation of work recovery expander.  

Chen devised a new MCDM model based on PROMETHEE utilizing a likelihood-Based outranking 

comparison approach in the interval type 2 fuzzy set environment containing trapezoidal fuzzy numbers. 

The applicability of the developed model was illustrated in the two practical applications of vehicle 

evaluation issues and site for landfill selection.  
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An approach based on AHP-PROMETHEE methods was developed by Kazan et. al.  for electing the 

deputy candidates for nomination in the grand national assembly of Turkey.  

Murat et. al. devised a model based on PROMETHEE outranking method for measuring performance 

quality of schools.  

 A new MCDM method in fuzzy environment was evolved by Deng & Chan for supplier selection 

problem. They used FST and DST based on the main ideas of TOPSIS, to deal with the problem. Cholvy  

studied the relations existing between Dempster-Shafer theory and one of its extensions that considered 

frames of discernment with non-exclusive hypothesis.  

Boudaren et. al.  proposed a unifying general formalism that opened new possibilities to achieve 

Dempster-Shafer fusion in Markov fields context.  

Aggarwal et. al.  developed an Inertial Navigation System (INS) assisted by Global Positioning System 

(GPS) for land vehicle navigation application with reduced uncertainty and ambiguity.  

Chai et. al.  devised an extended ranking method for fuzzy numbers that synthesize the fuzzy targets and 

DST.  They aggregated the ranking results using combination rule of Murphy. 

A handwriting recognition system based on Hidden Markov Model (HMM) was proposed by Kessentini 

et. al.  by the use of DST.  

Wang et. al.  proposed an approach based on ambiguity measure of fuzzy soft sets and DST. They 

applied the proposed approach in medical diagnosis.  

A mathematical model discovering user preferences using Dempster-Shafer theory was formulated by 

Troiano et. al.   

Yue et. al.  developed a reliability-maximizing model based on multi-software-based architecture, using 

DST and enhanced differential development. 
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An approach using the Dempster-Shafer theory was proposed by Wang & Jing for ranking and selection 

of wireless network in a very much complicated scenario.  

A fusion based Wireless Sensor Networks (WSN) surveillance application was deployed by Senouci et. 

al.  to achieve high detectivity rate along with a lowering the false alarm rate in WSN.  

Gruyer et. al.  applied the DST to the Multi Hypotheses Tracking (MHT) method. This was able to 

resolve the ambiguity that arises in how to connect objects and tracks in a highly volatile vehicle 

environment. In decision making, a novel approach based on fuzzy set was proposed by Tang by 

incorporating DST and the grey relational analysis (GRA).  

Lepskiya introduced estimation of conflict index and decreasing of ignorance index configuring the basic 

DST. After the application of combining rule, it is seen that, the adequate condition to decrease the 

ignorance is to heighten the correlation between the bodies of evidence. Wang et. al.  proposed a novel 

approach model based on TOPSIS and RSM with interval numbers. They also demonstrated three 

illustrative MCDM problems with interval numbers to showcase the effectiveness of the proposed 

method.  

Simsek et. al. proposed the TOPSIS-based Taguchi optimization problem of the optimum compounding 

ratio of high-strength non-segregating concrete. 

An integrated TOPSIS- DOE method was developed by Tansel Ic. to solve different real-life CIM 

evaluation problems of industrial applications.  

A hybrid DOE-TOPSIS model was proposed by Sabaghi et. al. in an MCDM problem.  

Tansel Ic.  proposed a TOPSIS based DOE approach for the assessment of company ranking. 

Selection of warehouse is of supreme importance in a resilient supply chain. It has emerged into the scene 

during the last few decades. Some amount of research has been done in the past regarding the problem. 
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Huang presented a two-stage network model for warehouse site selection problem. Wutthisirisart et. al.  

proposed a material location selection problem allocating material to two warehouses- owned and rented, 

while minimizing the total storage and transportation costs. This shows a cost saving opportunity between 

20%-40% due to reassigning materials between the rented and owned warehouses.  

Hofstra et. al.  contributed a case study to the literature of warehouse safety limitation, in which the 

factors governing safety are obscure. It provides valuable insights in safety aspects of logistics service 

providers (LSPs).  

A group MCDM model was proposed by Dey et. al. for selection and evaluation of warehouse in a supply 

chain. The importance of heterogeneity in expertise degree is set through the pairwise comparison matrix. 

Analysis of variance (ANOVA) and sensitivity analysis (SA) find the proposed approach as a robust 

decision-making aid in the supply chain network.  

Lin & Wang  developed a two-stage model consisting of genetic algorithm (GA) and gradient method for 

optimal warehouse location selection.  

Makaci et. al. provided an empirical study about the main specifications of a pooled warehouse, 

examined from the perspective of both literature review and explanatory qualitative study built on seven 

cases in France.  

Jacyna-Golda & Izdebski  presented multi-factor warehouse selection problem in the supply chain 

network based on GA.  

An integrated simulation model has been built by Fichtinger et. al. to examine the interaction of 

inventory management-warehouse management and its environmental impact.  

Garcia et. al. proposed a mathematical approach based on AHP as multi-attribute problem for a 

warehouse site selection. They included a case study of the site selection for a new banana distribution 

warehouse.  
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Atieh et. al. proposed an automated warehouse management inventory system for enhanced workflow, 

timely and efficient data handling, resulting in better space utilization and optimization of warehouse.  

Vasiljevic et. al. developed a model based on localization algorithm to fill the gap between the latest 

scientific advances in the localization of self-governed cars and autonomous warehouse storage.  

So, therefore, the review of past researches leads to the next chapter gap analysis, that shows a tabular 

from of past research, the findings and issues that are yet to be addressed.     
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3. GAP ANALYSIS 

This section depicts some of the past researches on related field, the areas covered and the areas 

which are unexplored keeping a scope of future exploration. It is presented in tabular form as follows: 

 

Sl. 

No. 

Reference Areas Covered Issues Not Addressed 

1 [16] i) Agent based framework ii) Multi agent 

system iii) Consensus group decision 

making iv) Multi-person, multi-

preference, multi-criteria group decision 

making v) Soft consensus vi) Degree of 

proximity vii) Degree of consensus 

i) Lesser alternatives.  

ii) Triangular fuzzy nos.  

iii) Linguistic terms.  

iv) Sensitivity analysis.  

v) Capital and operating costs of 

alternatives are not considered. 

2 [44] i) Both the economic evaluation criteria as 

well as strategic criteria have been 

considered ii) Triangular fuzzy no.s 

throughout iii) Fuzzy discounted cash flow 

analysis iv) Cost effective as well as 

customized   

i) Loss in precision since fuzzy models 

provide only best and worst case 

analysis. ii) Possible errors don't get 

compensated. iii) Sensitivity analysis 

is not done, Robustness is not assured. 

3 [99] i) Fuzzy set theory ii) Membership 

function iii) Algebraic operations on fuzzy 

sets iv) Separation theorem 

i) Triangular fuzzy numbers. ii) 

Trapezoidal fuzzy numbers. 

4 [100] i) Selection of construction project 

managers ii) Application of COPRAS-G 

method iii) The parameters of the 

alternatives determined by grey relational 

grade and expressed in intervals  

i) COPRAS-G may be applied to the 

solution of wide range of problems by 

using discrete multi-attribute 

assessments technique. 
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Sl. 

No. 

 

Reference 

 

Areas Covered 

 

Issues Not Addressed 

5 [12] i) Flexible Manufacturing System design 

ii) System simulation iii) MCDM iv) 

Artificial Intelligence (AI) v) FST vi) 

AHP. vii) Neural network 

i) Full automation of interface between 

simulation models and intelligent 

decision tools. 

 

 

 

6 [42] i) Fuzzy set theory ii) Distance-based 

fuzzy MCDM approach iii) Linguistic 

terms. iv) Evaluation of Flexible 

Manufacturing System (FMS) alternatives 

i) Uncertainty treatment can be 

incorporated for robustness.  

7 [50] i) Fuzzy axiomatic design approach based 

on hierarchical structure ii) AHP iii) 

Sensitivity analysis for defuzzification 

method iv) Illustrative example of 

teaching assistant selection problem 

i) Defuzzification process can lead to 

loss of information. Instead α-cut 

method can be used to cope with that. 

8 [103] i) MADM ii) Application of COPRAS-G 

method iii) Simulation to reflect fuzzy 

inputs  

 

i) COPRAS-G integrated with discrete 

multi-attribute assessments technique 

could be applied. 

 

 

9 [34] i) A comparison of five MCDA tools ii) 

Decision making iii) Water resource 

management 

i) Unavailability or little availability of 

guidance to help decision analyst 

structuring the MCA problem. ii) 

Further work is required on MCA 

problem structuring and development 

of decision support tools. 
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Sl. 

No. 

 

Reference 

 

Areas Covered 

 

Issues Not Addressed 

10 [19] i) Performance measures of five MCDA 

methods. ii) Assessment of Sustainability 

assessment. iii) Uncertainty management 

i) Analysis of the MCDA methods on 

experts’ judgments, which could be the 

outcome of the study of the method. 

 

 

11 

 

[38] 

 

i) AHP Ii) Learning object iii) TOPSIS Iv) 

Metadata 

 

 

i) Learning objects in large data set  

ii) Cost of operation  

iii) Smart manufacturing  

12 [72] i) Load data processing ii) Multi- criteria 

decision analysis iii) TOPSIS iv) 

Comparison of algorithms 

i) Cost of software implementation  

13 [76] i) AHP ii) K-means iii) Clustering on 

ranking consideration 

i) Integration of other ranking 

algorithms into clustering algorithm 

14 [63] 

 

i) Fuzzy multi- criteria decision making  i) Post optimality check may be done. 

15 

 

 

 

 

[21] 

 

i) Industrial decision making. ii) 

Combination of EVAMIX and AHP 

i) Post optimality check has not been 

performed.  

ii) The approach may be used in other 

selection problems with more numbers 

of attributers. 

 

16 

 

 

[17] 

 

 

i) Fuzzy sets. ii) Multi-attribute analysis. 

iii) Evaluation of advanced technology. iv) 

Linguistic fuzzy quantifier. v) Fusion of 

fuzzy information.  

 

 

i) Post optimality check may be done.  

ii) Fuzzy linguistic qualifier could be 

processed until a congruous decision is 

reached.  

17 [13] i) FMCDM ii) TOPSIS iii) Linguistic 

variable iv) Trapezoidal fuzzy number. 

 

i) Group decision support system ii) 

Sensitivity analysis. 
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Sl. 

No. 

 

Reference 

 

Areas Covered 

 

Issues Not Addressed 

18 [8] i) Fuzzy AHP  ii) Fuzzy TOPSIS  i) Group decision making environment  

ii) Adaptation of different aggregation 

techniques. 

19 [24] i) DST ii) FST iii) Fuzzy TOPSIS  i) Conflict data fusion algorithm. 

20 [9] i) Fuzzy ANP ii) Fuzzy DEMATEL iii) 

Fuzzy TOPSIS 

i) Post optimality check may be done. 

21 [55] i) Multi-choice goal programming 

(MCGP) ii) TOPSIS iii) Group decision 

making 

i) Post optimality check may be done.  

ii) The model can be used in other 

management and marketing problems. 

 

 

The study of the gap analysis has exhibited the areas somewhat covered in the past research works. 

But it also revealed a few areas, where, there are some scope for work and improvement. Some of the 

areas would include post-optimality check or uncertainty treatment integrated with different fuzzy 

MCDM techniques, for the robustness of the research findings; group decision making in fuzzy 

environment; consideration of the environment friendly factors while taking selection decision and so 

on. We have tried to cover a few of these areas in our current research for the purpose of bridging the 

gap to some extent.   
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4. AIMS, OBJECTIVES & SCOPE OF THE RESEARCH WORK 

4.1. Aims of the Work 

1.  To move to a direction such as to achieve customer satisfaction.  

2. To have the cutting edge and flexibility for achieving competitive advantage and sustainable 

development. 

3. To contribute to the development of the society, the country, the mankind, to have a much more 

improved civilization and life style. 

4.2. Objective of the Work 

1. To study the role of supply chain in the environment of uncertain/unstructured information regarding 

demand pattern of the product in global scenario 

2. To study and analyze the resilient supply chain under smart manufacturing environment in 

manufacturing organization.  

3. To understand and analyze various marketing strategies and their correlations with volatility in demand 

prevalent in the market.  

4. To study and analyze the shifting of marketing strategies from mass production to mass customization. 

4.3. Scope of the Work 

 The scope of this investigation is oriented towards finding decision support models in multi-criteria 

problems under fuzzy type vagueness or uncertainty. The model should (roughly) simulate human 

decision making by applying one of the fundamentals of soft computing: fuzzy logic, or more precisely, 

fuzzy set theory. Cases of ambiguity present in the initial information and multi-criteria ambiguous 
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decision-making problems are also considered in the troubleshooting steps. It has got ample applications 

in manufacturing industries, in various engineering fields, in vast areas of decision support. 
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5. FUZZY MULTI-CRITERIA DECISION MAKING APPROACH 

The fuzzy multi-criteria decision making or MCDM approach combines the fuzzy decision matrix, 

linguistic variable,  triangular fuzzy number (TFN), trapezoidal fuzzy number (TrFN),  fuzzy scales, 

defuzzification process, arithmetic operations on fuzzy numbers, distance between two fuzzy numbers 

etc. 

5.1. Fuzzy Scales 

The fuzzy data are expressed in linguistic terms. They are converted into fuzzy numbers first. Then all the 

fuzzy numbers (or fuzzy sets) are defuzzified to obtain crisp values. In the scenario of fuzzy problem, the 

information about the system and design range are incomplete. The ranges for a certain criterion can be 

expressed over a number, around a number or between two numbers. TFNs or TrFNs can represent these 

kinds of expressions in a convenient manner. “The common area between the design range and the system 

range is the intersection area of triangular or trapezoidal fuzzy numbers” (Celik et. al. ,2007). The same is 

shown in Figure 5.1.  

 

Figure 5.1. Representation of system and design range 
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Various types of rating scales or measurement formats can be used to measure the strength of a concept or 

attitude (for example, semantic differential, Stapel scale, Likert scale, Thurston scale, and direct rating 

scale). The proposed approach contains five conversion scales namely very low, low, medium, high, very 

high for evaluating weights of criteria and six scales namely very poor, poor, fair, good, very good, 

extremely good for the conversion of criteria values of alternatives. 

5.2. Fuzzy Sets 

A fuzzy set is denoted by,  𝐴 = ൛൫𝑥, 𝑓஺(𝑥)൯ห𝑥 ∈ 𝑈, where 𝑈 is the universe of discourse, 𝑥 is an element 

in 𝑈; 𝐴 is a fuzzy set in 𝑈,  fA (x) is the membership function of A at 𝑥 . The larger 𝑓஺(𝑥), the stronger the 

grade of membership for 𝑥 in 𝐴.                                                    

5.3. Linguistic Variable and Triangular Fuzzy Number 

Linguistic variables are used to represent fuzzy data. They need to be represented in linguistic terms like very 

poor, fair, good, etc. for a subjective attribute, e.g. condition; and low, medium, high, etc. for a subjective 

attribute, e.g. importance. These are very useful approach where situations are complex and not so clearly 

defined to be expressed by traditional quantitative expressions.  These variables are further converted into 

triangular fuzzy numbers (TFNs) as shown in figure 5.2. 

 

 

Figure 5.2. Representation of triangular fuzzy number 
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 These TFNs provide crisp numbers to a linguistic term by following a certain scale and try to eliminate the 

fuzziness present in the problem. A TFN "A" is expressed by a triplet as in figure 3 and is denoted by A= (a, b, 

c), where, a is the lower limit and c is the upper limit. The membership function 𝑓஺(𝑥) of this TFN is given by 

the following conditions (Zimmermann, 1991):              

𝑓஺(𝑥) =  ൝
0;   𝑥 < 𝑎, 𝑥 > 𝑐

𝑥 − 𝑎 𝑏 − 𝑎⁄ ;  𝑎 ≤ 𝑥 ≤ 𝑏
𝑐 − 𝑥 𝑐 − 𝑏;  𝑏 ≤ 𝑥 ≤ 𝑐⁄

 

A linguistic variable can be converted into fuzzy set (Kauffmann & Gupta, 1985) comprising of a TFN by 

using a fuzzy scale. A fuzzy scale is used in a situation information about the system and design range is vague 

and not complete. Many conversion scales e.g. Semantic differential, Stapel scale, Likert scale etc. could 

convert cognitive attitudes of the organizational experts in the form of linguistic variables.  

 5.4. Linguistic Variable and Trapezoidal Fuzzy Number  

In general, multi-criteria problems are associated with uncertainty and vagueness. Linguistic variables 

could eliminate the fuzziness and uncertainty in the problem. An expert in the field has to deal with 

subjective and objective factors that could possibly influence a selection decision. While, the objective 

factors can be represented by crisp values, it is not the case for the subjective factors. Linguistic variable 

such as ‘significance’ or ‘importance’ plays a pivotal role in adapting to the situation. These variables 

could further be processed by trapezoidal fuzzy numbers (TrFNs)  in representing opinion of experts. 

There are some ordinal approaches as well, which are not based on TrFNs. Algorithms based  on 

sentiment analysis with multi-granular fuzzy linguistic modelling, unbalanced fuzzy linguistic 

information have been developed in the recent times for the representation of user information. A TrFN 

can be expressed as a quadruplet 𝜓 = (𝑎, 𝑏, 𝑐, 𝑑) as given in Fig. 5.3. 
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Figure 5.3. Representation of trapezoidal fuzzy number 

A fuzzy set 𝜓 in the universe of discourse X is defined as𝜓 = {ቀ𝑥, 𝜇ట (𝑥)ቁ : 𝑥 ∈ X}.  The membership 

function 𝜇ట (𝑥): 𝑋 → [0,1] is defined as follows: 

                                                          𝜇ట (𝑥) =  

⎩
⎪
⎨

⎪
⎧

0, 𝑥 < 𝑎  
(ೣష౗)

(ౘష౗)
,   ୟஸ௫ஸ௕

ଵ,          ୠஸ௫ஸ௖
 

(ౚషೣ)

(ౚషౙ)
  ,ୡஸ௫ஸௗ

଴,        ௫வௗ

                                                          

Thus, variables in the linguistic weight set can be represented by trapezoidal fuzzy scaling. The upper and 

lower limits of such a weight set could be extreme significance = (0.7, 0.8, 0.9, 1) and extreme 

insignificance = (0, 0, 0.1, 0.2). This is a conversion scale defined by experts that could take values 

between 0 and 1. Some other conversion scale could be defined to take the values between 0 and 10. The 

upper and lower limits of such a weight set could be extremely high importance = (9, 9, 10, 10) and 

extremely low importance = (1, 2, 3, 4).  

 

5.5. Fuzzy Decision Matrix   

Fuzzy data provides obscure information about the decision problem. Because of these uncertainties present in 

the problem scenario, providing crisp data is a tedious task. That is where fuzzy decision matrix comes very 
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handy. If a fuzzy multi-criteria comprises of m numbers of alternatives and n numbers of criteria, then that is 

expressed by decision matrix as given below:  

 
Where, θǂ ௜௝ = (𝑎௜௝ , 𝑏௜௝ , 𝑐௜௝) are the TFNs .  

𝐴 = 𝐴ଵ, 𝐴ଶ, … , 𝐴௠ are the alternatives and C = 𝐶ଵ, 𝐶ଶ, … , 𝐶௡ are the criteria. 

The weight matrix is given by: 𝑊 = [𝑤ଵ 𝑤ଶ 𝑤ଷ … 𝑤௡ିଵ 𝑤௡] 

Where, 𝑤௝ = (𝑤ଵ௝ , 𝑤ଷ௝ , 𝑤ଶ௝) are the triangular fuzzy weights of criteria. 

The five elements of this matrix are: 1) Criteria.2) No. of criteria.3) Alternatives.4) No. of alternatives.5) 

Criteria values of the alternatives.  

5.6. Defuzzification and α-cut  

The fuzzy numbers need to be defuzzified for crisp estimation of experts at some later stage of the 

problem solving after overcoming the uncertainty present in the initial stage. The α-cut, α ∈  (0,1)  is a 

very handful method in doing so, as it minimizes the loss of information going forward. It is a crisp set 

defined as 𝜓 (𝛼) = 𝑥 ∈ R: 𝜓(𝑥) ≥ 𝛼, where, 𝜓 (𝛼) is a closed interval of the form[𝜓௅(𝛼), 𝜓௎(𝛼)], 𝑅 is a 

real line and TrFN 𝜓 is a subset 𝑅; 𝜓: 𝑅 → [0,1].     

There are other methods such as the graded mean integration representation for defuzzification of TFN  as 

follows: P (N) = (𝑎 + 4 ∗ 𝑏 + 𝑐) 6⁄ , where, 𝑃(𝑁) is the crisp defuzzified number. 

Then, there is arithmetic mean as follows: 𝑃(𝑁) = (𝑎 + 𝑏 + 𝑐)/3.  

5.7. Arithmetic operations on fuzzy numbers 

Two given fuzzy numbers A and B; 𝐴, 𝐵  𝑅 , the α-cuts of A and B are 𝐴ఈ =  [𝐴௟
ఈ , 𝐴௨

ఈ], 𝐵ఈ = [𝐵௟
ఈ , 𝐵௨

ఈ] 

respectively.  Some operations of interval arithmetic on A, B are expressed as follows: 
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 (𝐴 + 𝐵)𝜶   =  [ 𝐴௟
ఈ +  𝐵௟

ఈ , 𝐴௨
ఈ + 𝐵௨

ఈ] 

    (𝐴 − 𝐵) ఈ =  [ 𝐴௟
ఈ − 𝐵௨

ఈ  , 𝐴௨
ఈ −  𝐵௟

ఈ ] 

                                                        (𝐴 ∗ 𝐵)  ఈ =  [ 𝐴௟
ఈ . 𝐵௟

ఈ , 𝐴௨
ఈ . 𝐵௨

ఈ] 

                                                        (𝐴/𝐵)  ఈ =   [ 𝐴௟
ఈ/𝐵௨

ఈ  , 𝐴௨
ఈ/ 𝐵௟

ఈ] 

                                                          (𝐴 ∗ 𝑟) ఈ =   [ 𝐴௟
ఈ . 𝑟, 𝐴௨

ఈ . 𝑟], 𝑤ℎ𝑒𝑟𝑒,  𝑟 Є 𝑅. 
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6. ANALYSIS OF DIFFERENT MCDM METHODS IN PERFORMANCE ASSESSMENT OF 
ADVANCED MANUFACTURING TECHNOLOGIES                                                                                                    

6.1. Case Study I: Decision System Framework for Performance Evaluation of Advanced   

Manufacturing Technology under Fuzzy Environment 

6.1.1. Fuzzy TOPSIS Methodology Analysis 

 Fuzzy Technique for Ordered Preference by Similarity to Ideal Solution or Fuzzy TOPSIS method is a 

part of fuzzy MCDM tool. The classical TOPSIS was developed by Hwang and Yoon (1981) for solving 

MCDM problems. According to the methodology, the best choice is nearest to the positive ideal solution 

and at the same time, it is farthest from the negative ideal solution. It is a method for cardinal preference 

to attributes. Assuming that the utility of each attribute monotonically increases (or decreases), it is easy 

to find the ideal solution consisting of all the best achievable attribute values and the negative ideal 

solution consisting of all the worst achievable attributes. This method uses an alternative with the 

geometrically smallest (weighted) Euclidean distance to ideal solution. In many conditions, inadequacy of 

crisp data in a decision-making problem makes way for fuzzy linguistic terms and triangular fuzzy 

numbers, introduced by Zadeh (1965, 1974). Extended TOPSIS method is constituted by linguistic terms 

and triangular fuzzy numbers instead of exact numerical value.  

Following are the steps involved in this methodology: 

Step 1. Formation of committee of k no. of experts. They could identify selection criteria and available 

choices. 

Step 2. Formation of Decision Matrix and weight matrix. Representation of criteria values of available 

choices and weights of criteria by linguistic variables and in turn, conversion of them into TFNs.  

Step 2a. As there are k persons in the selection committee, aggregate values for alternatives and criteria 

weights are measured as: 

𝑥௜௝ = [𝑥௜௝
ଵ + 𝑥௜௝

ଶ + ⋯ + 𝑥௜௝
௞ ]/𝑘, 𝑖 = 1,2, … , 𝑚: 𝑛𝑜. 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠                             ……………. [6.1.1] 
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𝑤௝ = [𝑤௝
ଵ + 𝑤௝

ଶ + ⋯ + 𝑤௝
௞]

ଵ

௞
, 𝑗 = 1,2, … , 𝑛: 𝑛𝑜. 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎                                      ……………. [6.1.2] 

Step 3. Normalizing the decision matrix. 

For a TFN represented as (𝑘௜௝ , 𝑙௜௝ , 𝑚௜௝), normalization for beneficial and non-beneficial criteria, can be 

done, as in the following equation:   

 

                       𝐵𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙:                      𝑟௜௝ = (𝑘௜௝ 𝑚௝
∗,⁄ 𝑙௜௝ 𝑚௝

∗,⁄ 𝑚௜௝ 𝑚௝
∗⁄ )                         …………… [6.1.3]          

                    𝑁𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙:           𝑟௜௝ = (𝑘௝
ି 𝑚௜௝ ,⁄ 𝑘௝

ି 𝑙௜௝ ,⁄ 𝑘௝
ି 𝑘௜௝⁄ ) 

where, 𝑚௝
∗ = max  (𝑚௜௝);  𝑘௝

ି = min  (𝑘௜௝)                                                                                                            

Step 4. Determination of the positive ideal solution 𝐴∗ = (𝑟∗, 𝑟∗, 𝑟∗) and the negative-ideal solution  

𝐴ି = (𝑟ି, 𝑟ି, 𝑟ି);    

Step 5. Calculating the weighted distances of alternatives from the positive and negative-ideal solution 

(Di
* and Di

─ respectively). The distance between two triangular fuzzy numbers A1= (k1, l1, m1) and A2= 

(k2, l2, m2) can be calculated as 

               D (A1, A2) =   ½ {max (|k1─k2|, |m1─m2|) + (|l1─l2|)}                                     …………….. [6.1.4] 

Since 𝑟∗ =1 and 𝑟ି = 0; the weighted distances from the positive and the negative-ideal solution can be 

calculated respectively as  

           Di
* = ∑ [½ {max (wkj|kij─1|, wmj|mij─1|) + wlj|lij─1|}];          i =1, 2 …, m          …………… [6.1.5] 

          Di
─ = ∑ [½ {max (wkj|kij─0|, wmj|mij─0|) + wlj|lij─0|}];             j =1, 2,…,n          …………… [6.1.6] 

where, 𝑤௝ = (𝑤௞௝ , 𝑤௟௝, 𝑤௠௝) is the aggregate weight of jth criterion. 

Step 6. The proximity index is pbtained by the following equation, 

                                    Pi
* = Di

─ / (Di
*+Di

─);           where, i =1, 2,…,m.                        ……………. [6.1.7] 
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Step 7.Objective Factor Measurement (𝑂𝐹𝑀௜) by taking into account the cost factor as: 

                     𝑂𝐹𝑀௜ = [𝑂𝐹𝐶௜ ∗ ∑(1 𝑂𝐹𝐶௜⁄ )]ିଵ ;   where, i =1,2,…,m.            ……………..  [6.1.8]                                                  

Where, 𝑂𝐹𝐶௜ = Objective Factor Cost. 

Step 8.Measurement of Suitability Index (SI) as: 

   𝑆𝐼௜ = 𝛼 (𝑃௜
∗) +  (1 − 𝛼)(𝑂𝐹𝑀௜)                                                                    …………….. [6.1.9] 

Where, 𝛼 = Co-efficient of attitude, 0 ≤ 𝛼  ≤1. 

Step 9. Obtaining a comprehensive ranking of alternatives on the values of Suitability Index (SI). 

6.1.2. A Mathematical Model  

The flowchart of the model is given in figure 6.1. 

A manufacturing organization desires to select the best advanced manufacturing technology from six 

alternatives. For this, they engage four experts to take optimum decision. Five benefit criteria are 

considered: 

1)  Quality(C1) 

2)  Productivity(C2) 

3) Flexibility(C3) 

4)  Customer Satisfaction (C4) 

5)  Eco-friendliness(C5) 
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Figure 6.1. Flowchart of the case study  

The problem is assumed to be homogeneous in nature. Experts’ judgments are of equal importance. Table 

6.1.1 and Table 6.1.2 represent linguistic variables and corresponding TFNs for criteria weights and 

values of alternatives.  
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Table 6.1.1:  Linguistic variables for criteria weights 

Linguistic Terms Fuzzy Numbers 

Very Less Weightage (VLW) (0,0,0.2) 

Less Weightage (WL) (0,0.2,0.4) 

Medium Weightage (MW) (0.4,0.6,0.8) 

High Weightage (HW) (0.6,0.8,1) 

Very High Weightage (VHW) (0.8,1,1) 

  

Table 6.1.2: Linguistic variables for values of alternatives 

Linguistic Values Fuzzy Numbers 

Extremely Important (EI) (9,10,10) 

Very Important (VI) (7,9,10) 

Important (I) (5,7,9) 

Less Important (LI) (3,5,7) 

Very Less Important (VLI) (1,3,5) 

Extremely Less Important (ELI) (0,1,3) 
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The Experts use the Fuzzy Linguistic terms (shown in Table 6.1.1 & Table 6.1.2) for weights of criteria 

and values of the alternatives presented in Table 6.1.3 & Table 6.1.4 respectively. 

Table 6.1.3: Weights of the criteria by Experts 

 Experts (E) 

Criteria E1 E2 E3 E4 

C1 VHW VHW HW VHW 

C2 HW HW VHW HW 

C3 HW MW HW VHW 

C4 VHW HW HW VHW 

C5 HW HW MW VHW 
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Table 6.1.4: Values of alternatives by Experts 

 Experts (E) 

Criteria Alternatives E1 E2 E3 E4 

 

 

 

C1 

AMT1 I VI I LI 

AMT2 VI VI I LI 

AMT3 I LI VI VI 

AMT4 EI VI EI I 

AMT5 EI EI VI I 

AMT6 EI VI VI I 

 

 

 

C2 

AMT1 I VI I EI 

AMT2 VI VI VI VI 

AMT3 EI EI VI EI 

AMT4 LI LI I I 

AMT5 I LI VI I 

AMT6 EI VI VI EI 

 

 

 

C3 

AMT1 I I I LI 

AMT2 VI VI VI VI 

AMT3 VI VI EI VI 

AMT4 EI VI VI VI 

AMT5 I LI LI I 

AMT6 LI LI I I 

 

 

 

C4 

AMT1 VI VI EI VI 

AMT2 EI EI EI EI 

AMT3 I I LI LI 

AMT4 VI VI VI VI 

AMT5 LI LI LI FLI 

AMT6 VI VI VI EI 

 

 

 

C5 

AMT1 I I I I 

AMT2 I LI LI LI 

AMT3 EI EI VI EI 

AMT4 I I I LI 

AMT5 VI VI EI EI 

AMT6 EI VI VI VI 
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The linguistic evaluations by Experts (Table 6.1.3, Table 6.1.4) are represented by TFNs to construct the 

fuzzy decision matrix as in Table 6.1.5. Weight matrix is also presented there. In the next step, the 

decision matrix is normalized and presented in Table 6.1.6. 

Table 6.1.5: Fuzzy Decision Matrix and criteria weights 

 C1 C2 C3 C4 C5 

AMT1 (5,7,8.75) (6.5,8.25,9.5) (4.5,6.5,8.5) (7.5,9.25,10) (5,7,9) 

AMT2 (5.5,7.5,9) (7,9,10) (7,9,10) (9,10,10) (3.5,5.5,7.5) 

AMT3 (5.5,7.5,9) (8.5,9.75,10) (7.5,9.25,10) (4,6,8) (8.5,9.75,10) 

AMT4 (7.5,9,9.75) (4,6,8) (7.5,9.25,10) (7,9,10) (4.5,6.5,8.5) 

AMT5 (7.5,9,9.75) (5,6.5,8.75) (4,6,8) (3,5,7) (8,9.5,10) 

AMT6 (7,8.75,9.75) (8,9.5,10) (4,6,8) (7.5,9.25,10) (7.5,9.25,10) 

Weight (0.75,0.95,1) (0.65,0.85,1) (0.6,0.8,0.95) (0.7,0.9,1) (0.6,0.8,0.95) 

 

Table 6.1.6: Fuzzy Normalized Decision Matrix 

 C1 C2 C3 C4 C5 

AMT1 (0.5,0.7,0.89) (0.65,0.83,0.95) (0.45,0.65,0.85) (0.75,0.9,1) (0.5,0.7,0.9) 

AMT2 (0.56,0.76,0.9) (0.7,0.9,1) (0.7,0.9,1) ((0.9,1,1)) (0.35,0.55,0.75) 

AMT3 (0.56,0.76,0.9) (0.85,0.97,1) (0.75,0.9,1) (0.4,0.6,0.8) (0.85,0.97,1) 

AMT4 (0.76,0.9,1) (0.4,0.6,0.8) (0.75,0.9,1) (0.7,0.9,1) (0.45,0.65,0.85) 

AMT5 (0.76,0.9,1) (0.5,0.65,0.87) (0.4,0.6,0.8) (0.3,0.5,0.7) (0.8,0.95,1) 

AMT6 (0.7,0.89,1) (0.8,0.95,1) (0.4,0.6,0.8) (0.75,0.9,1) (0.75,0.9,1) 

Weight (0.75,0.95,1) (0.65,0.85,1) (0.6,0.8,0.95) (0.7,0.9,1) (0.6,0.8,0.95) 

FPIS (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) 

FNIS (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) 
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The distance measurements from FPIS (1, 1, 1) and FNIS (0, 0, 0) are shown in Table 6.1.7. 

Table 6.1.7: The Distance Measurement 

 D* D─ 

AMT1 1.2350 3.8815 

AMT2 0.9590 4.0547 

AMT3 0.9025 4.0912 

AMT4 1.0725 3.9862 

AMT5 1.3387 3.6887 

AMT6 0.8385 4.1865 

 

The proximity index values of the AMTs are shown in Fig. 6.2. 

 

                          

Figure 6.2. Proximity Index (Pi
*) 
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The capital and operating costs (in millions of $) of the six AMTs are shown in Table 6.1.8. 

Table 6.1.8: Capital and Operating Cost (𝑂𝐹𝐶௜) 

Alternatives Capital and Operating Cost(millions of 

$) 

AMT1 3.93 

AMT2 5.78 

AMT3 4.56 

AMT4 8.42 

AMT5 6.39 

AMT6 5.97 

 

The objective factor measurement from the capital and operating costs of the alternatives are calculated 

and presented in Fig. 6.3. 

 

 

 

Figure 6.3. Objective Factor Measurement 
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To calculate the Suitability Index (SI), the co-efficient of attitude α is taken as 0.67 (by consensus of 

Decision Makers). 

 

 

 

 

Figure 6.4. Suitability Index 

 

According to the proximity to ideal solution, as shown in Fig. 6.4, the ranking order of the AMTs is 

AMT3> AMT6> AMT2>AMT1> AMT4> AMT5. So, the selected alternative is AMT3. 

Where, ‘>’ = superior to. 

 

6.1.2.1. Sensitivity Analysis 

Sensitivity Analysis or Post-optimality Analysis is done to get optimum decisions. It is the measure of 

sensitivity of a model to changes in its parametric values. This explores the variability (uncertainty) in the 

output of a mathematical model, which could be qualitatively or quantitatively disaggregated into 

different sources of variation in the input of the model. More generally, uncertainty and sensitivity 

analysis examine the reliability of a study that includes a mathematical model. It is generally used for:  
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 1) model simplification 2) investigating model robustness 3) measuring impact of varying input 

assumptions and scenarios. 4) searching for errors in the model (by encountering unexpected relationships 

between inputs and outputs). 

Modern manufacturing organizations are confronted with many challenges due to LPG environment 

where LPG stands for liberalization, privatization and globalization. It is very clear and evident that the 

market is highly dynamic and volatile. The organizations have been working under highly competitive 

surroundings. Now, any change in the flexibility, productivity, quality, customer satisfaction or capital 

and operating cost of the equipment under consideration will change the selection decision. 

If the group decision makers are positive in attitude (the numerical sum of attitude is 100) i.e. they see the 

opportunities in the problems, or in other words, optimist group decision makers, the value of  the co-

efficient of attitude α will tend to move to the higher side. On the other hand, if the experts are of 

pessimistic in attitude i.e. they see the problems in the opportunities, the value of α will move to the lower 

side. That is why, sensitivity analysis is important for making an eclectic decision under the fuzzy 

situations. 

In this case study, sensitivity analysis (figure 6.5) has been done to get an optimum range of α, for which 

a particular AMT is selected. The range of α has been shown in Table 6.1.9 for optimum decision.  
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Figure 6.5. Sensitivity Analysis 

Table 6.1.9: Optimum Decision 

Co-efficient of attitude(α) Optimum Decision 

α<0.354 AMT1 

0.354<α<0.774 AMT3 

α >0.774 AMT6 
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6.1.3. Conclusion 

The present model has been used to select the best advanced manufacturing technology. The factors used 

in the proposed method are 1) Quality 2) Productivity 3) Flexibility 4) Customer Satisfaction 5) Eco-

friendliness. These are perceptual, conditional and somewhat subjective attributes. In general, greater 

quality is the driving force of greater productivity. Greater productivity brings in greater revenues, 

employment opportunities and technological advancement. Flexibility in selecting advanced 

manufacturing technology is also very important. One of the key elements of flexibility is volatile 

demand. It creates both risks and opportunities. A flexibility engineering system can easily respond to 

volatility, towards sustainable development. Customer satisfaction is also a key element in any 

organization. It is to meet the customers’ expectations. In a competitive marketplace, it is a key 

differentiator amongst companies and a key element of company strategy. The factor eco-friendliness has 

its own importance in selecting an advanced manufacturing technology. The goal of any technology is to 

make our lives better. As companies and consumers have developed a sense of eco responsibility over the 

years, the need of ecofriendly technology has made its way into the organizations.  

The study includes the use of a distance-based fuzzy TOPSIS approach to evaluate a set of advanced 

manufacturing technologies in order to reach the ultimate alternative that could satisfy the need of both 

the customer and the organization. Also, the objective factor measurement and the suitability index have 

been taken into account to rank the alternatives. Lastly, sensitivity analysis was done in the model to get 

the optimum decision in case of varying values of co-efficient of attitude. The result of sensitivity 

analysis shows that AMT1 or AMT3 or AMT6 can be the optimum decision for varying values of co- 

efficient of attitude, α. For α value less than 0.354, AMT1 is the optimum decision. For α value in 

between 0.354 and 0.774, AMT3 is selected as optimum alternative. And for α value greater than 0.774, 

AMT6 is the optimum decision.  

The proposed approach illustrated in this chapter has some limitations. The end result of this model is 

largely dependent on experts’ opinion. Possibility of inclination of an expert towards a particular 
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alternative can’t be ruled out. Inconsistency may also occur in the pair wise comparison of matrices, 

which may lead to incorrect results. Future scopes include the usage of the model in other areas of 

decision problems as well. 
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6.2. Case Study II: A comparative exploratory analysis for performance assessment of Advanced 

Manufacturing Technologies by Fuzzy MCDM Methods 

6.2.1. COPRAS-G & EVAMIX Methodology Analysis 

6.2.2. COPRAS-G Approach  

Most of the multi-attribute decision problems should be determined with interval values, and not with 

exact values of attributes. Zavadskas et. al. came out with the main ideas of CPPRAS-G i.e. Complex 

proportional assessment with grey relations method. The idea of interval numbers is to negotiate the real-

life problem scenario. The procedural steps of COPRAS-G method are given below: 

Step 1: Selecting attributes important for the problem. 

Step 2: Construction of inter-valued decision matrix. 

Step 3: Determining the attribute weights i.e. 𝑞௝. 

Step 4: Decision matrix normalizing by the following formula:  

𝑤ഥ௜௝ = 𝑤௜௝ ቀ
ଵ

ଶ
ቁ (∑ 𝑤௜௝ + ∑ 𝑏௜௝

௠
௜ୀଵ

௠
௜ୀଵ )⁄                                                                                     ………. [6.2.1] 

𝑏ത௜௝ = 𝑏௜௝ ቀ
ଵ

ଶ
ቁ (∑ 𝑤௜௝ + ∑ 𝑏௜௝

௠
௜ୀଵ

௠
௜ୀଵ )ൗ                                                                                      ………. [6.2.2] 

𝑊ℎ𝑒𝑟𝑒, 𝑖 = 1,2, … , 𝑚: 𝑛𝑜. 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠;  𝑗 = 1,2, … , 𝑛: 𝑛𝑜. 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

𝑤௜௝ = 𝑙𝑜𝑤𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 

𝑏௜௝ = ℎ𝑖𝑔ℎ𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 

Step 5: Calculating the weighted normalized decision matrix as follows: 

𝑤෕௜௝ = 𝑤ഥ௜௝ ∗ 𝑞௝                                                                                                                        ………. [6.2.3] 

𝑏ෘ௜௝ = 𝑏ത௜௝ ∗ 𝑞௝                                                                                                                          ………. [6.2.4] 

Step 6: Determining the sums 𝑃௜ of the attribute values (higher the better) 

𝑃௜ = (1/2) ∑ (𝑤෕௜௝ + 𝑏ෘ௜௝)௞
௝ୀଵ                                                                                                   ……….. [6.2.5] 

Where, 𝑘 is the number of maximizing criteria. 

Step 7: Determining the sums 𝑅௜ of the attribute values (lower the better) 
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𝑅௜ = (1/2) ∑ (𝑤෕௜௝ + 𝑏ෘ௜௝)௡
௝ୀ௞ାଵ                                                                                               ……….. [6.2.6] 

Where, (𝑛 − 𝑘): no. of minimizing criteria.             

Step 8: Selecting minimum 𝑅௜. 

Step 9: Finding out relative weight of alternatives i.e. 𝑄௜. 

𝑄௜ = 𝑃௜ + (∑ 𝑅௜
௠
௜ୀଵ 𝑅௜ ∑ 1

𝑅௜
ൗ௠

௜ୀଵൗ )                                                                                        ……….. [6.2.7] 

Step 10: Selecting criterion K for optimality: 

𝐾 = max (𝑄௜)                                                                                              ……….. [6.2.8]                                         

Step 11: Calculation of the degree of utility (Higher the better) for alternatives:  

𝑁௜ = (𝑄௜ 𝑄௠௔௫⁄ ) ∗ 100%.                                                                                                             ………. [6.2.9] 

Step 12: Introduction of cost factor: Capital and Operating Cost (𝑂𝐹𝐶௜). Calculating the Objective Factor 

Measure (𝑂𝐹𝑀௜) as follows:                     𝑂𝐹𝑀௜ = [𝑂𝐹𝐶௜ ∗ ∑(1 𝑂𝐹𝐶௜⁄ )]ିଵ                       ............. [6.2.10]     

Step 13:  Calculating Sustainability Index (Higher the value, better the ranking): 

𝐴௜𝑆𝐼 = 𝛼 (𝑄௜) +  (1 − 𝛼)(𝑂𝐹𝑀௜)                  ………. [6.2.11] 

Where, 𝛼 = Co-efficient of Cognitive Attitude 

 

 6.2.3. EVAMIX Approach  

Evaluation of mixed data (EVAMIX) method was first established by H. Voogd in the year 1983. After 

many years, in 2005, it was emphasized by J. M. Martel & B. Matarazzo. The uniqueness lies in the fact 

that the EVAMIX could process qualitative and quantitative data simultaneously. 

It consists of the following procedural steps as furnished below:  

Step 1: Differentiation of cardinal and ordinal criteria in the decision matrix. 

Step 2: Decision matrix normalization. For beneficial attributes (higher the better), the following equation 

could be used for normalization:  

𝑟௜௝ = [𝑥௜௝ − 𝑚𝑖𝑛(𝑥௜௝)] ൣmax൫𝑥௜௝൯ − min൫𝑥௜௝൯൧⁄                                                                   ………. [6.2.12] 

For non-beneficial attributes (lower the better), the equation is as follows: 
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𝑟௜௝ = [max (𝑥௜௝) − 𝑥௜௝] ൣmax൫𝑥௜௝൯ − min൫𝑥௜௝൯൧⁄                                                                  ………. [6.2.13] 

Step 3: Calculating the difference in attribute values between different alternative-pairs. This step 

involves evaluating differences of 𝑖 − 𝑡ℎ alternative with the others, for each attribute.  

Step 4: Dominance score compilation of each alternative pair, (𝑖, 𝑖′) for all ordinal and cardinal 

attributes. The following equations hold good: 𝛼௜௜’ = [∑  {𝑤𝑗𝑠𝑔𝑛(𝑟௜௝ − 𝑟௜’௝)௝єை }௖]  ଵ/௖     ………. [6.2.14] 

Where, 𝑤𝑗𝑠𝑔𝑛൫𝑟௜௝ − 𝑟௜’௝൯ = ቐ

+1,   𝑖𝑓 𝑟௜௝ > 𝑟௜’௝

0,   𝑖𝑓 𝑟௜௝ = 𝑟௜’௝ 

−1,   𝑖𝑓 𝑟௜௝ < 𝑟௜’௝

  

γ௜௜’ = [∑  {𝑤𝑗𝑠𝑔𝑛(𝑟௜௝ − 𝑟௜’௝)௝є஼ }௖]  ଵ/௖                                                                                ………. [6.2.15] 

Where, c: a scaling parameter, any arbitrary positive odd number i.e. 1,3,5 etc.  

O, C: the sets of ordinal and cardinal criteria respectively,  

𝛼௜௜’   γ௜௜ : the dominance scores for alternative pair, (𝑖, 𝑖′) with respect to ordinal and cardinal criteria 

respectively,  

𝑤௝: relative importance of 𝑗 − 𝑡ℎ criterion. 

Step 5: Calculating standardized dominance scores for the alternative pair, (𝑖, 𝑖′) as follows: 

Ordinal score (𝛿௜௜’) = (𝛼௜௜’ − 𝛼ି)/(𝛼ା − 𝛼ି)                                                                    ………. [6.2.16] 

Where, α+, α- are the highest and the lowest ordinal dominance scores for the alternative pair, (𝑖, 𝑖′). 

Cardinal score (𝑑௜௜’) = (γ௜௜’ − γି)/(γା − γି)                                                                     ………. [6.2.17] 

Where γ+, γ - are the highest and the lowest cardinal dominance score for the alternative pair, (𝑖, 𝑖′). 

Step 6: Determining the overall dominance score. 

The degree of dominance of alternative i over 𝑖′ is measured by the overall dominance score, (𝐷௜௜’) for 

each alternative pair (𝑖, 𝑖′) in the following equation: 

𝐷௜௜’ = 𝑤ை𝛿௜௜’ + 𝑤஼𝑑௜௜’              ………. [6.2.18] 
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Where, 𝑤ை = ∑ w ୨є୓ j (i.e. summation of ordinal attribute weights) and  𝑤஼ = ∑ w ୨єେ j (i.e. summation of 

cardinal attribute weights) 

Step 7: Calculating the alternatives’ appraisal scores (𝑆௜) by the following equation: 

                              (𝑆௜) = ∑  (𝐷୧’୧/𝐷୧’)
ିଵ

୧’                                                                             ………. [6.2.19]  

The higher is the score, the optimum is the alternative. 

Step 8: Introduction of cost factor: Capital and Operating Cost (𝑂𝐹𝐶௜). Calculating the Objective Factor 

Measure (𝑂𝐹𝑀௜) by following equation 4.   

Step 9:  Calculating Selection Index (Higher the value, better the ranking): 

    𝑆𝐼 = 𝛼 (𝑆௜) + (1 − 𝛼)(𝑂𝐹𝑀௜)                                                                                      ………. [6.2.20] 

 

6.2.4. A Numerical Example 

 The flowchart of the given problem is given in figure 6.6. 

Today’s competitive world has compelled organizations to customize their product and that too at a 

competitive price. Proper selection of AMT offers great productivity and profitability. But these can be 

hampered if the selection is wrong. Here, in this chapter, a numerical example is shown comparing the 

two methods namely COPRAS-G and EVAMIX for the proper evaluation and selection of AMT. Three 

Evaluators (E) having different fields of expertise in manufacturing organizations have been engaged for 

the same. Their job demands picking up the best AMT from a number of choices. We have considered 

some criteria which were very rarely used by the past researchers while evaluating the AMTs. 
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Figure 6.6. Flowchart of the case study 

Three benefit criteria and two non-benefit criteria have been considered for the selection of the same. 

These are introduced in Table 6.2.1 as follows: 
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Table 6.2.1: Selected Criteria, the Indicators 
 

Criteria Indicators Beneficial/ 
Non-

beneficial 

Cardinal/ 
Ordinal 

Yield Rate (C1) 
 

quantity of machinable material available after the 
manufacturing process completion. It is enunciated 

as a percentage of produced quantity. 

Beneficial Cardinal 

Quickness of Delivery 

(C2) 

 

Promptness of delivery of order. Beneficial Ordinal 

Volume Flexibility (C3) 

 

Ability to produce above/below the installed capacity 

for a product. 

Beneficial Ordinal 

Environ cognitive 

Hazards (C4) 

 

The things or events likely to threaten the natural 

environment and negatively influences people's 

health. 

Non-

beneficial 

Ordinal 

Dissemination of 

Material (C5) 

 

Wastage of material. Non-

beneficial 

Ordinal 

 

Each evaluator has equal weightage on his/her decision making. The attribute weights and weights of 

AMTs values are presented in terms of linguistic variables and TFNs as in Table 6.2.2 and Table 6.2.3. 
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Table 6.2.2:  Linguistic variables for importance weights of each criterion 

Linguistic Variable TFN 

Extreme Less Important (ELI) (0,0,0.2) 

Less Important (LI) (0,0.2,0.4) 

Important (I) (0.2,0.4,0.6) 

Very Important (VI) (0.4,0.6,0.8) 

Extremely Important (EI) (0.6,0.8,1) 

 

Table 6.2.3: Linguistic variables for the criteria values of alternatives 

Linguistic Variable TFN 

Extremely Less Importance (ELI) (0,0,1) 

Very Less Importance (VLI) (0,1,3) 

Less Importance (LI) (1,3,5) 

Medium Importance (MI) (3,5,7) 

Heavy Importance (HI) (5,7,9) 

Very Heavy Importance (VHI) (7,9,10) 

Extremely Heavy Importance 

(EHI) 

(9,10,10) 
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As uncertainty and vagueness are present in the problem, providing crisp data for the weights of criteria 

as well as the alternatives is a very tedious task. So, the Evaluators (E) utilized linguistic variables (in 

Table 6.2.2 & Table 6.2.3) for attribute weights and values of the alternatives as in Table 6.2.4 & Table 

6.2.5 respectively. 

Table 6.2.4: Attribute Weightage by Evaluators 

 Evaluators (E) 

Criteria E1 E2 E3 

C1 (Beneficial) VI EI I 

C2 (Beneficial) VI VI EI 

C3 (Beneficial) VI VI VI 

C4 (Non-

Beneficial) 

EI EI EI 

C5 (Non-

Beneficial) 

VI I VI 
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Table 6.2.5: Attribute values of alternatives by Evaluators 

 Evaluators (E) 

Criteria Alternatives E1 E2 E3 

C1 A1 VHI VHI HI 

A2 MI HI VHI 

A3 VHI HI MI 

A4 VHI EHI EHI 

A5 VHI EHI VHI 

C2 A1 HI HI MI 

A2 EHI EHI EHI 

A3 HI VHI EHI 

A4 HI HI VHI 

A5 HI HI MI 

C3 A1 EHI VHI HI 

A2 VHI VHI EHI 

A3 VHI VHI HI 

A4 EHI VHI VHI 

A5 HI EHI VHI 

C4 A1 HI MI MI 

A2 HI HI MI 

A3 EHI EHI VHI 

A4 EHI EHI EHI 

A5 LI MI MI 

C5 A1 LI MI MI 

A2 HI MI HI 

A3 HI HI VHI 

A4 MI LI MI 

A5 EHI EHI VHI 
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The linguistic terms given by the evaluators are transformed into TFNs to form the initial decision matrix 

and as given in Table 6.2.6 as follows:  

Table 6.2.6: Initial decision matrix 

 Criteria 

Alternatives C1 (+ve) C2 (+ve) C3 (+ve) C4 (-ve) C5 (-ve) 

A1 (6.33,8.33,9.67) (4.33,6.33,8.33) (7,8.67,9.67) (3.67,5.67,7.67) (2.33,4.33,6.33) 

A2 (5,7,8.67) (9,10,10) (7.67,9.33,10) (4.33,6.33,8.33) (4.33,6.33,8.33) 

A3 (5,7,8.67) (7,8.67,9.67) (6.33,8.33,9.67) (8.33,9.67,10) (5.67,7.67,9.33) 

A4 (8.33,9.67,10) (5.67,7.67,9.33) (7.67,9.33,10) (9,10,10) (2.33,4.33,6.33) 

A5 (7.67,9.33,10) (4.33,6.33,8.33) (7,8.67,9.67) (2.33,4.33,6.33) (8.33,9.67,10) 

Weights (wj) (0.4,0.6,0.8) (0.47,0.67,0.87) (0.4,0.6,0.8) (0.6,0.8,1) (0.33,0.53,0.73) 

 

Table 6.2.2 to Table 6.2.6 are common to the two methodologies namely COPRAS-G and EVAMIX. 

Table 6.2.7 enters in the territory of COPRAS-G method and provides the values of criteria describing the 

compared alternatives in intervals, which is a specialty of COPRAS-G method. 
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COPRAS-G Approach 

Table 6.2.7: Values of criteria describing the compared alternatives in intervals 

 Criteria 

 C1 C2 C3 C4 C5 

Optimization 

Decision 

Max (+ve) Max (+ve) Max (+ve) Min (-ve) Min (-ve) 

Criteria 

Weights (𝑞௝) 

0.188 0.209 0.188 0.25 0.165 

Alternatives      𝑾𝟏 𝑩𝟏      𝑾𝟐 𝑩𝟐      𝑾𝟑 𝑩𝟑      𝑾𝟒 𝑩𝟒      𝑾𝟓 𝑩𝟓 

A1 6.33 9.67 4.33 8.33 7 9.67 3.67 7.67 2.33 6.33 

A2 5 8.67 9 10 7.67 10 4.33 8.33 4.33 8.33 

A3 5 8.67 7 9.67 6.33 9.67 8.33 10 5.67 9.33 

A4 8.33 10 5.67 9.33 7.67 10 9 10 2.33 6.33 

A5 7.67 10 4.33 8.33 7 9.67 2.33 6.33 8.33 10 

 

Weighted normalized decision matrix, Normalizing Indices and Utility Degree are calculated according to 

the algorithm and provided in subsequent Tables 6.2.8, 6.2.9 and 6.2.10. 
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Table 6.2.8: Weighted normalized decision matrix 

Alternatives Criteria (values in intervals) 

C1 C2 C3 C4 C5 

𝑾𝟏 𝑩𝟏 𝑾𝟐 𝑩𝟐 𝑾𝟑 𝑩𝟑 𝑾𝟒 𝑩𝟒 𝑾𝟓 𝑩𝟓 

A1 0.03 0.046 0.024 0.046 0.031 0.043 0.026 0.055 0.045 0.033 

A2 0.024 0.04 0.050 0.054 0.034 0.045 0.031 0.06 0.023 0.043 

A3 0.024 0.04 0.038 0.053 0.028 0.043 0.06 0.073 0.03 0.049 

A4 0.039 0.047 0.031 0.051 0.034 0.045 0.065 0.073 0.045 0.033 

A5 0.036 0.047 0.024 0.046 0.031 0.043 0.017 0.045 0.043 0.053 

 

Table 6.2.9: Normalizing Indices 

Alternative 𝑷𝒊 (Maximizing) 𝑹𝒊 (Minimizing) 

A1 .110 .080 

A2 .124 .079 

A3 .113 .106 

A4 .124 .108 

A5 .114 .079 
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Table 6.2.10: Relative Weight and Utility Degree 

Alternative Relative Weight (𝑸𝒊) Utility Degree (𝑵𝒊) (%) Initial Position 

A1 0.211 93.78 3rd 

A2 0.225 100 1st 

A3 0.188 83.56 5th 

A4 0.198 88 4th 

A5 0.215 95.56 2nd 

  

According to the strategic criteria, the alternative with highest Utility Degree is alternative A2.The 

economic evaluation criteria are taken in the form of Capital and Operating Costs (𝑂𝐹𝐶௜) as given in 

Table 6.2.11. The same is used to calculate the Sustainability Index (𝐴௜𝑆𝐼), as in Table 6.2.12, by taking 

the Co-efficient of cognitive attitude (α) value equal to 0.7. The higher is the Sustainability Index value, 

the better is the ranking. Again, the value of α is dependent on how much optimistic or pessimistic an 

evaluator is. An optimistic evaluator sets higher value of α. While a pessimistic one is bound to set a 

lower value of α. 

Table 6.2.11: Capital and Operating Cost (𝑂𝐹𝐶௜) 

Alternative 𝑶𝑭𝑪𝒊 (Millions of $) 𝑶𝑭𝑴𝒊 

A1 4.2 0.215 

A2 5.1 0.177 

A3 4.1 0.220 

A4 4.3 0.210 

A5 4.9 0.184 
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Table 6.2.12: Sustainability Index and Ranking 

Alternative Sustainability Index (𝑨𝒊𝑺𝑰) Final Ranking 

A1 0.2122 1st 

A2 0.2106 2nd 

A3 0.1976 5th 

A4 0.2016 4th 

A5 0.2057 3rd 

 

It is seen that the introduction of Capital and Operating Cost factor changes the ranking. And the final 

selection is alternative A1.    
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EVAMIX Approach 

Decision Matrix containing crisp data from Table 6.2.6 are calculated and shown in Table 6.2.13 as 

follows: 

Table 6.2.13: Decision Matrix (Crisp Data) 

Alternatives Criteria 

C1(+ve) C2(+ve) C3(+ve) C4(-ve) C5(-ve) 

A1 8.22 6.33 8.56 5.67 4.33 

A2 6.945 9.83 9.165 6.33 6.33 

A3 6.945 8.56 8.22 9.5 7.6 

A4 9.5 7.6 9.165 9.83 4.33 

A5 9.165 6.33 8.56 4.33 9.5 

Weight 0.6 0.67 0.6 0.8 0.53 

 

Normalized decision matrix is shown in Table 6.2.14 as follows: 

                                                        Table 6.2.14: Normalized Decision Matrix 

Alternatives Criteria 

C1(+ve) C2(+ve) C3(+ve) C4(-ve) C5(-ve) 

A1 0.499 0 0.36 0.756 1 

A2 0 1 1 0.636 0.613 

A3 0 0.637 0 0.06 0.368 

A4 1 0.363 1 0 1 

A5 0.869 0 0.36 1 0 

Weight 0.188 0.209 0.188 0.25 0.165 
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Dominance scores for alternative pairs are calculated for cardinal and ordinal criteria and given in Table 

6.2.15 as follows: 

Table 6.2.15: Dominance Scores of each Alternative Pair 

Pair 𝛾௜௜’ 𝛼௜௜’ Pair 𝛾௜௜’ 𝛼௜௜’ 

(1,2) 0.188 0.018 (3,4) -0.188 0.106 

(1,3) 0.188 0.394 (3,5) -0.188 -0.064 

(1,4) -0.188 -0.147 (4,1) 0.188 0.147 

(1,5) -0.188 -0.085 (4,2) 0.188 -0.294 

(2,1) -0.188 -0.018 (4,3) 0.188 -0.106 

(2,3) 0 0.812 (4,5) 0.188 0.312 

(2,4) -0.188 0.294 (5,1) 0.188 0.085 

(2,5) -0.188 0.312 (5,2) 0.188 -0.312 

(3,1) -0.188 -0.394 (5,3) 0.188 0.064 

(3,2) 0 -0.812 (5,4) -0.188 -0.312 

 

Standardized dominance scores are calculated as in Table 6.2.16 as follows: 
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Table 6.2.16: Standardized Dominance Scores  

Pair 𝑑௜௜’ 𝛿௜௜’ Pair 𝑑௜௜’ 𝛿௜௜’ 

(1,2) 1 0.511 (3,4) 0 0.565 

(1,3) 1 0.743 (3,5) 0 0.46 

(1,4) 0 0.409 (4,1) 1 0.591 

(1,5) 0 0.448 (4,2) 1 0.32 

(2,1) 0 0.489 (4,3) 1 0.435 

(2,3) 0.5 1 (4,5) 1 0.692 

(2,4) 0 0.68 (5,1) 1 0.552 

(2,5) 0 0.692 (5,2) 1 0.308 

(3,1) 0 0.257 (5,3) 1 0.54 

(3,2) 0.5 0 (5,4) 0 0.308 

 

Overall dominance scores for alternative pairs are calculated and shown in Table 6.2.17 as follows: 

Table 6.2.17: Overall Dominance Score  

Pair 𝐷௜௜’ Pair 𝐷௜௜’ Pair 𝐷௜௜’ 

(1,2) 0.603 (2,5) 0.562 (4,3) 0.541 

(1,3) 0.791 (3,1) 0.209 (4,5) 0.75 

(1,4) 0.332 (3,2) 0.094 (5,1) 0.636 

(1,5) 0.364 (3,4) 0.459 (5,2) 0.438 

(2,1) 0.397 (3,5) 0.374 (5,3) 0.626 

(2,3) 0.906 (4,1) 0.668 (5,4) 0.25 

(2,4) 0.552 (4,2) 0.448   
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Appraisal score for AMTs is calculated by the method of additive interval as proposed in the algorithm 

and shown in Table 6.2.18: 

Table 6.2.18: Appraisal Score 

Alternative (i) Appraisal Score (𝑺𝒊) Preliminary Result 

A1 0.2136 3rd 

A2 0.3112 2nd 

A3 0.0614 5th 

A4 0.3435 1st 

A5 0.1834 4th 

 

These Appraisal Scores are used against the Capital and Operating Costs of alternatives, as provided in 

Table 6.2.11, to get the final ranking. It is calculated in accordance with the Selection Index by taking α 

as 0.7, by consensus of evaluators as the same in the previous COPRAS-G method. The same is presented 

in Table 6.2.19 as follows: 

Table 6.2.19: Selection Index and Final Ranking 

Alternative (i) Selection Index (SI) Final Ranking 

A1 0.2140 3rd 

A2 0.2709 2nd 

A3 0.1090 5th 

A4 0.3035 1st 

A5 0.1836 4th 

 

So, it is seen that, introduction of cost factor does not change the ranking as in case of COPRAS-G 

method. Hence the final selection is alternative A4. 

6.2.4.1. Uncertain treatment 

Uncertain treatment or Post-Optimality Analysis has the ability of handling imprecise information. It is 

done to check the robustness of the model. Robustness, again, is the influence of addition or deletion of 
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alternatives on the assessment results [Cinelli, M., Coles, S. R., & Kirwan, K. (2014)]. It is the test sensitivity 

of a model to variation in the input data. Here, uncertain treatment is done to get the range of α, for which 

the selection of a particular AMT is justified and an optimum one. Figure 6.7 and figure 6.8 reflect the 

same in case of COPRAS-G and EVAMIX method respectively. 

 

Figure 6.7. Uncertain treatment (COPRAS-G) 

 

Figure 6.8. Uncertain treatment (EVAMIX) 
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On the basis of the uncertain treatment of the parameters, the results of optimum selection decision are 

given in Table 6.2.20 as follows:    

Table 20: Uncertain treatment Result 

COPRAS-G EVAMIX 

Value of α Selection Decision Value of α Selection Decision 

α <= 0.178 A3 α <= 0.034 A3 

0.178 <= α <=0.73 A1 0.034 <= α <= 1 A4 

α >= 0.73 A2 

 

6.2.4.2. Results and Discussion  

The result of this comparative study shows that alternative A4 comes out as the distant winner in case of 

EVAMIX approach. But, in COPRAS-G approach, alternative A1 gets the highest rank although the 

difference with the other alternatives is too nominal. In COPRAS-G method, the final ranking changes 

with the cost factor coming into play. Initially, the alternative A2 got the best ranking. But, the ranking 

changes with the introduction of the cost factor and alternative A1 emerges out as the optimal selection 

decision. On the other hand, the EVAMIX approach keeps the ranking same before and after the 

introduction of the cost factor. The result of the uncertain treatment reveals that alternative A1, in 

CPRAS-G, is the optimum selection decision for a long range of α value which matches with the highest 

ranked alternative. In case of EVAMIX also, the optimum selection decision is alternative A4 for a very 

long span of α value which again matches with the best ranked alternative. So, in both the cases, the 

optimum selection decisions are same with the best results in the final rankings. But in case of EVAMIX 

approach, the selection is valid for almost the entire range of α.  That goes to show that, the selection 

made by this approach is more accurate one than that by COPRAS-G method.   
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6.2.5. Conclusion  

In general, the Multi-Criteria problems are associated with uncertainties. So it is not always suitable to 

use numerical values. In the proposed method, linguistic variables and TFNs have been used in dealing 

with uncertainties. Here, in this investigation, we have taken two MCDM tools i.e. COPRAS-G, 

EVAMIX and provided a similarity study by taking a real-life example of selection of AMT. We have 

also used the linguistic variables and TFNs to capture preferences given by the Evaluators for different 

criteria as well as criteria values of alternatives. The decision matrix is formed and normalized. Then 

according to the procedural steps of two methods used here, a comprehensive ranking of the alternatives 

have been derived for the two. Also, the uncertain treatment has been done in both the cases for 

robustness testing of the study. EVAMIX method gives considerable attention to cardinal and ordinal 

criteria separately besides considering the beneficial or non-beneficial criteria as well. So, between the 

two, EVAMIX is more accurate and acceptable one than COPRAS-G. Although the comparative study 

has been used to select the suitable AMT, it can solve other selection and evaluation problems as well, 

from real manufacturing world. Future scope would include applying other MCDM and preference 

ranking methods namely ARAS (Additive Ratio Assessment), PSI (Preference Selection Index), OCRA 

(Operational Competitiveness Rating Analysis) etc. to solve complex selection and decision problems 

prevailing in the manufacturing world. 
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6.3. Case Study III: A De novo approach for performance assessment of advanced technologies  

6.3.1. PROMETHEE & Dempster- Shafer Theory of Evidence (DST) Methodology Analysis 

6.3.2. PROMETHEE  

Preference ranking organization method for enrichment evaluations was first introduced by Jean-Pierre 

Brans (1982). It was later developed by Brans & Vincke (1985). It is an MCDM method that can handle 

information in the form of qualitative and quantitative data with the qualitative being reduced to point 

scales. It has specific application in decision making and can be used in a wide variety of decision 

situations, in areas such as manufacturing, transportation, healthcare and education. Instead of indicating 

a single right decision, the PROMETHEE approach helps experts find the alternative that best fits their 

goals. It provides a logical and comprehensive framework for structuring a decision-making problem, 

identifying and quantifying its uncertainties and conflicts, and highlighting key alternatives and reasoning 

structure behind the scene. It provides experts with complete and partial grading of actions. It enforces a 

strong sustainability perspective to the problem. The outranking flows are very important aspects in 

PROMETHEE. The positive outranking flow 𝜑ା(𝑎) presents how much each alternative is outperforming 

all other choices (higher the better) and negative outranking flow 𝜑ି(𝑎)  presents how much each 

alternative is outperformed by them (lower the better). The net outranking flow score 𝜑(𝑎) exhibits the 

variation between the two. 

The steps of PROMETHEE are the following: 

Step 1: Linguistic variables assigned by DMs for weights of criteria as well as for performance of 

alternatives on each criterion. 

Step 2: Conversion of linguistic variables into TFNs by following a said conversion scale. 

Step 3: Formation of initial decision matrix by TFNs. 

Step 4: Defuzzification i.e. Conversion of TFNs in decision matrix into crisp data as in equation 6.3.1:  

                                    𝑥 =
௔ାସ௕ା௖

଺
, x = crisp member of decision matrix                                      …. [6.3.1] 
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Step 5: Normalizing the decision matrix as mentioned below in equation 6.3.2: 

                        𝑟௜௝ = [𝑥௜௝ − min (𝑥௜௝)] [max൫𝑥௜௝൯ − min൫𝑥௜௝൯]⁄  (For beneficial criteria)             …. [6.3.2] 

𝑟௜௝ = [𝑚𝑎𝑥(𝑥௜௝) − (𝑥௜௝)] [max൫𝑥௜௝൯ − min൫𝑥௜௝൯]⁄  (For cost criteria) 

Where, 𝑥௜௝  is the importance weight of ith alternative for jth criteria in the decision matrix, i = no. of 

alternatives, j = no. of criteria.  

Step 6: Obtaining deviations 𝑑௝(௔,௕)  showing the difference evaluations of alternatives a and b with 

respect to criteria j as in equation 6.3.3:           𝑑௝(௔,௕) = 𝑔௝(𝑎) − 𝑔௝(𝑏)                                     ..... [6.3.3] 

Step 7: Selection of preference for usual criterion by following equation 6.3.4: 

                                             𝑃(𝑎, 𝑏) = ቊ
0, 𝑑௝(௔,௕) ≤ 0

1, 𝑑௝(௔,௕) > 0
                                                               …. [6.3.4] 

Step 8: Measuring the aggregate preference indices as in equation 6.3.5: 

                                            𝜋(𝑎, 𝑏) = ∑ 𝑃(𝑎, 𝑏) × 𝑤௝
௡
௝ୀଵ , ∀𝑎, 𝑏 ∈ 𝐴                                                ….. [6.3.5]                                

It is the weighted sum of P (a, b) i.e. the measure of how preferable alternative a is over alternative b for a 

particular factor. 

Step 9: Compute the outranking flows i.e. 𝜑ା(𝑎)  and 𝜑ି(𝑎)  following equation 6.3.6:                           

𝜑ା(𝑎) =  
ଵ

௠ିଵ
∑ 𝜋(𝑎, 𝑥)௫∈஺ , 𝜑ି(𝑎) =  

ଵ

௠ିଵ
∑ 𝜋(𝑥, 𝑎)௫∈஺                                                               … [6.3.6] 

Where, m: no. of alternatives. 

Step 10: Calculate the net outranking flows i.e. the performance of each AMT as follows in equation 

6.3.7:                             𝜑(𝑎) = 𝜑ା(𝑎) − 𝜑ି(𝑎)                                                                          …. [6.3.7]  

Step 11: Introduction of objective criteria in the form of investment costs (𝐼𝐶௜) of AMTs. Calculating the 

objective factor measure (𝑂𝐹𝑀௜) by taking the cost factor into consideration as in equation 6.3.8: 

                                                      𝑂𝐹𝑀௜ = [𝐼𝐶௜ × ∑
ଵ

ூ஼೔
]

ିଵ
                                                                   …. [6.3.8] 

Step 12: Calculating the selection index as follows in equation 6.3.9: 

 𝐴𝑀𝑇௜𝑆𝐼 = 𝛽{𝜑(𝑎)} + (1 − 𝛽)𝑂𝐹𝑀௜                                                                                             …. [6.3.9] 

Where 𝛽 is the index of cognitive mind of decision maker. 
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Step 13: Final ranking of the AMTs according to the results of the selection index (Higher the better). 

6.3.3. Dempster Shafer Theory of evidence (DST) method: - The classical TOPSIS was evolved (C. L. 

Hwang & K. Yoon, 1981) as a solution to fuzzy multi-criteria problems prevailing in the manufacturing 

organizations. It projects the optimum alternative as being closest to the ideal solution and at the same 

time, farthest from the anti-ideal solution. The ideal solution comprises of best criteria values. The anti-

ideal one contains worst criteria values. The solutions are found out assuming each criterion taking 

repetitiously increasing or decreasing utility. It is a method of cardinal preference of attributes. Dempster-

Shafer Theory (A. P. Dempster, 1967; G. Shafer, 1976), in general is contemplated as the extension of 

Bayesian theory which can deal with imprecise data set efficiently. The benefits of DST include 

measuring the probability and attaching it to the frame of discernment.  It is a set of hypothesis Ĥ defined 

as follows:  

Ĥ = {H1, H2…HN}.  

It is a finite non-empty set composed of N mutually exclusive hypothesis. The power set of Ĥ consists of 

all the subsets of Ĥ and is defined as follows:  

P (Ĥ) = [Ø, {Hଵ}, {Hଶ}… {H୬}, {Hଵ∪Hଶ}, {Hଵ∪Hଷ}… Ĥ],  

Where, Ø: the empty set; n: no. of subsets with only single element.  

The basic probability assignment or BPA is the main element of evidence theory. It is a function from  

P (Ĥ) to [0, 1] interpreted as:  m: P (Ĥ) → [0, 1], satisfying the conditions: ∑ 𝑚(𝐴) = 1஺∈௉(Ĥ)   and m (Ø) 

= 0. 

Example. For an element, the BPA is: m {IS} = 0.7; m {NS} = 0.2; m {IS, NS} = 0.1. 

This signifying the BPA supporting the following hypothesis: 

   i) "the alternative is an ideal solution with belief degree of 0.7". 

  ii) "the alternative is a negative ideal solution with belief degree of 0.2". 

  iii) "We know nothing about the alternative with a belief degree of 0.1". 
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In cases of problems containing imprecise data, fusion could be the solution for generating dataset. 

Evidence theory offers fusion tools as well. It is possible to use Dempster rule of combination i.e. 

orthogonal sum in a basic belief assignment, m, for information source S, and is noted by 𝑚 = 𝑚ଵ ⊕ mଶ. 

It can combine two BPAs to yield a new BPA. The same is represented in equations 6.3.10 and 6.3.11. 

                                                        m (A) = ∑ 𝑚ଵ(𝐵)𝑚ଶ(𝐶)஻∩஼ୀ஺ (1 − 𝑘)⁄                                 … [6.3.10] 

                                                             k= ∑  𝑚ଵ(𝐵) 𝑚ଶ(𝐶)஻⋂஼ୀ Ø                                                .... [6.3.11] 

Where, k is the normalizing constant known as 'conflict'. It measures the degree of conflict between m1 & 

m2. k= 0 means absence of conflict between m1 & m2; k= 1 means absolute contradiction of m1, m2.  

The belief function m is denoted in equation 6.3.12 as:                                                    

        𝑚 = 𝑚ଵ ⊕ 𝑚ଶ ⊕ … ⊕ 𝑚௡                                                                                                                                                               ….. [6.3.12] 

To handle conflict, a discounting rule (Shafer, 1976) is introduced in DST given by the equations 6.3.13 

and 6.3.14 as follows:     𝐵𝐸𝐿ఈ൫Ĥ൯ = 1                                                                                        …. [6.3.13]                   

                                   𝐵𝐸𝐿ఈ(𝐴) = (1 − 𝛼) ∗ 𝐵𝐸𝐿(𝐴) ; ∀ A ⊂ Ĥ and A ≠ Ø                               …. [6.3.14] 

Where, 𝐵𝐸𝐿: 2Ĥ→ [0, 1] is a belief function and 𝐵𝐸𝐿Ĥ: 2Ĥ → [0, 1] is a discounted belief function. 

             α (0 ≤ α ≤ 1) is the discounting co-efficient qualifying for the strength of reliability of the 

evidence. 

The BPA 𝑚ఈcorresponding to the discounted belief function 𝐵𝐸𝐿ఈis further modified (Shafer, 1976) in 

equations 6.3.15 and 6.3.16 in the following manner:  

𝑚ఈ൫Ĥ൯ = (1 − 𝛼)𝑚൫Ĥ൯ + 𝛼                                                                                                     …. [6.3.15]                                                

𝑚ఈ(𝐴) = (1 − 𝛼)𝑚(𝐴), ∀ A ⊂ Ĥ and A ≠ Ø                                                                              …. [6.3.16] 

Beliefs react at the following: 1) Credal level, where belief is contemplated 2) Pignistic level, where 

belief is used in taking decisions. The term 'pignistic' originates from 'pignus' having the meaning 'bet' in 

Latin. ‘Credal’ comes from credibility. ‘Pignistic probability’ is utilised to make decisions and is derived 

from BPA. It is a crisp estimation in a belief interval and is determined by:                                  

𝑏𝑒𝑡 (𝐴௜) = ∑
௠(஺ೖ)

|஺ೖ|஺೔ ⊂ ୅ౡ
                                                                                                              .… [6.3.17] 
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The equation 6.3.17 is also known as Pignistic Probability Transformation (PPT). 

The steps in extended DST method are the following: 

Step 1: Linguistic variables assigned by DMs for weights of criteria as well as for performance of 

alternatives on each criterion. 

Step 2: Conversion of linguistic variables into TFNs by following a said conversion scale. 

Step3: Defuzzification by graded mean integration representation in equation 6.3.18 as follows: 

                                                                    𝑃 (𝐴) =
௔ାସ௕ା௖

଺
, Where, A is any TFN.                            … [6.3.18] 

Step 4: Weights of criteria are transformed into discounting co-efficient. 

Step 5: Distance measurement {d (IS), d (NS), d (IS, NS)} of AMTs from ideal and anti-ideal solution. 

Step 6: Determination of BPA for each alternative by following the equation 6.3.19: 

𝑚 (𝐼𝑆) =  
ௗ (ேௌ)

ௗ(ூௌ)ାௗ(ேௌ)ାௗ(ூௌ,ேௌ)
; 𝑚 (𝑁𝑆) =  

ௗ (ூௌ)

ௗ(ூௌ)ାௗ(ேௌ)ାௗ(ூௌ,ேௌ)
; 𝑚 (𝐼𝑆, 𝑁𝑆) =  

ௗ (ூௌ,ேௌ)

ௗ(ூௌ)ାௗ(ேௌ)ାௗ(ூௌ,ேௌ)
    

                                                                                                                                                       … [6.3.19] 
 
Step 7: Discounting the BPA of performance using the discounting co-efficient as follows in equation 

6.3.20:  

𝑚ఈ(𝐼𝑆) = 𝛼 × 𝑚(𝐼𝑆); 𝑚ఈ(𝑁𝑆) = 𝛼 × 𝑚(𝑁𝑆); 𝑚ఈ(𝐼𝑆, 𝑁𝑆) = 𝛼 × 𝑚(𝐼𝑆, 𝑁𝑆) + (1 − 𝛼)       … [6.3.20] 

Step 8: Combining the BPAs of all the criteria to get a compendious evaluation of an AMT by the 

following equation 6.3.21:  𝑚஽ெ
௜ = ∑ 𝐵𝑃𝐴

஼௝

ఈ಴ೕ; where, i = no. of AMTs, j = no. of criteria.         … [6.3.21] 

Step 9: Combining the BPA of all DMs to set the combined result {𝑚௜(𝐼𝑆), 𝑚௜(𝑁𝑆), 𝑚௜(𝐼𝑆, 𝑁𝑆)}.  

Step 10: The assessment of each AMT based on PPT by following equation 

6.3.22:                                              𝑏𝑒𝑡௜(𝐼𝑆) = 𝑚௜(𝐼𝑆) + 𝑚௜(𝐼𝑆, 𝑁𝑆) 2⁄                            … [6.3.22] 

Step 11: Introduction of investment costs of AMTs and calculating the objective factor measure by 

following equation 6.3.8.   

Step 12: Calculating the suitability index as in equation 6.3.23:  

𝐴𝑀𝑇௜𝑆𝐼 = 𝛽{𝑏𝑒𝑡(𝐼𝑆)} + (1 − 𝛽)𝑂𝐹𝑀௜.                                                                                       … [6.3.23]  

Step 13: Final ranking of the AMTs according to the results of the suitability index (Higher the better). 



79 
 

6.3.4. A Numerical Example 

The flowchart of the problem is given in figure 6.9. 

A leading manufacturing firm wants to shift from traditional manufacturing technologies to advanced 

ones considering the leading edge of AMTs in today's manufacturing world. The tough competition 

amongst superior organizations has forced them to achieve eclectic decision making at any cost while 

looking into the alternatives. Considering the present scenario, they engage four Experts (EX) for the 

selection and implementation of AMT, suitable in a given manufacturing environment. The EXs are 

having equal weightage making the model homogeneous. The overall profile of EXs is given in table 

6.3.1. They shortlisted five alternatives namely AL1, AL2, AL3, AL4 and AL5. The optimum selection 

will be made from amongst them. They also set five criteria namely general productivity, product 

flexibility, Overall equipment effectiveness, environmental hazard, manufacturing scrap dissemination. 

These are detailed as follows: 

C1: General productivity- The average measure of the efficiency of production is to be maximized. 

C2: Product flexibility- Adaptability for any change in future product design is to be maximized. 

C3: Overall equipment effectiveness- Effective utilization of manufacturing operation is to be maximized. 

C4: Environmental menace- A substance/event that threatens natural environment and affects life on earth 

deleteriously is to be minimized. 

C5: Manufacturing scrap dissemination- Wastage of scrap materials produced in manufacturing is to be 

minimized.  
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Figure 6.9. Flow chart of the case study 
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6.3.1: Profile of Experts (EX) 

 Experts 

EX1 EX2 EX3 EX4 

  

Age 48 yrs. 57 yrs. 39 yrs. 63 

Academic 

Degree 

BE PhD ME BE 

Experience 23 yrs. 36 yrs. 14 yrs. 39 yrs. 

Expert Skill Design & 

Intelligent 

Manufacturing 

Systems 

Finance & Strategic 

Management 

Quality Control & 

Logistics 

Advanced 

Manufacturing 

Planning & 

Control 

 

The fuzziness present in the problem scenario is eliminated by using TFNs as the replacement of 

linguistic variables. The EXs set conversion scales as presented in table 6.3.2 and table 6.3.3 for the 

weights of criteria and values of AMTs. 

Table 6.3.2: Linguistic weight set for criteria weights  

Linguistic Variable TFN 

Extremely Less Important (ELI) (0,0,0.2) 

Less Important (LI) (0,0.2,0.4) 

Important (I) (0.2,0.4,0.6) 

Very Important (VI) (0.4,0.6,0.8) 

Extremely Important (EI) (0.6,0.8,1) 
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Table 6.3.3: Linguistic weight set for AMTs 

Linguistic Variable Triangular Fuzzy No. 

Extremely Heavy Importance (EHI) (9,10,10) 

Very Heavy Importance (VHI) (7,9,10) 

Heavy Importance (HI) (5,7,9) 

Medium Importance (MI) (3,5,7) 

Less Importance (LI) (1,3,5) 

Very Less Importance (VLI) (0,1,3) 

Extremely Less Importance (ELI) (0,1,1) 

 

The problem is homogeneous in nature as the EXs are given equal importance. Table 6.3.4 gives the 

criteria weights by linguistic weight set, whereas, table 6.3.5 presents the fuzzy decision matrix. The same 

is converted into TFNs by using suitable scales as in table 6.3.2 and table 6.3.3, and presented in table 

6.3.6. 

Table 6.3.4: Importance Weights of criteria by Experts (EX) 

 

Criteria  

Decision Makers (DM) 

EX1 EX2 EX3 EX4 

C1 EI EI EI VI 

C2 VI EI VI VI 

C3 I VI EI VI 

C4 VI VI EI EI 

C5 EI VI VI VI 
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Table 6.3.5: Values of alternatives with respect to criteria given by Experts (EX) 

 

Criteria 

 

AMTs 

Decision Makers (DM) 

EX1 EX2 EX3 EX4 

C1 AL1 VHI VHI MI HI 

AL2 MI VHI VHI HI 

AL3 VHI HI MI VHI 

AL4 VHI EHI EHI HI 

AL5 HI VHI EHI EHI 

C2 AL1 EHI HI VHI HI 

AL2 VHI VHI VHI HI 

AL3 EHI VHI EHI EHI 

AL4 HI HI MI MI 

AL5 HI VHI MI HI 

C3 AL1 MI HI HI HI 

AL2 VHI VHI VHI VHI 

AL3 VHI EHI VHI VHI 

AL4 MI MI HI HI 

AL5 HI MI MI HI 

C4 AL1 VHI EHI VHI EHI 

AL2 MI VHI MI MI 

AL3 VHI VHI VHI VHI 

AL4 HI MI MI MI 

AL5 EHI VHI EHI EHI 

C5 AL1 EHI VHI HI HI 

AL2 VHI VHI MI MI 

AL3 HI HI EHI VHI 

AL4 EHI EHI MI HI 

AL5 HI MI VHI EHI 
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Table 6.3.6: Initial Decision Matrix 

 

AMTs 

Criteria  

C1 (+ve) C2 (+ve) C3 (+ve) C4 (-ve) C5 (-ve) 

AL1 (6.33,8.33,9.67) (4.33,6.33,8.33) (7,8.67,9.67) (3.67,5.67,7.67) (2.33,4.33,6.33) 

AL2 (5,7,8.67) (9,10,10) (7.67,9.33,10) (4.33,6.33,8.33) (4.33,6.33,8.33) 

AL3 (5,7,8.67) (7,8.67,9.67) (6.33,8.33,9.67) (8.33,9.67,10) (5.67,7.67,9.33) 

AL4 (8.33,9.67,10) (5.67,7.67,9.33) (7.67,9.33,10) (9,10,10) (2.33,4.33,6.33) 

AL5 (7.67,9.33,10) (4.33,6.33,8.33) (7,8.67,9.67) (2.33,4.33,6.33) (8.33,9.67,10) 

Weight of 
Criteria 

(𝒘𝒋) 

(0.4,0.6,0.8) (0.47,0.67,0.87) (0.4,0.6,0.8) (0.6,0.8,1) (0.33,0.53,0.73) 

 

Table 6.3.7 gives the crisp decision matrix with weights of criteria in crisp data form after defuzzification 

by following equation 6.3.1. The values are normalized to get unit independent values of criteria for each 

alternative following equation 6.3.22 and the same is represented in table 6.3.8. 

Table 6.3.7: Decision Matrix (Crisp Data) 

 

AMTs 

Criteria 

C1 (+ve) C2 (+ve) C3 (+ve) C4 (-ve) C5 (-ve) 

AL1 8.220 6.330 8.560 5.670 4.330 

AL2 6.945 9.830 9.165 6.330 6.330 

AL3 6.945 8.560 8.220 9.500 7.600 

AL4 9.500 7.600 9.165 9.830 4.330 

AL5 9.165 6.330 8.560 4.330 9.500 

Weight of 

Criteria (𝒘𝒋) 

0.60 0.67 0.60 0.80 0.53 
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Table 6.3.8: Normalized Matrix 

 

AMTs 

Criteria 

C1 (+ve) C2 (+ve) C3 (+ve) C4 (-ve) C5 (-ve) 

AL1 0.499 0 0.360 0.756 1.000 

AL2 0 1.000 1.000 0.636 0.613 

AL3 0 0.637 0 0.060 0.368 

AL4 1.000 0.363 1.000 0 1.000 

AL5 0.869 0 0.360 1.000 0 

Weight of 

Criteria (𝒘𝒋) 

0.188 0.209 0.188 0.25 0.165 

 

Table 6.3.9 and table 6.3.10 represent alternative difference values and aggregate preference indices of 

PROMETHEE method respectively. Primary ranking in PROMETHEE technique is devised on the basis 

of net outranking flow of alternatives as presented in table 6.3.11. 
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Table 6.3.9: Alternative Difference Values 
 

AMTs 

Criteria 

C1 (+ve) C2 (+ve) C3 (+ve) C4 (-ve) C5 (-ve) 

AL1-AL2 

AL1-AL3 

AL1-AL4 

AL1-AL5 

0.499 

0.499 

-0.501 

-0.370 

-1.000 

-0.637 

-0.363 

0 

-0.640 

0.360 

-0.640 

0 

0.120 

0.696 

0.756 

-0.244 

0.387 

0.632 

0 

1.000 

AL2-AL1 

AL2-AL3 

AL2-AL4 

AL2-AL5 

-0.499 

0 

-1.000 

-0.869 

1.000 

0.363 

0.637 

1.000 

0.640 

1.000 

0 

0.640 

-0.120 

0.576 

0.636 

-0.364 

-0.387 

0.245 

-0.387 

0.613 

AL3-AL1 

AL3-AL2 

AL3-AL4 

AL3-AL5 

-0.499 

0 

-1.000 

-0.869 

0.637 

-0.363 

0.274 

0.637 

-0.360 

-1.000 

-1.000 

-0.360 

-0.696 

-0.574 

0.060 

-0.940 

-0.632 

-0.245 

-0.632 

0.368 

AL4-AL1 

AL4-AL2 

AL4-AL3 

AL4-AL5 

0.501 

1.000 

1.000 

0.131 

0.363 

-0.637 

-0.274 

0.363 

0.640 

0 

1.000 

0.640 

-0.756 

-0.636 

-0.060 

-1.000 

0 

0.387 

0.632 

1.000 

AL5-AL1 

AL5-AL2 

AL5-AL3 

AL5-AL4 

0.370 

0.869 

0.869 

-0.131 

0 

-1.000 

-0.637 

-0.363 

0 

-0.640 

0.36 

-0.640 

0.244 

0.364 

0.940 

1.000 

-1.000 

-0.613 

-0.368 

-1.000 

Weight of 

Criteria (𝒘𝒋) 

0.188 0.209 0.188 0.25 0.165 
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Table 6.3.10: Preference Function & Aggregate Preference Indices 

 

AMTs 

Preference Function of Criteria [P(d)] Aggregate 

Preference 

Indices [π (a,b)] 

C1 (+ve) C2 (+ve) C3 (+ve) C4 (-ve) C5 (-ve) 

AL1-AL2 

AL1-AL3 

AL1-AL4 

AL1-AL5 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

1 

1 

0 

1 

1 

0 

1 

.603 

.791 

.250 

.165 

AL2-AL1 

AL2-AL3 

AL2-AL4 

AL2-AL5 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

0 

1 

0 

1 

1 

0 

0 

1 

0 

1 

.397 

.812 

.459 

.562 

AL3-AL1 

AL3-AL2 

AL3-AL4 

AL3-AL5 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

.209 

0 

.459 

.374 

AL4-AL1 

AL4-AL2 

AL4-AL3 

AL4-AL5 

1 

1 

1 

1 

1 

0 

0 

1 

1 

0 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

.585 

.353 

.541 

.750 

AL5-AL1 

AL5-AL2 

AL5-AL3 

AL5-AL4 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

0 

0 

0 

0 

.438 

.438 

.626 

.250 
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Table 6.3.11: Net outranking flow & initial ranking 

AMTs Outranking Flow Net Outranking 

Flow [𝝋 (a)] 

Primary Ranking 

Positive [𝝋ା (a)] Negative [𝝋ି (a)] 

AL1 1.809 1.629 0.180 3 

AL2 2.230 1.394 0.836 1 

AL3 1.042 2.77 -1.728 5 

AL4 2.229 1.418 0.811 2 

AL5 1.752 1.851 -0.099 4 

 

Table 6.3.12 enters the territory of extended distance based DST method. It represents the defuzzified 

values of criteria weights and weights of alternatives by using graded mean integration representation 

technique. 

Table 6.3.12: Graded mean integration representation for criteria weights and weights of alternatives 

Criteria Weights Weights of Alternatives 

Linguistic Variable Graded Mean 

Integration (GMI) 

Linguistic Variable Graded Mean 

Integration (GMI) 

ELI 0.03 EHI 9.8 

LI 0.2 VHI 8.8 

I 0.4 HI 7 

VI 0.6 MI 5 

EI 0.8 LI 3 

  VLI 1.17 

  ELI 0.17 
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The criteria weights, for the four EXs engaged, are given in table 6.3.13. Table 6.3.14 exhibits the 

decision matrix in the crisp data form with the values of discounting coefficients which are nothing but 

the aggregated criteria weights emerging from table 6.3.13.  Distances from ideal and anti-ideal solution 

are measured to the likes of TOPSIS and are presented in table 6.3.15. Generating basic probability 

assignment (BPA) and discounting BPA of AMTs are calculated by distance function. The same are 

represented in table 6.3.16 and table 6.3.17 respectively. Table 6.3.18 presents the fuse multi-criteria data 

of AMTs using discounting coefficient of each criterion as in table 6.3.17.  A primary ranking of AMTs 

based on the values of pignistic probability transformation is given in table 6.3.19. 

Table 6.3.13: Importance weights of criteria according to Graded mean integration (crisp data) 

 

Criteria  

Experts (EX) 

EX1 EX2 EX3 EX4 

C1 .80 .80 .80 .60 

C2 .60 .80 .60 .60 

C3 .40 .60 .80 .60 

C4 .60 .60 .80 .80 

C5 .80 .60 .60 .60 
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Table 6.3.14: Criteria values of alternatives according to Graded mean integration (crisp data) 

Experts (EX)  

AMTs 

Criteria 

C1 C2 C3 C4 C5 

EX1 AL1 8.8 9.8 5.0 8.8 9.8 

AL2 5.0 8.8 8.8 5.0 8.8 

AL3 8.8 9.8 8.8 8.8 7.0 

AL4 8.8 7.0 5.0 7.0 9.8 

AL5 7.0 7.0 7.0 9.8 7.0 

Discounting  

Co-efficient (α) 

1.0 0.752 0.50 0.752 1.0 

EX2 AL1 8.8 7.0 7.0 9.8 8.8 

AL2 8.8 8.8 8.8 8.8 8.8 

AL3 7.0 8.8 9.8 8.8 7.0 

AL4 9.8 7.0 5.0 5.0 9.8 

AL5 8.8 8.8 5.0 8.8 5.0 

Discounting  

Co-efficient (α) 

1.0 1.0 0.749 0.749 0.749 

EX3 AL1 7.0 8.8 7.0 8.8 7.0 

AL2 8.8 8.8 8.8 5.0 5.0 

AL3 7.0 9.8 8.8 8.8 9.8 

AL4 9.8 7.0 7.0 5.0 5.0 

AL5 9.8 7.0 5.0 9.8 8.8 

Discounting  

Co-efficient (α) 

1.0 0.76 1.0 1.0 0.76 

EX4 AL1 7.0 7.0 7.0 9.8 7.0 

AL2 7.0 7.0 8.8 5.0 5.0 

AL3 8.8 9.8 8.8 8.8 8.8 

AL4 7.0 5.0 7.0 5.0 7.0 

AL5 9.8 7.0 7.0 9.8 9.8 

Discounting  

Co-efficient (α) 

0.75 0.75 0.75 1.0 0.75 
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Table 6.3.15: Distance measures from ideal and  anti-ideal solution 

 

AMTs 

Criteria 

C1 (+ve)  

d{(IS),(NS),(IS,N

S)} 

C2 (+ve)  

d{(IS),(NS),(IS,N

S)} 

C3 (+ve)  

d{(IS),(NS),(IS,N

S)} 

C4 (-ve)  

d{(IS),(NS),(IS,N

S)} 

C5 (-ve)  

d{(IS),(NS),(IS,N

S)} 

EX1 

AL1 (0,3.8,1.9) (0,2.8,1.4) (3.8,0,1.9) (3.8,1.0,1.4) (2.8,0,1.4) 

AL2 (3.8,0,1.9) (1.0,1.8,0.4) (0,3.8,1.9) (0,4.8,2.4) (1.8,1.0,0.4) 

AL3 (0,3.8,1.9) (0,2.8,1.4) (0,3.8,1.9) (3.8,1.0,1.4) (0,2.8,1.4) 

AL4 (0,3.8,1.9) (2.8,0,1.4) (3.8,0,1.9) (2.0,2.8,0.4) (2.8,0,1.4) 

AL5 (1.8,2.0,0.1) (2.8,0,1.4) (1.8,2.0,0.1) (4.8,0,2.4) (0,2.8,1.4) 

EX2 

AL1 (1.0,1.8,0.4) (1.8,0,0.9) (2.8,2.0,0.4) (4.8,0,2.4) (3.8,1.0,1.4) 

AL2 (1.0,1.8,0.4) (0,1.8,0.9) (1.0,3.8,1.4) (3.8,1.0,1.4) (3.8,1.0,1.4) 

AL3 (2.8,0,1.4) (0,1.8,0.9) (0,4.8,2.4) (3.8,1.0,1.4) (2.0,2.8,0.4) 

AL4 (0,2.8,1.4) (1.8,0,0.9) (4.8,0,2.4) (0,4.8,2.4) (4.8,0,2.4) 

AL5 (1.0,1.8,0.4) (0,1.8,0.9) (4.8,0,2.4) (3.8,1.0,1.4) (0,4.8,2.4) 

EX3 

AL1 (2.8,0,1.4) (1.0,1.8,0.4) (1.8,2.0,0.1) (3.8,1.0,1.4) (2.0,2.8,0.4) 

AL2 (1.0,1.8,0.4) (1.0,1.8,0.4) (0,3.8,1.9) (0,4.8,2.4) (0,4.8,2.4) 

AL3 (2.8,0,1.4) (0,2.8,1.4) (0,3.8,1.9) (3.8,1.0,1.4) (4.8,0,2.4) 

AL4 (0,2.8,1.4) (2.8,0,1.4) (1.8,2.0,0.1) (0,4.8,2.4) (0,4.8,2.4) 

AL5 (0,2.8,1.4) (2.8,0,1.4) (3.8,0,1.9) (4.8,0,2.4) (3.8,1.0,1.4) 

EX4 

AL1 (2.8,0,1.4) (2.8,2.0,0.4) (1.8,0,0.9) (4.8,0,2.4) (2.0,2.8,0.4) 

AL2 (2.8,0,1.4) (2.8,2.0,0.4) (0,1.8,0.9) (0,4.8,2.4) (0,4.8,2.4) 

AL3 (1.0,1.8,0.4) (0,4.8,2.4) (0,1.8,0.9) (3.8,1.0,1.4) (3.8,1.0,1.4) 

AL4 (2.8,0,1.4) (4.8,0,2.4) (1.8,0,0.9) (0,4.8,2.4) (2.0,2.8,0.4) 

AL5 (0,2.8,1.4) (2.8,2.0,0.4) (1.8,0,0.9) (4.8,0,2.4) (4.8,0,2.4) 
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Table 6.3.16: BPA according to distance function 

 

 

 

AMTs Criteria 

C1 (+ve)  

m{(IS),(NS),(IS,NS)} 

C2 (+ve)  

m{(IS),(NS),(IS,NS)} 

C3 (+ve)  

m{(IS),(NS),(IS,NS)} 

C4 (-ve)  

m{(IS),(NS),(IS,NS)} 

C5 (-ve)  

m{(IS),(NS),(IS,NS)} 

EX1 

AL1 (0.67,0,0.33) (0.67,0,0.33) (0,0.67,0.33) (0.16,0.6,0.23) (0,0.67,0.33) 

AL2 (0,0.67,0.33) (0.56,0.3,0.125) (0.67,0,0.33) (0.67,0,0.33) (0.3,0.56,0.125) 

AL3 (0.67,0,0.33) (0.67,0,0.33) (0.67,0,0.33) (0.16,0.6,0.23) (0.67,0,0.33) 

AL4 (0.67,0,0.33) (0,0.67,0.33) (0,0.67,0.33) (0.54,0.38,0.08) (0,0.67,0.33) 

AL5 (0.5,0.46,0.03) (0,0.67,0.33) (0.5,0.46,0.03) (0,0.67,0.33) (0.67,0,0.33) 

EX2 

AL1 (0.56,0.3,0.125) (0,0.67,0.33) (0.38,0.54,0.08) (0,0.67,0.33) (0.16,0.6,0.23) 

AL2 (0.56,0.3,0.125) (0.67,0,0.33) (0.6,0.16,0.23) (0.16,0.6,0.23) (0.16,0.6,0.23) 

AL3 (0,0.67,0.33) (0.67,0,0.33) (0.67,0,0.33) (0.16,0.6,0.23) (0.54,0.38,0.08) 

AL4 (0.67,0,0.33) (0,0.67,0.33) (0,0.67,0.33) (0.67,0,0.33) (0,0.67,0.33) 

AL5 (0.56,0.3,0.125) (0.67,0,0.33) (0,0.67,0.33) (0.16,0.6,0.23) (0.67,0,0.33) 

EX3 

AL1 (0,0.67,0.33) (0.56,0.3,0.125) (0.5,0.46,0.03) (0.16,0.6,0.23) (0.54,0.38,0.08) 

AL2 (0.56,0.3,0.125) (0.56,0.3,0.125) (0.67,0,0.33) (0.67,0,0.33) (0.67,0,0.33) 

AL3 (0,0.67,0.33) (0.67,0,0.33) (0.67,0,0.33) (0.16,0.6,0.23) (0,0.67,0.33) 

AL4 (0.67,0,0.33) (0,0.67,0.33) (0.5,0.46,0.03) (0.67,0,0.33) (0.67,0,0.33) 

AL5 (0.67,0,0.33) (0,0.67,0.33) (0,0.67,0.33) (0,0.67,0.33) (0.16,0.6,0.23) 

EX4 

AL1 (0,0.67,0.33) (0.38,0.54,0.08) (0,0.67,0.33) (0,0.67,0.33) (0.54,0.38,0.08) 

AL2 (0,0.67,0.33) (0.38,0.54,0.08) (0.67,0,0.33) (0.67,0,0.33) (0.67,0,0.33) 

AL3 (0.56,0.3,0.125) (0.67,0,0.33) (0.67,0,0.33) (0.16,0.6,0.23) (0.16,0.6,0.23) 

AL4 (0,0.67,0.33) (0,0.67,0.33) (0,0.67,0.33) (0.67,0,0.33) (0.54,0.38,0.08) 

AL5 (0.67,0,0.33) (0.38,0.54,0.08) (0,0.67,0.33) (0,0.67,0.33) (0,0.67,0.33) 
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Table 6.3.17: Assessment by discounted BPA of AMTs 
AMTs Criteria 

C1 (+ve)  

𝐦α{(IS),(NS),(IS

,NS)} 

C2 (+ve)  

𝐦α{(IS),(NS),(IS,

NS)} 

C3 (+ve)  

𝐦α{(IS),(NS),(IS,

NS)} 

C4 (-ve)  

𝐦α{(IS),(NS),(IS,NS)} 

C5 (-ve)  

𝐦α{(IS),(NS),(IS,

NS)} 

EX1 

AL1 (0.67,0,0.33) (0.504,0,0.496) (0,0.335,0.665) (0.12,0.45,0.43) (0,0.67,0.33) 

AL2 (0,0.67,0.33) (0.42,0.226,0.342) (0.335,0,0.665) (0.504,0,0.496) (0.3,0.56,0.125) 

AL3 (0.67,0,0.33) (0.504,0,0.496) (0.335,0,0.665) (0.12,0.45,0.43) (0.67,0,0.33) 

AL4 (0.67,0,0.33) (0,0.504,0.496) (0,0.335,0.665) (0.41,0.286,0.308) (0,0.67,0.33) 

AL5 (0.5,0.46,0.03) (0,0.504,0.496) (0.25,0.23,0.52) (0,0.504,0.496) (0.67,0,0.33) 

EX2 

AL1 (0.56,0.3,0.125) (0,0.67,0.33) (0.285,0.404,0.311) (0,0.5,0.498) (0.12,0.45,0.43) 

AL2 (0.56,0.3,0.125) (0.67,0,0.33) (0.45,0.12,0.43) (0.12,0.45,0.43) (0.12,0.45,0.43) 

AL3 (0,0.67,0.33) (0.67,0,0.33) (0.5,0,0.498) (0.12,0.45,0.43) (0.404,0.285,0.31) 

AL4 (0.67,0,0.33) (0,0.67,0.33) (0,0.5,0.498) (0.5,0,0.498) (0,0.5,0.498) 

AL5 (0.56,0.3,0.125) (0.67,0,0.33) (0,0.5,0.498) (0.12,0.45,0.43) (0.5,0,0.498) 

EX3 

AL1 (0,0.67,0.33) (0.43,0.23,0.335) (0.5,0.46,0.03) (0.16,0.6,0.23) (0.41,0.29,0.3) 

AL2 (0.56,0.3,0.125) (0.43,0.23,0.335) (0.67,0,0.33) (0.67,0,0.33) (0.51,0,0.49) 

AL3 (0,0.67,0.33) (0.51,0,0.49) (0.67,0,0.33) (0.16,0.6,0.23) (0,0.51,0.49) 

AL4 (0.67,0,0.33) (0,0.51,0.49) (0.5,0.46,0.03) (0.67,0,0.33) (0.51,0,0.49) 

AL5 (0.67,0,0.33) (0,0.51,0.49) (0,0.67,0.33) (0,0.67,0.33) (0.122,0.46,0.415) 

EX4 

AL1 (0,0.503,0.498) (0.285,0.41,0.31) (0,0.503,0.498) (0,0.67,0.33) (0.41,0.285,0.31) 

AL2 (0,0.503,0.498) (0.285,0.41,0.31) (0.503,0,0.498) (0.67,0,0.33) (0.503,0,0.498) 

AL3 (0.42,0.23,0.344) (0.503,0,0.498) (0.503,0,0.498) (0.16,0.6,0.23) (0.12,0.45,0.423) 

AL4 (0,0.503,0.498) (0,0.503,0.498) (0,0.503,0.498) (0.67,0,0.33) (0.41,0.285,0.31) 

AL5 (0.503,0,0.498) (0.285,0.41,0.31) (0,0.503,0.498) (0,0.67,0.33) (0,0.503,0.498) 
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Table 6.3.18: Fuse multi-criteria data using discounting co-efficient  
 

{(IS),(NS)

,(IS,NS)} 

AMTs Experts (EX) 

EX1 (1.0) EX2 (1.0) EX3 (1.0) EX3 (1.0) 

AL1 (0.8564,0.101,0.043) (0.723,0.12,0.157) (0.8586,0.122,0.0194) (0.578,0.1672,0.2548) 

AL2 (0.8026,0.085,0.1124) (0.8524,0.078,0.0696) (0.6693,0.069,0.2617) (0.94,0,0.06) 

AL3 (0.7416,0,0.2584) (0.91,0.086,0.004) (0.8,0.2,0) (0.898,0.0621,0.0399) 

AL4 (0.8053,0.1932,0) (0.835,0.165,0) (0.9705,0,0.0295) (0.8053,0.036,0.1587) 

AL5 (0.7925,0.2016,0.006) (0.93,0.0675,0.00285) (0.71,0.105,0.185) (0.6446,0.0695,0.286) 

 

Table 6.3.19: Pignistic Probability Transformation (bet/PPT) and initial ranking 

AMTs Combined Result 

{(IS),(NS),(IS,NS)} 

bet (IS) Primary Result 

AL1 (0.995,0.000247,0.0047) 0.9973 2 

AL2 (0.997,0.00045,0.00255) 0.9983 1 

AL3 (0.345,0.3141,0.341) 0.5155 5 

AL4 (0.868,0.00134,0.131) 0.9335 3 

AL5 (0.571,0.387,0.042) 0.5920 4 

 

The EXs complete a market survey for the investment costs of AMTs. They apply their knowledge and 

survey results to set investment cost of AMTs as objective factor in the problem. The same is showcased 

in table 6.3.20. Table 6.3.21 gives the measures of mental attitude of EXs. Index of cognitive mind is a 

measure of how optimistic or pessimistic is a person's thoughts. Higher value of this indicates an 

optimistic mind whereas; lower values indicate a pessimistic one. The final rankings for both the methods 

are formulated by taking into account the subjective factors as well as the objective ones coming into the 

problem. The comparison result is presented in table 6.3.22.   
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Table 6.3.20: AMT investment cost (𝐼𝐶௜) [from market survey by experts] 

AMTs 𝑰𝑪𝒊 (millions of $) 𝑶𝑭𝑴𝒊 

AL1 4.20 0.215 

AL2 5.10 0.177 

AL3 4.10 0.220 

AL4 4.30 0.210 

AL5 4.90 0.184 

 

Table 6.3.21: Index of cognitive mind of experts 

 

Index of cognitive 

mind (β ) 

Experts (EX) 

EX1 EX2 EX3 EX4 

0.75 0.79 0.61 0.65 

 
Table 6.3.22: Final ranking and comparison of result 

 

AMTs 

PROMETHEE  Dempster-Shafer Theory based distance 

model 

Primary 

Ranking 

Selection 

Index (SI) 

Final 

Ranking 

Primary 

Result 

Suitability 

Index 

(𝐴𝑀𝑇௜SI) 

Final 

Ranking 

AL1 3 0.1905 3 2 0.7626 1 

AL2 1 0.6383 1 1 0.7519 2 

AL3 5 -1.1436 5 5 0.4269 5 

AL4 2 0.6307 2 3 0.7165 3 

AL5 4 -0.0141 4 4 0.4696 4 
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6.3.4.1. Post optimality analysis 

The post optimality analysis is the other name of uncertainty treatment. In general, decision problems are 

prone to fuzziness and uncertainty. These uncertainties in the input data level are managed by linguistic 

weight set and TFNs. Next step is the defuzzification according to the given problem scenario. But, 

uncertainties associated in the design level are handled with the help of post optimality analysis. As the 

name suggests, it is carried out after the optimum result is found out. Basically, it tests the robustness of 

the model. It can also be called as sensitivity analysis. It gives a measure of how sensitive a model is with 

the alteration of alternatives or criteria or attitude of mind of decision makers. This chapter presents a 

unified approach for post optimality analysis for the two MCDM methods presented. In the given 

selection problem, post optimality analysis is carried out to find the feasible range of index of cognitive 

mind (β) of decision maker in which the optimally selected AMT is functional. Figure 6.10 and figure 

6.11 pictures the of post optimality analysis on PROMETHEE and extended DST methods. The analysis 

of the alternatives in case of PROMETHEE reveals that AMTs AL3, AL1, AL4 and AL2 are qualified in 

the optimum selection region for different ranges of β whereas, the analysis on DST based distance 

method chooses AMTs AL3, AL1 and AL2 as the optimum selections for different ranges of β. The 

results of the analysis along with the ranges of β are presented in table 6.3.23.   

Table 6.3.23: Optimum selection decision by post optimality analysis 
 

PROMETHEE Dempster-Shafer Theory based distance model 

Range of β Optimum decision Range of β Optimum decision 

β≤0.0026 AL3 β≤0.010 AL3 

0.0026≤β≤0.0078 AL1 0.010≤β≤0.97 AL1 

0.0078≤β≤0.568 AL4 β≥0.97 AL2 

β≥0.568 AL2 
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Figure 6.10: Post optimality analysis (PROMETHEE) 
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Legends 

 AL1;  AL2;   AL3;  AL4;                       AL5 

 

Figure 6.11: Post optimality analysis (Extended DST) 

6.3.4.2. Result analysis 
 

 The experimental results of PROMETHEE reveals that alternative AL2 is getting the highest rank until 

the introduction of investment cost in the problem. Even after the impact of OFM, AL2 comes out as a 

clear winner although the same is carrying the tag of investment cost. The results of post optimality 

analysis also confirm the optimum selection of AMT in the operational range of β, i.e. AL2 emerges as 

the optimum selection decision for the values of β equal to 0.568 onwards until it reaches the maximum 

optimism value of 1. In this way, the robustness of the proposed method is hereby established. 

The results of DST based distance method also publishes alternative AL2 as the highest ranked one till 

the introduction of cost factor. The scenario changes with the commencement of the same. That brings out 

𝑂𝐹𝑀௜  𝑏𝑒𝑡 (𝑖𝑠)௜ 

      Optimum selection  
                 Region 
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the best in alternative AL1 while AL2 gets the second-best position although the difference is too 

nominal. The post optimality analysis also confirms the selection for almost entire range of β up to the 

value of 0.97.  So, this method also establishes its stability and robustness in its own way. But the catch is 

that, investment of AL1 is much cheaper (almost a million $) than that of AL2 as surveyed by the EXs 

and mentioned in table 6.3.20. According to that survey, AL1 is supposed to be the optimum solution for 

the organization. The extended DST method successfully establishes the same. It is more mature and as 

good as you can get. In this face off, extended DST method is having the edge over PROMETHEE. 

6.3.5. Conclusion 
 

In this chapter, a new multi-criteria decision aid on the basis of extended DST method, is put up against 

another MCDM outranking method namely PROMETHEE. An AMT selection problem has been taken 

up to demonstrate the application of the suggested approach. The two methods discussed here are having 

their own strengths and weaknesses. Both the methods can simultaneously handle qualitative and 

quantitative data. They both can handle uncertainty very judiciously. But, the fact is that, PROMETHEE 

suffers from rank reversal problem with the inclusion of new alternative.  It delivers a ranking of 

alternatives but is less suitable for implementation and evaluation of the same. Also the information 

processing is very complicated and hard to perceive for a non-expert. By-the-by, DST method gets 

incorrect results with the collection of highly conflicting evidences. The future scopes of the proposed 

methods include combining PROMETHEE with other MCDA methods. Another interesting future 

direction of this extended DST method is the addition of conflict data fusion algorithm and efficiently 

handling the highly conflicting information in the process of selecting decision. Besides the selection of 

AMT, this comparison model can also be applied to other multi-criteria selection and evaluation 

problems.    
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6.4. Case Study IV: A comparative study for evaluation of advanced technologies by fuzzy Taguchi Loss 

Function and fuzzy VIKOR 

6.4.1. Taguchi Loss Function & Fuzzy VIKOR Methodology Analysis 

6.4.2. Taguchi loss functions 

The concept of Taguchi loss function is somewhat different from the traditional loss function popularly 

known as goal post view (Figure 6.12).  

 

Figure 6.12: Goalpost view of traditional loss function 

The goal posts are the specification limits i.e. the upper and the lower, in traditional loss function. If the 

product feature falls within the limit of the designed specifications, it is taken to be of acceptable quality 

no matter what the deviation is from the centre. On the contrary, the same gets rejected if it doesn’t meet 

the designed specifications. “Taguchi suggested a restricted and more focused perspective of 

characteristic acceptability and indicated that any departure from a preset target value resulted in a loss” 

[Pi & Low (2005)]. According to him, Quality can only be defined in terms of the amount of financial 

loss incurred to the society. It can be shown graphically that an increase in variation in the specified 

quality limits, can lead to exponential decrease in customer satisfaction. A characteristic measurement 

equal to the target value incurs zero loss. The loss, otherwise, is measured by quadratic functions and 
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measures ought to be taken to minimize the divergence from the targeted zone. The formulation of 

Taguchi identifies the losses incurred even before a product is shipped.  

Three types of loss functions (Ross, 1996) could be assimilated depending on the variation of product 

characteristic. The first one i.e. nominal is better approach, fixes the target region, either at the centre 

(two-sided equal specification loss function) (figure 6.13) or allows for nominal shift in both directions 

from the centre (two-sided with specification preference loss function) (figure 6.14).  

 

Figure 6.13: Two-sided equal specification loss function- target at the centre 

 

Figure 6.14: Two-sided with specification preference loss function- nominal target shift from the centre 

 

The loss is depicted by a parabolic loss function as in equation 6.4.1 as follows:  

                                                𝑓௟ = 𝑙(𝑘 − 𝑦)ଶ,                                                                         ……… [6.4.1]     

 Where, 𝑓௟ corresponds to the loss incurred, 𝑙 is the loss coefficient, 𝑘 is product size and 𝑦 be the nominal 

value of the specification. 
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If (𝑘 – 𝑦) is large, loss is more, no matter what the tolerance limits are. The above loss function (equation 

6.4.1) holds good for a single product. But for multiple products, there is slight variation in the loss 

function and is given by equation 6.4.2: 

                                                       𝑓௟ = 𝑙 [𝑉ଶ +  ൫𝑘ത − 𝑦൯
ଶ

]                                                        ……… [6.4.2] 

Where, 𝑉ଶ represents product size variance and 𝑘ത be mean product size, other variables remain same as in 

equation 6.4.1. 

The second one i.e. smaller is better approach (figure 6.15), corresponds to one-sided LSL and the third 

one i.e. higher is better approach (figure 6.16), corresponds to one-sided USL. 

 

Figure 6.15: Smaller the better approach 

 

Figure 6.16: Higher the better approach 

They confront to equation 6.4.3 and equation 6.4.4 respectively as follows:                                       

                                                                𝑓௟ = 𝑙(𝑘)ଶ                                                                  ...……. [6.4.3] 

                                                               𝑓௟ = 𝑙
𝑘ଶൗ                                                                    ………. [6.4.4] 
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Taguchi loss function can be used for non-manufacturing applications as well. It can be used for selection 

of supplier, solving non-linear optimization problem, multivariate multi-response problem etc. 

6.4.3. The proposed methodology 

A unified framework for the model is depicted in figure 6.17. The mathematical stages are as follows: 

Stage 1. Formation of decision council having 𝑘௡ number of Decision Experts (DEx).   

Stage 2. Ascertainment of the alternatives and criteria according to the organization’s need.  

Stage 3. Construction of Decision Matrix by defining the criteria values as linguistic values and 

subsequently, converting to TFNs. Conversion of aggregated criteria weights into TFNs by a scale 

bearing values between 0 and 1.  
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Figure 6.17: A unified decision support framework for the proposed methodology 
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Stage 4. Measure of criteria values of alternatives and the importance weights of criteria by simple 

arithmetic mean as in equation 6.4.5 and equation 6.4.6 respectively:  

∅௜௝=[∅௜௝
ଵ + ∅௜௝

ଶ + ⋯ + ∅௜௝
௞೙] 𝑘௡,ൗ                                                                                        …..... [6.4.5] 

Where, i = no. of alternatives;  j = no. of criteria, 𝑘௡ = no. of members. 

𝜔෕௝ =  [𝜔෕௝
ଵ + 𝜔෕௝

ଶ + ⋯ + 𝜔෕௝
௞] 𝑘௡,ൗ 𝜔෕௝ = ൫𝜔෕௔௝,𝜔෕௕௝, 𝜔෕௖௝൯ is the TFN for weight vector           ..….. [6.4.6] 

Stage 5. Normalized TFNs for weight vectors are calculated and converted into crisp values as in equation 

6.4.7 and equation 6.4.8: 

  𝜔௝ =  𝜔෕௝ ∑ 𝜔෕௝ ,⁄  𝜔௝ = ൫𝜔௔௝ , 𝜔௕௝, 𝜔௖௝൯is the normalised TFN for weight vector                   ..….. [6.4.7] 

   𝑤௝ = (𝜔௔௝ + 𝜔௕௝ + 𝜔௖௝) 3⁄ , 𝑤௝= crisp value of weight vector                                               …… [6.4.8]   

Stage 6. Decision matrix normalization; the corresponding TFNs are represented by, 

 ∅௜௝
ே = (𝑎௜௝

ே, 𝑏௜௝
ே, 𝑐௜௝

ே) . The generating equations for beneficial and non-beneficial criteria are 

presented in equations 6.4.9, 6.4.10 respectively: 

∅௜௝
ே = ൫𝑎௜௝

ே , 𝑏௜௝
ே, 𝑐௜௝

ே൯ =   ൬
𝑎௜௝

𝑐௝
∗ൗ ,

𝑏௜௝
𝑐௝

∗൘ ,
𝑐௜௝

𝑐௝
∗ ൗ ൰ ;   𝑤ℎ𝑒𝑟𝑒 𝑐௝

∗ = max 𝑐௜௝                       ……. [6.4.9] 

∅௜௝
ே = ൫𝑎௜௝

ே , 𝑏௜௝
ே, 𝑐௜௝

ே൯ =   ൬
𝑎௝

ି

𝑐௜௝
ൗ ,

𝑎௝
ି

𝑏௜௝
൘ ,

𝑎௝
ି

𝑎௜௝
ൗ  ൰ ;  𝑤ℎ𝑒𝑟𝑒 𝑎௝

ି = min 𝑎௜௝                 .…... [6.4.10] 

Stage 7. Combining the fuzzy normalized values with the loss function. Calculating Taguchi loss value 

(𝐿௜௝) of the alternatives in fuzzy form, thereby not losing any information that was contained in the 

problem at the beginning. Specification limits of decision criteria and fuzzy values of alternatives are 

integrated to achieve the same.  

Stage 8. Calculating the fuzzy weighted Taguchi loss value (𝑊𝐿௜) for each alternative. The generating 

equation is provided in equation 6.4.11 as follows: 

  𝑊𝐿୧ =  ∑ (𝐿௜௝ ∗௡
௝ୀଵ 𝑤௝),   𝑊𝐿௜ = (𝑊𝐿௔௜ , 𝑊𝐿௕௜, 𝑊𝐿௖௜) is the TFN for weighted Taguchi loss. .… [6.4.11]                                         

Stage 9. Defuzzification (Zimmermann,1991) of weighted Taguchi loss value as in equation 6.4.12 and 

ranking of alternatives based on the same. The lower the value, the higher the ranking. 

Crisp 𝑊𝐿௜ = (𝑊𝐿௔௜ +  4 ∗ 𝑊𝐿௕௜  + 𝑊𝐿௖௜)/6                                                                          …… [6.4.12]        
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Stage 10. The assistance of knowledge base and market survey is extracted by the DAs for the Installation 

Costs (𝑅௜) of the AMTs. The same is introduced as the objective factor in the mathematics. Calculation of 

the objective factor measure (𝑂𝐹𝑀௜) is carried out by equation 6.4.13 stated below: 

 𝑂𝐹𝑀௜ = [𝑅௜ × ∑
ଵ

ோ೔
]

ିଵ
                                                                                                           ……… [6.4.13]   

Stage 11. Calculating the Evaluation Index (𝐸𝐼௜) for each alternative as in equation 6.4.14 as proposed by 

Bhattacharya et. al. Subsequent ranking of the AMTs based on the same. Higher values of 𝐸𝐼௜ produce 

better ranking of alternatives. 

 𝐸𝐼௜ = (ɣ ∗ SFM୧) +  (1 − ɣ)(OFM୧); SFM୧= subjective factor measure = 𝑊𝐿௜
ିଵ              ………. [6.4.14]                                                                                 

Where, ɣ = co-efficient of cognition; SFM୧ = Subjective factor measure  for the AMTs.  

These above-mentioned steps are utilized by the DAs of three individual decision committees separately 

to find out three different solutions to the given problem. 

6.4.4.  A Mathematical Problem 

The section establishes a real-life case study through a mathematical problem. 

6.4.4.1. Experimental setting 

The present chapter represents a formulation of performance assessment problem of five pre-selected 

AMTs. For the purpose of assessment, three decision committees namely K1, K2 and K3 are formed. 

They involve certain number of DAs in the decision committees. All of them are from different virtuosity 

having considerable experience and expertise to deal with any problem scenario. The overall spectrum of 

the DAs included in the decision committees is presented in table 6.4.1. The DAs of each decision 

committee are assigned with the responsibility of the whole assessment process. They go through a 

number of brainstorming sessions for several hours to get the desired outcome. They construct the 

decision matrix by defining the criteria values as linguistic values and subsequently, converting to TFNs.  
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Table 6.4.1: Spectrum of Decision Associates (DAs) 

Decision 
Committee 

Decision 
Associate 

(DA) 

 Age Academic 
Qualification 

Working 
Experience 

Expertise 

 
 
 

K1 

DA1 

 

39 yrs. BE 18 yrs. Advanced Manufacturing Planning & Control 

DA2 

 

55 yrs. PhD 28 yrs. Supply Chain Management 

DA3 

 

63 yrs. MBA 38 yrs. Marketing Management 

DA4 

 

45 yrs. ME 20 yrs. Artificial Intelligence 

 
 

K2 

DA1 

 

58 yrs. PhD 26 yrs. Sustainability Engineering & Science 

DA2 

 

35 yrs. BE 13 yrs. Enterprise Resource Planning 

DA3 

 

49 yrs. MBA 23 yrs. Operation Management 

 
 
 

K3 

DA1 

 

57 yrs. PhD 25 yrs. Finance & Strategic Management 

DA2 

 

62 yrs. MBA 36 yrs. Human Resource 

DA3 

 

47 yrs. ME 22 yrs. Productivity & Quality Management 

DA4 

 

38 yrs. BE 16 yrs. Decision Theory 

 

A conversion scale in the range of 0 to 10 is used here as given in table 6.4.2.  

Table 6.4.2: Linguistic weight set for values of alternatives 
Linguistic Variable Triangular Fuzzy Number  

Very High Significance (VHS) (8,10,10) 
High Significance (HS) (6,8,10) 

Medium Significance (MS) (4,6,8) 
Low Significance (LS) (2,4,6) 

Very Low Significance (VLS) (0,2,4) 
 

Conversion of aggregated criteria weights into TFNs is done by a scale bearing values between 0 and 1 as 

given in table 6.4.3.  

They initially choose criteria like quality loss, delay in order delivery, operational flexibility and environ 

safety. At a later stage, they incorporate the installation costs of the AMTs in the form of objective factor 

measure (OFM) and make ranking as per the values of Evaluation Indices (EIs).  
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Table 6.4.3: Linguistic values for weights of criteria 

Linguistic Variable Triangular Fuzzy Number  

Extremely Highly Important (EHI) (0.8,0.9,1) 

Very Highly Importance (VHI) (0.7,0.8,0.9) 

Highly Importance (HI) (0.5,0.6,0.7) 

Less Important (LI) (0.3,0.4,0.5) 

Very Less Important (VLI) (0.1,0.2,0.3) 

 

Three different ranking sequences are obtained for the three decision committees. Post optimality 

treatment of the parameters is also accomplished for the decision committees by instituting a new factor 

i.e. co-efficient of cognition, ɣ. The value of the same has to be set between 0 and 1. The cognitive minds 

of the DAs play a pivotal role in taking comprehensive decision. Explicit knowledge of all the DAs is 

known and certain. But what’s about their tacit knowledge? Submerged iceberg could represent the tacit 

knowledge that includes attitude, emotion, commitment, empathy of individual DA. These are the things 

we can’t judge from outside. That’s why, variation is found in decision making amongst the DAs. An 

optimistic DA sets a high value of ɣ. On the other hand, the value of the same is less for a pessimistic 

approach. The cognitive mind of the DA is like that iceberg comprising of explicit and tacit knowledge as 

shown in figure 6.18. 

 

Figure 6.18: Iceberg- Cognitive mind of Decision Associate representing explicit and tacit knowledge   
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The higher officials of a manufacturing firm would like to implement AMT as it has the leading edge in 

manufacturing environment worldwide at this day and age. They are forced to efficiently customize their 

products in a cost-effective manner while keeping the customer satisfaction intact. A successful 

implementation of AMT offers great productivity, flexibility and profitability. But, on the other hand, 

implementation of AMT leads to replacing a good amount of manual labor with automated systems 

requiring large capital investment. It could be a nightmare for the firm if the project goes wrong. So, 

considering the scenario, the officials formed three decision making committees. The three decision 

committees involved four, three and four DAs respectively having different profiles and varied fields of 

expertise. They have given the responsibility to come to a solution individually although the chosen 

decision criteria and alternatives are same for all of them. There are five alternatives namely AMT1, 

AMT2, AMT3, AMT4, AMT5, amongst which the optimum selection should be implemented in the firm. 

They DAs choose four selection criteria which are the most important ones in the given scenario. Two of 

them are non-beneficial criteria, supposed to be minimized, namely product quality loss (CR1) and delay 

in order delivery(CR3). The other two are beneficial ones, ought to be maximized, namely operational 

flexibility (CR2) and environ safety (CR4). The range, target value and specification limits of the decision 

criteria are given in table 6.4.4 based on past literature by Pi and Low (2005).  

Table 6.4.4: Decision criteria for selected alternatives 
Decision 
Criteria 

Range Target Value Specification 
Limit 

Nature 

Quality loss 
(CR1) 

0% to 2.5% 0% 2.5% Lower the better 

Delay in order 
delivery (CR2) 

0-4 working days No time delay 4 working days Lower the better 

Operational 
Flexibility (CR3) 

100% to 65% 100% 65% Higher the better 

Environ safety 
(CR4) 

100% to 80% 100% 80% Higher the better 

 

From quality perspective, the DAs could set the values according to the convenience and requirement of 

the firm. They set the percentage target loss at zero and USL could be set at 2.5%. On time delivery or no 
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delay is one of the most important aspects of AMT implementation. The firm could incur huge loss if 

there is delay in order delivery. So, the specification limit is set to a maximum of four working days delay 

i.e. four working days delay will incur 100% loss. For flexibility, the loss will be zero if flexibility is 

100%. The specification limit is set to 65% i.e. loss will be 100% if the flexibility goes down to 65%. The 

fourth criteria, environ safety, gets a lot of attention in changing global environment. The outcomes of the 

AMTs have to be environment friendly and could save natural environment of surroundings without 

creating any health hazard to the people. The specification limit, in this case, is set to 80%, at which the 

loss will be 100%.  

6.4.4.2.  Operational steps  

The weights for the decision criteria and values of alternatives are given by DEx(s) of three councils 

distinctively, as in table 6.4.5 and table 6.4.6.  

Table 6.4.5: Criteria weights by DAs in linguistic values 
 Decision Council K1 Decision Council K2 Decision Council K3 

Decision 

Criteria  

DEx1 DEx2 DEx3 DEx4 DEx1 DEx2 DEx3 DEx1 DEx2 DEx3 DEx4 

CR1 EHI VHI VHI EHI VHI EHI HI VHI VHI EHI HI 

CR2 VHI VHI HI VHI VHI HI HI HI VHI VHI EHI 

CR3 HI HI VHI VHI VHI HI VHI HI HI VHI HI 

CR4 EHI EHI EHI VHI VHI VHI VHI EHI EHI VHI EHI 

 

The uncertainty and fuzziness associated with the subjective factors can be coped with the introduction of 

linguistic variables. Thus, the matrix is formed with the values. This is, then, converted into TFNs, as in 

table 6.4.7 and normalized to get unit free values, as in table 6.4.8.  Weights of decision criteria are 

converted into crisp numerical values corresponding to the DAs of different committees. Taguchi loss 

function is then put to use according to the nature of individual criterion. The values of loss co-efficient 

are identified as 160000, 6.25, 42.25, 64 for the decision criteria, following equation 6.4.3 or equation 

6.4.4, depending on the beneficial or non-beneficial nature. The values are integrated with decision matrix 

to measure fuzzy loss values of alternatives, exhibited in table 6.4.9. Weights of decision criteria are 
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incorporated with the loss values to find out fuzzy weighted loss of alternatives given in table 6.4.10. The 

fuzzy attributes values till the later stage of the problem solving phase helped in keeping the much 

required information initially contained in the problem. The values are lastly defuzzified to get a 

comprehensive evaluation of choices of alternatives. This is presented in table 6.4.11. The lower the 

weighted loss value, the higher the ranking of the alternative.  

Table 6.4.6: Linguistic values of alternatives by DAs in correspondence with decision criteria 

Decision 

Criteria 

Alternatives Decision Council K1 Decision Council K2 Decision Council K3 

DEx1 DEx 

2 

DEx 

3 

DEx 

4 

DEx 

1 

DEx 

2 

DEx 

3 

DEx 

1 

DEx 

2 

DEx 

3 

DEx 

4 

 

 

CR1 

AMT1 HS MS MS HS HS HS MS HS HS MS MS 

AMT2 MS HS MS HS MS HS VHS VHS MS MS HS 

AMT3 HS HS HS HS VHS HS MS HS MS MS VHS 

AMT4 MS MS HS HS VHS HS MS MS MS VHS VHS 

AMT5 MS HS HS HS VHS HS HS HS HS VHS VHS 

 

 

CR2 

AMT1 HS HS VHS MS MS MS VHS VHS VHS HS MS 

AMT2 VHS VHS VHS MS HS HS HS HS HS MS VHS 

AMT3 VHS VHS VHS VHS HS HS VHS HS VHS VHS HS 

AMT4 LS LS MS MS MS MS MS HS MS MS MS 

AMT5 LS MS LS MS HS MS LS HS HS MS MS 

 

 

CR3 

AMT1 HS HS VHS HS VHS VHS MS MS MS HS VHS 

AMT2 MS HS LS MS HS MS MS HS MS MS MS 

AMT3 LS MS MS LS MS MS MS MS MS LS MS 

AMT4 HS MS HS VHS HS HS VHS HS VHS VHS MS 

AMT5 HS HS MS HS MS MS HS VHS VHS MS HS 

 

 

CR4 

AMT1 MS MS HS MS LS MS MS HS MS MS MS 

AMT2 HS MS HS MS HS HS MS MS MS HS HS 

AMT3 VHS HS HS VHS VHS HS VHS VHS HS HS VHS 

AMT4 VHS VHS MS MS HS HS HS MS MS HS VHS 

AMT5 HS MS HS MS HS   HS VHS HS VHS VHS HS 

 

 
 

 
Table 6.4.7: Decision matrix in the form of TFNs combining the values given by DAs 
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Table 6.4.8 Normalized decision matrix 
Decision 
Council 

Alternative Criteria 

K1 CR1 CR2 CR3 CR4 
AMT1 (0.53,0.69,1) (0.32,0.38,0.50) (0.65,0.85,1) (0.45,0.65,0.85) 
AMT2 (0.5,0.64,0.9) (0.32,0.33,0.43) (0.4,0.6,0.8) (0.5,0.7,0.9) 
AMT3 (0.45,0.56,0.75) (0.3,0.3,0.38) (0.3,0.5,0.7) (0.7,0.9,1) 
AMT4 (0.5,0.64,0.9) (0.43,0.6,1) (0.6,0.8,0.95) (0.6,0.8,0.9) 
AMT5 (0.45,0.56,0.75) (0.43,0.6,1) (0.55,0.75,0.95) (0.5,0.7,0.9) 

criteria Weight (𝑤௝) 0.27 0.236 0.22 0.275 
K2 AMT1 (0.57,0.73,1) (0.46,0.55,0.75) (0.67.0.87,0.93) (0.33,0.53,0.73) 

AMT2 (0.57,0.67,0.89) (0.4,0.5,0.67) (0.47,0.67,0.87) (0.53,0.73,0.93) 
AMT3 (0.57,0.67,0.89) (0.4,0.46,0.6) (0.4,0.6,0.8) (0.73,0.93,1) 
AMT4 (0.57,0.67,0.89) (0.5,0.67,1) (0.67,0.87,1) (0.6,0.8,1) 
AMT5 (0.53,0.61,0.86) (0.5,0.67,1) (0.47,0.67,0.87) (0.67,0.87,1) 

criteria Weight (𝑤௝) 0.26 0.224 0.25 0.27 
K3 AMT1 (0.56,0.71,1) (0.47,0.53,0.69) (0.58,0.79,0.95) (0.45,0.65,0.85) 

AMT2 (0.56,0.67,0.9) (0.47,0.56,0.75) (0.53,0.74,0.95) (0.5,0.7,0.9) 
AMT3 (0.56,0.67,0.9) (0.45,0.5,0.64) (0.37,0.58,0.79) (0.7,0.9,1) 
AMT4 (0.56,0.63,0.83) (0.53,0.69,1) (0.68,0.89,1) (0.55,0.75,0.9) 
AMT5 (0.5,0.56,0.71) (0.5,0.64,0.9) (0.68,0.89,1) (0.7,0.9,1) 

criteria Weight (𝑤௝) 0.254 0.254 0.213 0.28 

 
 
 
 

Table 6.4.9: Taguchi loss values  

Decision 
Criteria Alternative 

Decision Council 
K1 K2 K3 

CR1 AMT1 (4.5,6.5,8.5) (5.33,7.33,9.33) (5,7,9) 
AMT2 (5,7,9) (6,8,9.33) (5.5,7.5,9) 
AMT3 (6,8,10) (6,8,9.33) (5.5,7.5,9) 
AMT4 (5,7,9) (6,8,9.33) (6,8,9) 
AMT5 (6,8,10) (6.67,8.67,10) (7,9,10) 

CR2 AMT1 (6,8,9.5) (5.33,7.33,8.67) (6.5,8.5,9.5) 
AMT2 (7,9,9.5) (6,8,10) (6,8,9.5) 
AMT3 (8,10,10) (6.67,8.67,10) (7,9,10) 
AMT4 (3,5,7) (4,6,8) (4.5,6.5,8.5) 
AMT5 (3,5,7) (4,6,8) (5,7,9) 

CR3 AMT1 (6.5,8.5,10) (6.67,8.67,9.33) (5.5,7.5,9) 
AMT2 (4,6,8) (4.67,6.67,8.67) (5,7,9) 
AMT3 (3,5,7) (4,6,8) (3.5,5.5,7.5) 
AMT4 (6,8,9.5) (6.67,8.67,10) (6.5,8.5,9.5) 
AMT5 (5.5,7.5,9.5) (4.67,6.67,8.67) (6.5,8.5,9.5) 

CR4 AMT1 (4.5,6.5,8.5) (3.33,5.33,7.33) (4.5,6.5,8.5) 
AMT2 (5,7,9) (3.33,5.33,7.33) (5,7,9) 
AMT3 (7,9,10) (7.33,9.33,10) (7,9,10) 
AMT4 (6,8,9) (6,8,10) (5.5,7.5,9) 
AMT5 (5,7,9) (6.67,8.67,10) (7,9,10) 
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Decision 
Council 

Alternative Criteria 

K1 CR1 CR2 CR3 CR4 
AMT1 (44944,76176,160000) (0.64,0.9,1.56) (100,58.48,42.25) (316,151.4,88.6) 
AMT2 (40000,65536,129600) (0.64,0.68,1.16) (264.1,117.36,66.02) (256,130.6,79) 
AMT3 (32400,50176,90000) (0.56,0.56,0.9) (469.4,169,86.2) (130.6,79,64) 
AMT4 (40000,65536,129600) (1.16,2.25,6.25) (117.4,66,46.8) (177.8,100,79) 
AMT5 (32400,50176,90000) (1.16,2.25,6.25) (189.7,75.1,46.8) (256,130.6,79) 
criteria 

Weight (𝑤௝) 
0.27 0.236 0.22 0.275 

K2 AMT1 (51984,85264,160000) (1.32,1.89,3.52) (94.12,55.82,48.85) (587.7,227.8,120.1) 
AMT2 (51984,71824,126736) (1,1.56,2.81) (191.26,94.12,55.82) (227.8,120.1,74) 
AMT3 (51984,71824,126736) (1,1.32,2.25) (264.1,117.36,68) (120.1,74,64) 
AMT4 (51984,71824,126736) (1.56,2.81,6.25) (94.12,55.82,42.25) (177.78,100,64) 
AMT5 (44944,59536,118336) (1.56,2.81,6.25) (191.26,94.12,55.82) (142.57,84.56,64) 
criteria 

Weight (𝑤௝) 
0.26 0.224 0.25 0.27 

K3 AMT1 (50176,80656,160000) (1.38,1.76,2.98) (125.6,67.7,46.8) (316,151.48,88.58) 
AMT2 (50176,71824,129600) (1.38,1.96,3.52) (150.41,77.15,46.8) (256,130.6,79) 
AMT3 (50176,71824,129600) (1.27,1.56,2.56) (308.62,125.6,67.7) (130.6,79,64) 
AMT4 (50176,63504,110224) (1.76,2.93,6.25) (91.37,53.34,42.25) (211.57,113.78,79) 
AMT5 (40000,50176,80656) (1.56,2.56,5.06) (91.37,53.34,42.25) (130.6,79,64) 
criteria 

Weight (𝑤௝) 
0.254 0.254 0.213 0.28 

 

Table 6.4.10: Weighted Taguchi loss values 
Alternative Decision Council 

K1 K2 K3 
Weighted loss (𝑊𝐿௜) Weighted loss (𝑊𝐿௜) Weighted loss (𝑊𝐿௜) 

AMT1 (12245.11,20622.23,43233.76) (13698.34,22244.79,41645.44) (12859.91,20543.70,40675.86) 
AMT2 (10928.88,17756.61,35028.39) (13625.38,18730.55,32985.94) (12848.32,18296.56,32951.71) 
AMT3 (8886.09,13606.56,24336.80) (13614.51,18723.86,32986.15) (12846.40,18292.19,32951.86) 
AMT4 (10875.41,17737.27,35025.30) (13587.71,18715.83,32980.63) (12823.57,16173.82,28029.90) 
AMT5 (8860.93,13600.49,24333.30) (11772.09,15526.35,30800.02) (10216.15,12778.68,20515.12) 

 

Table 6.4.11: Weighted Taguchi loss (crisp value) and preliminary ranking 
 
 

Alternatives 

Council K1 Council K2 Council 
crisp 𝑊𝐿௜ Preliminary 

Ranking 
Council Preliminary 

ranking 
crisp 𝑊𝐿௜ Preliminary 

ranking 
AMT1 22994.563 5 24053.82 5 22618.43 5 
AMT2 19497.29 4 20255.59 4 19831.05 4 
AMT3 14608.19 2 20249.35 3 19827.84 3 
AMT4 19474.97 3 20238.61 2 17591.46 2 
AMT5 14599.37 1 17446.25 1 13641.00 1 

 



 

114 
 

Although the basic reasons to implement AMT system is to enhance productivity, quality, flexibility etc., 

the ultimate rationale has to be established with economy. The DEx(s) go through market survey and their 

knowledge base to fix the installation costs of the AMTs as given in table 6.4.12.  

Table 6.4.12: Implementation cost of alternatives and objective factor measure  

Alternatives AMT Installation Cost (𝑹𝒊) 
(millions of $) 

Objective factor measure (𝑶𝑭𝑴𝒊) 

AMT1 4.087 0.223 

AMT2 5.178 0.176 
AMT3 4.256 0.215 
AMT4 4.339 0.210 

AMT5 5.203 0.176 

 

A mathematical model combining cost-factor components with weighted loss values is established, the 

basic of which is proposed by Bhattacharya et. al. as mentioned earlier. As weighted loss is a 

minimization function, the inverse of the same is considered as subjective factor measure, to be 

maximized. In doing so, the cognitive minds of DEx(s) are also analyzed and co-efficient of cognition (ɣ) 

value is set as 0.67. ɣ is the measure of positivity in a DEx. It makes a balance between the subjective and 

the objective factor associated in the problem. An optimistic DEx sets high value of ɣ. So, the value 0.67 

is regarded as the mean of the optimism expressed by the DEx(s) across each decision council. The final 

deciding factor i.e. the evaluation indices are calculated for the AMTs by three decision councils 

following equation 6.4.14. The corresponding values and finalized rankings are presented in table 6.4.13.  

Table 6.4.13 Evaluation index and finalized ranking 

 
 

Alternatives 

council K1 council K2 council K3 

Evaluation 
Index (𝐸𝐼௜) 

Finalized 
Ranking 

Evaluation 
Index (𝐸𝐼௜) 

Finalized 
Ranking 

Evaluation 
Index (𝐸𝐼௜) 

Finalized 
Ranking 

AMT1 3.015 5 2.867 5 3.089 5 
AMT2 3.530 4 3.375 4 3.428 4 
AMT3 4.680 2 3.394 3 3.448 3 

AMT4 3.573 3 3.406 2 3.868 2 
AMT5 4.687 1 4.031 1 4.835 1 

 

The optimum selection decision is same throughout the councils and the selection is AMT5. 
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6.4.4.3. Post-optimality treatment     

Post-optimality treatment, as the name suggests, is carried out only after the optimum solution to the 

problem is reached. It is done to establish the robustness of the proposed model and also termed as 

sensitivity or uncertainty analysis. Any vagueness at input level data is managed by TFNs. At the design 

level, this is carried out by post-optimality analysis. In the presented model, post-optimality treatment is 

carried out owing to establish a design range for co-efficient of cognition (ɣ), over which we can have 

optimum selection. This has something to do with the cognitive mind of DEx(s). This expresses their 

positivity or the negativity. If the group of DEx(s) is optimistic in nature, they see opportunities in 

challenges. And, the ɣ value tends to move to the higher side, getting close to 1.  On the other hand, a 

pessimistic group could find out problems even in opportunities and the ɣ value could move to the lower 

side close to 0. The value of ɣ in the present problem is set to 0.67. Post-optimality treatments for three 

different decision councils are portrayed in figures 6.19, 6.20, 6.21 respectively. The analysis of the same 

is presented in table 6.4.14.  

Table 6.4.14: Post-optimality analysis 

Committee K1 Committee K2 Committee K3 

Value of ɣ  Optimum 

Selection 

Value of ɣ  Optimum 

Selection 

Value of ɣ  Optimum 

Selection 

ɣ ≤ 0.0032 AMT1 ɣ ≤ 0.01 AMT1 ɣ ≤ 0.011 AMT1 

0.0032 ≤ ɣ ≤ 0.565 AMT3 0.01 ≤ ɣ ≤ 0.038 AMT3 0.011 ≤ ɣ ≤ 0.023 AMT4 

ɣ ≥ 0.565 AMT5 ɣ ≥ 0.038 AMT5 ɣ ≥ 0.023 AMT5 
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Figure 6.19: Post-optimality treatment (Decision committee K1) 

 

Figure 6.20: Post-optimality treatment (Decision committee K2) 
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Figure 6.21: Post-optimality treatment (Decision committee K3) 

 

6.4.4.4. Application and result analysis     

The current section presents some applications of the model and analysis of result thereafter. It is a bit 

tedious task to make sure that a new kid on the block is having more competitive advantage than the other 

big guns and that, it has got robustness. To prove the same, we have pitted the proposed method with a 

well established fuzzy VIKOR method and exhibited the comparison result. We have compared the 

findings of decision committee K3, of the proposed method, with fuzzy VIKOR, to get an overall 

understanding about the applicability and practicality of the same.   

 An application of VIKOR was published in 1980 (Duckstein & Opricovic) with a view to solve decision 

problems with conflicting criteria with acceptable agreement for conflict resolution. VIKOR brings in 

compromised solution based on closest distance to the utopian condition providing ranking of selected 

choices. Compromise solution in MCDM was first introduced by Yu and Zeleny. The real applications of 

VIKOR were presented in 1998 (Opricovic, 1998) and eventually it was internationally recognized  

(Opricovic &  Tzeng, 2004). 
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The steps of fuzzy VIKOR include the following: 

Step 1. Aggregation of fuzzy weights of criteria into TFNs (table 6.4.15) and criteria values of 

alternatives by following equation 6.4.5 and equation.6.4.6. 

Step 2. Formation of fuzzy decision matrix as given in table 6.4.7 earlier, same as that of our proposed 

method. 

Step 3. Determination of best fuzzy values 𝑓௜
∗ and worst fuzzy values 𝑓௜

ି for all the selected criteria, 

where, 𝑓௝
∗ = max ∅௜௝ , if the 𝑗௧௛ criterion is beneficial in nature; 𝑓௝

ି = min ∅௜௝ , if the 𝑗௧௛ criterion is non-

beneficial in nature. The same is presented in table 6.4.15. 

Step 4. Computation of weighted and normalized Manhattan distance (𝑀௜), weighted and normalized 

Chebyshev distance (𝐶௜), by following equation 6.4.15 and equation 6.4.16 as follows:  

𝑀௜ = ∑ 𝑤௝(𝑓௝
∗ − ∅௜௝) (𝑓௝

∗ − 𝑓௝
ି)ൗ                                                                                               …… [6.4.15]        

 𝐶௜ = max [∑ 𝑤௝(𝑓௝
∗ − ∅௜௝) (𝑓௝

∗ − 𝑓௝
ି)ൗ ]                                                                                   …… [6.4.16]  

The same is displayed in Table 6.4.16.  

Step 6. Calculating the index values of AMTs (𝑄ప
ෙ ) for the three limits, by following equation 6.4.17 as 

given below: 

𝑄ప
ෙ = 𝛻 (𝑀௜ − 𝑚∗)/(𝑚ି − 𝑚∗) + (1 − 𝛻)(𝐶௜ − 𝑐∗)/(𝑐ି − 𝑐∗)                                            ….… [6.4.17] 

Where, 𝑚∗ = min 𝑀௜, 𝑚ି = max 𝑀௜, 𝑐∗ = min 𝐶௜,  𝑐ି = max 𝐶௜;   

Calculating the average index value, 𝑄௜ = 𝑄ప
ෙ /3, and, inverse of 𝑄௜ i.e., 𝑄௜

∗ =  𝑄௜
ିଵ . These values are 

presented in table 6.4.17. 

𝛻 is the maximum group utility i.e. strategic weight for the majority of criteria. The strategies arrive to a 

compromise solution by taking 𝛻 as 0.5.  

Step 7. The index value in VIKOR follows the lower the better principle. So, the inverse of the average 

index values (𝑄௜
∗) is taken as the subjective factor measure. On the contrary, the implementation cost of 
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alternative (table 6.4.12) is taken into account to get the measure of objective factor (𝑂𝐹𝑀௜) by equation 

6.4. 13 presented earlier.  

Step 8.  Calculating the VIKOR selection Index (𝑉𝑆𝐼௜) for each alternative by following equation 6.4.18 

as follows:  𝑉𝑆𝐼௜ = (ɣ ∗ SFM୧) +  (1 − ɣ)(OFM୧)                                                                    …… [6.4.18] 

Where, SFM୧= subjective factor measure = 𝑄௜
∗, ɣ = co-efficient of cognition mentioned earlier in section 

6.4.3. 

Subsequent ranking of the AMTs are determined. Higher value of  𝑉𝑆𝐼௜  betters the ranking of the same. 

Table 6.4.18 shows the values of 𝑉𝑆𝐼௜ and the ranking result as well.  

 

Table 6.4.15: Weights of criteria in TFNs, best fuzzy value and worst fuzzy value  (VIKOR) (Committee 
K3) 

Criteria Decision Council K3 

Criteria weights best fuzzy value (𝑓∗) Worst fuzzy value (𝑓ି) 

CR1 (0.675, 0.775, 0.875) 5 7 9 7 9 10 

CR2 (0.675, 0.775, 0.875) 4.5 6.5 8.5 7 9 10 

CR3 (0.55, 0.65, 0.75) 6.5 8.5 9.5 3.5 5.5 7.5 

CR4 (0.75, 0.85, 0.95) 7 9 10 4.5 6.5 8.5 

 

Table 6.4.16: Values of 𝑆௜ and 𝑅௜ (Council K3) 

Alternatives 𝑺𝒊 𝑹𝒊 

AMT1 1.470 1.590 1.720 0.750 0.850 0.950 

AMT2 1.450 1.655 1.400 0.600 0.680 0.580 

AMT3 1.395 1.619 1.625 0.675 0.775 0.875 

AMT4 0.788 0.898 0.633 0.450 0.510 0.633 

AMT5 1.177 1.360 1.542 0.675 0.775 0.875 
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Table 6.4.17: Index values (𝑄௜) (Council K3) 

Alternatives 𝑄ప
෱  𝑄௜  𝑄௜

∗ 

AMT1 1.000 0.955 1.000 0.985 1.015 

AMT2 0.736 0.750 0.355 0.610 1.639 

AMT3 0.820 0.864 0.854 0.846 0.639 

AMT4 0.370 0.680 0.720 0.590 1.695 

AMT5 0.660 0.695 0.820 0.725 1.379 

 

Table 6.4.18: VIKOR selection index and Final ranking 

Alternatives VIKOR selection index (𝑽𝑺𝑰𝒊) Final Ranking 

AMT1 0.75364 5 

AMT2 1.15621 2 

AMT3 0.86289 4 

AMT4 1.20400 1 

AMT5 0.98201 3 

 

6.4.4.5. Experimental result 

The results of the model exhibit that, values of evaluation indices for AMT3 and AMT5, measured by 

council K1, are pretty close. Although AMT5 retains its winning place carrying forward from the Taguchi 

weighted loss value, the difference is too marginal. But for the other councils, AMT5 emerges out as a 

clear and distant winner. The inclusion of cost factor doesn’t change the ranking of the alternatives 

previously made out of the values of weighted loss.  So, the final result is as clear as daylight. The 

optimum selection is AMT5 although the cost of implementation is a little on the higher side. If an 

organization is tight on budget, it can choose between AMT3 and AMT4, as they are occupying the 2nd or 

the 3rd place of priority in the rankings of all the decision councils. Also, the implementation costs of both 

of them are much lower than that of AMT5. Having said that, it excels highly in all other departments. 

For this obvious reason, it should be the automatic choice for long run, for any manufacturing 

organization trying to shift to AMT from traditional ones and get immense benefit out of the same. The 

post-optimality treatment reveals the desired robustness present in the design of the model. The selection 
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of alternative AMT5 on the values of evaluation index is proving to be the most optimum one in post-

optimality treatment too. Almost for the entire range of co-efficient of cognition, ɣ, AMT5 remains the 

only choice. If the value of ɣ is zero i.e. the most pessimistic approach, the DAs would make the selection 

decision based only on cost factor. But, a unit value of ɣ, the most optimistic one, would therefore nullify 

the cost factor and make the decision only on the basis of Taguchi weighted loss of alternatives for which 

the lowest value is the most preferable one. The comparison with fuzzy VIKOR clears that, second 

highest ranked alternative by council K3 in loss function is the top scorer here in VIKOR i.e. AMT4. 

Though the AMT5, the first choice by council K3 in loss function, is the third choice by VIKOR method, 

the difference in overall score is too nominal. So, according to that, AMT5 comes out as the best choice 

overall in the proposed case study.  

6.4.5. Conclusion 

Several conclusions have been drawn from the proposed model and the same has been profoundly 

discussed in this section. Implementation of AMT by the manufacturing organizations is the need of the 

hour for achieving sustainable development. Otherwise, gradual decay of the organizations is quite 

obvious. A framework is proposed in this chapter for performance assessment of AMTs using Taguchi 

loss function to a fuzzy decision model. Some experts in decision making played a pivotal role in 

realizing the model. They chose the criteria that could best expound the alternatives from the perspective 

of the manufacturing firm. Finally, they analyzed the results of proposed model and rendered their 

verdict. 

The proposed methodology combines Taguchi loss function with fuzzy decision model, consolidated gain 

as subjective factor measure of alternatives and the installation cost as objective factor measure of 

alternatives. It can be implemented successfully in supplier selection, robot selection and many more 

MCDM problems prevailing in today’s manufacturing scenario.  It upped the novelty by drawing a 

comparison with traditional VIKOR method.  

Also, in Taguchi loss function, fuzziness present in the initial stage is carried forward deep into the 

problem. We get the Taguchi loss values in terms of TFNs only, during the final legs of the problem 
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solving. Defuzzification is done at a quite later stage. So, the loss of information is significantly less as 

compared to some traditional decision tools available. The comparison with VIKOR establishes that.   

The numbers of DAs in decision committees are varying. Expertise of DAs in the committees are not 

uniform nor their experience. So, there might be slight variation in the end result. But it’s in the hand of 

manufacturing firm, to choose the outcome of a particular committee depending on its own optimized 

requirements.  

Then also, we have the outcome of the post-optimality treatment that could yield a considerable range of 

ɣ, where the optimum selections for all the committees are same, i.e. AMT5.  

On the contrary, it depicts no mathematical comparison between results obtained from the manuscript and 

the traditional loss function.  

Future scope would include undertaking another form of post-optimality treatment where the weights of 

criteria would be interchanged and analyzing the final result for the robustness of the problem. This 

particular research could also be channelized towards investigating group decision making models in 

multi attribute problems under uncertainty and fuzziness. These are considered in cases of fuzziness 

persistent, be it preliminary stage or be it problem solving stage.    

Lastly, we can say that, fuzzy Taguchi loss method with consolidated gain and consolidated loss concept 

stands right up there and is very much suited for various kinds of critical problems that manufacturing 

establishments pass through. So, this method can be applied to solve various selection and evaluation 

problems in manufacturing industry. 
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7. CASE STUDY V: ANALYSIS OF DIFFERENT MCDM METHODS FOR WAREHOUSE 

LOCATION SELECTION IN SUPPLY CHAIN  

7.1. Methodology Analysis:  Dempster-Shafer Theory (DST), Analysis of Variance (ANOVA) and 

Regression Analysis. 

 

   7.1.1 Problem Scenario 

Supply chain management is a major aspect in manufacturing industry now-a-days. It involves strategy, 

market planning, supply-demand ratio and many other significant criteria. But the ultimate goal is to 

increase the value for shareholders and investors. A supply chain framework is shown in figure 7.1.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1:  The supply chain framework 
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Innovation, continuous improvement and competitive advantage are the keys for a supply chain to be 

sustainable and resilient. The same is shown in figure 7.2.  

 

Figure 7.2: Competitive advantage: Sustainable supply chain 

The upstream level of supply chain consists of supplier selection for the supply of raw materials. The 

middle stream level consists of technology selection for producing products conforming to organizational 

standards, keeping the productivity and flexibility on a high. The downstream of a supply chain network 

deals with selection of warehouses for transportation and proper inventory of the products such that the 

same can flow to the end customer in a smooth manner. There are considerable amount of political, 

economic, environmental, social and technological influences (PEEST analysis) on the selection and 

implementation of warehouses, as shown in figure 7.3. 

So, as far as supply chain is considered, selection of a proper warehouse is extremely influential and of 

great importance, in the face of extreme challenges from a highly competitive market.  That is to say, the 

products ought to reach the end customer at a minimum time and cost, setting the quality of the prior as 

the benchmark in the segment.  
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Figure 7.3: The PEEST analysis 

7.1.2 Background research   
 

7.1.2.1  Fuzzy decision matrix 

  

A fuzzy MCDM problem is represented in terms of decision matrix in the following form: 

                                                          𝑆𝐶1 𝑆𝐶2 … 𝑆𝐶𝑛  

𝐷 =

𝑊1
𝑊2

⋮
𝑊𝑚

൦

𝜙ଵଵ

𝜙ଶଵ

𝜙ଵଶ

𝜙ଶଶ
⋯

𝜙ଵ௡

𝜙ଶ௡

⋮ ⋱ ⋮
𝜙௠ଵ 𝜙௠ଶ ⋯ 𝜙௠௡

൪ 

 

Where, 𝑊1, 𝑊ଶ, … , 𝑊௠ are the warehouse alternatives and 𝑆𝐶1, 𝑆𝐶2, … , 𝑆𝐶𝑛 are the selection criteria for 
the problem;  

𝑚 = 𝑛𝑜. 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠, 𝑛 = 𝑛𝑜. 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎.  

𝜙௜௝ = ൫𝑥௜௝ , 𝑦௜௝ , 𝑧௜௝൯𝑎𝑟𝑒 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑢𝑧𝑧𝑦 𝑛𝑜. 𝑠 (𝑇𝐹𝑁𝑠). 

 
 



 

126 
 

7.1.2.2 Linguistic weight set and TFNs 

A linguistic weight set is presented by linguistic variable. It involves coping with uncertainty and 

fuzziness inherent in the problem scenario. There are some subjective criteria which can’t be represented 

in exact crisp numerical numbers. But the same can be accomplished by linguistic variable such as 

extremely significant, very significant, and so on. This further can be presented by TFNs, for example, 

extremely significant = (9, 10, 10), very significant = (7, 9, 10) and so on. This is a user defined scale of 0 

to 10. Some other scale can be defined in the range 0 and 1 as well, to define some other linguistic 

variable. If A = (m1, m2, m3) and B = (n1, n2, n3) are the two TFNs, then the distance between them can 

be calculated by equation 7.1: 

𝑑 (𝐴, 𝐵) =
ଵ

ଶ
[max (∣ 𝑚1 − 𝑛1 ∣, ∣ 𝑚3 − 𝑛3 ∣) + (∣ 𝑚2 − 𝑛2 ∣)]                                                 …..... [7.1] 

                7.1.2.3  Interval number 

 It is another way of dealing with uncertainty and vagueness that a fuzzy MCDM problem has to offer. 

“Interval numbers are a set of real numbers with a property that any number lying between two numbers 

is also included in the set”, Kaucher, 1980.  If  𝑎 = [𝑎ି, 𝑎ା], 𝑏 = [𝑏ି, 𝑏ା] are the two positive interval 

numbers, then the distance between them is as follows as in equation 7.2: 

𝐷(𝑎, 𝑏) = √2
2

ൗ ඥ(𝑎ି − 𝑏ି)ଶ + (𝑎ା − 𝑏ା)ଶ                                                                            …..... [7.2] 

7.1.2.4 Defuzzification process 

It’s simply the conversion of TFN into crisp ones. It is the backbone step in decision making for 

extracting information out of the problem. There are many processes available (Zimmermann, 1991) for 

defuzzification in manufacturing and decision making world. The present chapter follows graded mean 

integration representation on TFNs as the defuzzification process. If 𝜙௜௝  be a TFN defined by a triplet 

(𝑥௜௝ , 𝑦௜௝ , 𝑧௜௝), then the defuzzification of this TFN is done as in equation 7.3:  
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P (𝜙௜௝) =(𝑥௜௝ + 4 × 𝑦௜௝ + 𝑧௜௝) 6⁄ .                                                                      ……... [7.3] 

7.1.2.5 Dempster- Shafer theory of evidence (DST) 

TOPSIS came into picture in the early 80’s by Hwang & Yoon (1981). The effort was to counter the 

effects of fuzzy MCDM problems existing in the manufacturing organizations.  

Dempster-Shafer Theory (A. P. Dempster, 1967; G. Shafer, 1976), in general is contemplated as the 

extension of Bayesian theory which can deal with imprecise data set. It is a set of hypothesis h defined as 

follows: P (h) = [Q, {hଵ}, {hଶ},…,{h୬},{hଵ∪hଶ},{hଵ∪hଷ},….,h]; where Q denotes the empty set.  

The basic probability assignment or BPA is the main element of evidence theory. The mass of belief in an 

element of h is like probability distribution.  

Evidence theory offers aggregation in the form of Dempster rule of combination or the orthogonal sum in 

m, for information source S, and is noted by 𝑚 = 𝑚ଵ ⊕ 𝑚ଶ. 

It fuses two BPAs to yield an all new BPA. The same is presented in equation 7.4 and equation 7. 5. 

                                                  m (A) = ∑ mଵ(𝐵)𝑚ଶ(𝐶)஻∩஼ୀ஺ 1 − 𝑓⁄                                          …..... [7.4] 

                                                       𝑓 = ∑  𝑚ଵ(𝐵) 𝑚ଶ(𝐶)஻⋂஼ୀ ୕                                                    …..... [7.5] 

𝑓: degree of conflict between m 1 & m 2. 𝑓 = 0 signifies zero conflict between m 1 & m 2; 𝑓 = 1 signifies 

absolute contradiction between m 1 & m 2.  

The belief function m is denoted in equation 7.6 as follows:                              

𝑚 = 𝑚ଵ ⊕ 𝑚ଶ ⊕ … ⊕ 𝑚௡                                                                                                                                                                          …..... [7.6] 

To handle conflict, a discounting rule (Shafer, 1976) is introduced in DST given by equation 7.7 and 

equation 7.8: 

                                                 𝐵𝐿𝐹ఊ(ℎ) = 1                                                                                 …..... [7.7] 

                                    𝐵𝐿𝐹ఊ(𝐴) = (1 − 𝛼). 𝐵𝐿𝐹(𝐴) ; ∀ A ⊂ h and A ≠ Q                                  …..... [7.8] 

Here, 𝐵𝐿𝐹: 2௛→ [0, 1] is belief function and 𝐵𝐿𝐹௛: 2௛ → [0, 1] is discounted belief function. 

             𝛾 (0 ≤ 𝛾 ≤ 1) is the discounting index that signifies the reliability strength of the evidence. 
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The BPA 𝑚ఊ is congruous with the discounted belief function 𝐵𝐿𝐹ఊ  and is further modified (Shafer, 

1976) in equation 7.9 and equation 7.10 as follows:     

                                        𝑚ఊ(ℎ) = (1 − 𝛾)𝑚(ℎ) + 𝛾                                                                   …..... [7.9] 

                                      𝑚ఊ(𝐴) = (1 − 𝛾)𝑚(𝐴), ∀ A ⊂ h and A ≠ Q                                         …..... [7.10] 

The crisp estimation in a belief interval is determined by equation 7.11 as follows: 

                                     𝑏𝑒𝑡 (𝐴௜) = ∑
௠(஺ೖ)

|஺ೖ|஺೔ ⊂ ୅ౡ
                                                                       …..... [7.11] 

The expression ‘bet’ in Latin was proposed by Smets (2000). In decision theory, it is a probability that a 

rational person assigns to an option when required to make a decision. 

The equation 7.11 is also known as Pignistic Probability Transformation (PPT). 

7.1.2.6 Design of experiment and regression analysis 

Design of experiment (DoE) is also known as experimental design. It is a statistical tool used to evaluate 

the effect of individual factor and factor interactions, on the response of a particular system. It is a very 

helpful concept to make a robust design. The input factors in DoE are the experimental variables that can 

be changed independently and the response is the measure of experimental results. It is of prime 

importance to judiciously choose the most appropriate DoE method for the application in hand. The 

simplest method existing in DoE uses two levels and n factors i.e. 2௡factorial design. It reduces the 

number of experimental conditions significantly, thus, saving precious calculation time. The regression 

analysis (RA) approach can generate a mathematical model to analyse the effects of the factors and their 

interactions. The said model collects mathematical as well as statistical data and is purely based on the 

experimental results. It involves a dependent variable, R, known as response variable and a number of 

independent variables, such as, 𝑦ଵ, 𝑦ଶ, … , 𝑦௡.  The correlation between regression approach and 

experimental results for four criteria model up to 2-way interactions is presented by equation 7.12 as 

follows: 
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  𝑌௜ =  𝛾଴ + 𝛾ଵ𝑦ଵ + 𝛾ଶ𝑦ଶ + 𝛾ଷ𝑦ଷ + 𝛾ସ𝑦ସ + 𝛾ଵଶ𝑦ଵ𝑦ଶ + 𝛾ଵଷ𝑦ଵ𝑦ଷ + 𝛾ଵସ𝑦ଵ𝑦ସ + 𝛾ଶଷ𝑦ଶ𝑦ଷ + 𝛾ଶସ𝑦ଶ𝑦ସ 

         +𝛾ଷସ𝑦ଷ𝑦ସ + 𝜖.                                                                                                                              ….... [7.12]  

Here, 𝑌௜  is the predicted response, 𝑛 =  no. of experimental variables, 𝛾଴ the constant regression co-

efficient, 𝛾௜(𝑖 = 1, . . ,4) the linear regression co-efficient, 𝛾௜௝(𝑗 = 2, . . ,4) the interaction regression co-

efficient, 𝑦௜ the experimental variables, 𝜖 the statistical error.  

 

7.2. Illustration of the Proposed Method 

   7.2.1. Framework 

The integrated framework for the illustrated approach is given in figure 7.4. It has got three distinct 

phases. Phase I establishes relationship of cloud manufacturing with supply chain network. All the 

informations of manufacturing world are coming from that source. All the data about the same are in the 

cloud, so that, these can be accessed anytime, anywhere, using any device and in any format. The 

feedback of the end outcome is also available with the cloud. Phase II is all about selecting the 

appropriate problem for the organisation from the world of manufacturing. The problem of warehouse 

location selection is taken up in this illustrated model, as lection of warehouse location plays a pivotal 

role in the sustainable competitive advantages of an organisation. Phase III comes up with the formation 

of committee of Decision Experts (DEs) and application of fuzzy MCDM, DST of evidence, DOE on the 

problem.  
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                                                           Phase I 
 

                    Phase II       
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Figure 7.4: Integrated framework for the proposed model 
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Therefore, DEs have to form the decision matrix and deviation degree matrix of experimental design. 

They eventually have to find out the final DST scores and use that as the input response to ANOVA in 

DOE. The DEs form the regression Eq. that, in turn, becomes the main stem to give the final verdict. 

Phase II and phase III are under some influence from real world. Factors, such as political biasness, if 

any, economic condition, environmental impact, social responsibilities, technological up gradations and 

innovations, are associated with the selected warehouse location.  

7.2.2  Numerical analysis 

In this section, a simple but eloquent problem of practical importance is presented, in order to simplify the 

detailed procedure of DST-RA methodology.  A leading manufacturing organisation seeks for the 

solution of optimum warehouse evaluation from a set of four options namely W1, W2, W3, and W4.  A 

decision team combining four DAs is given the responsibility of the same. The DAs set four selection 

criteria namely, shipment cost (SC1), reconfigurability (SC2), surveillance (SC3) and environmental 

evidence (SC4). The details are as follows:  

SC1: Shipment cost- to be minimized. 

SC2: Reconfigurability- to be maximized. 

SC3: Surveillance- to be maximized. 

SC4: Environmental evidence- to be minimized.  

The detailed procedural steps associated with the particular problem are given: 

Stage 1(decision matrix formation with interval numbers): 

a) Linguistic weight set assigned by DEs for weights of selection criteria and performance of 

warehouse alternatives on a particular selection criterion (the fuzzy decision matrix), as in table 

7.1 and table 7.2 respectively.  

b) Conversion of linguistic variables into TFNs by following a user defined conversion scale (0 - 1 

for criteria weights and 0- 10 for weights of alternatives) as given in table 7.3 and table 7.4.  

c) Defuzzification of criteria weights by graded mean integration representation as in equation 7.1. 
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d) Weights of selection criteria are transformed into discounting co-efficient as in table 7.5 by 

following equation 7.13 as follows:  αSC௝ =  𝑃 (𝜙௜௝) max  𝑃 (𝜙௜௝)⁄ ,                              …... [7.13]                                  

 Where i= no. of warehouse alternatives,  j= no. of selection criteria. 

Eventually we do the arithmetic mean, to get the combined weight of criteria by given DAs.  

Then we get the finalized importance weight of selection criteria (α𝒙) by equation 7.14 as follows: 

                                                        α𝒙𝒋 =   Com (αSC௝)/ ∑ Com (αSC௝)                                ….... [7.14]    

e) Conversion of the decision matrix (table 7.2) into TFNs.  We combine the values of DEs by 

simple arithmetic mean and representing the matrix in interval numbers by getting the lower limit 

values and upper limit values of TFNs as in table 7.6. According to the table, SC1 has the best 

interval value of [5.5, 9] and worst interval value of [7.5, 9.75] as the criteria is minimising in 

nature i.e. non-beneficial. SC2 gets the best value of [8.5, 10] and worst value of [4, 8] as the 

criteria is maximising in nature i.e. beneficial. Similarly SC3 is a beneficial criteria with best 

interval value of [7.5, 10], worst interval value of [4, 8] and SC4 is a non-beneficial criteria with 

best interval value of [3.5, 7.5], worst interval value of [8, 10]. All of these are determined as 

factor levels affecting the selection of warehouse alternative. 

Table 7.1: Importance level of selection criteria (SC) as suggested by Decision Expert (DE) 

Selection 

Criteria (SC) 

DEs 

DE1 DE2 DE3 DE4 

SC1 (non-beneficial) VHS VHS VHS HS 

SC2 (beneficial) HS VHS HS HS 

SC3 (beneficial) MS HS VHS HS 

SC4 (non-beneficial) HS HS VHS VHS 
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Table 7.2: Weights of warehouse alternatives (The decision matrix) 
 

 

 

DEs 

SC 

SC1 {Minimising(-)} SC2 {Maximising(+)} SC3 {Maximising(+)} SC4 {Minimising(-)} 

DE1 DE2 DE3 DE4 DE1 DE2 DE3 DE4 DE1 DE2 DE3 DE4 DE1 DE2 DE3 DE4 

Warehouse 

alternatives 

W1 VHI VHI AI HI EHI HI VHI HI AI HI HI HI VHI EHI VHI EHI 

W2 AI VHI VHI HI VHI VHI VHI HI VHI VHI VHI VHI AI VHI AI AI 

W3 VHI HI AI VHI EHI VHI EHI EHI VHI EHI VHI VHI VHI VHI VHI VHI 

W4 VHI EHI EHI HI HI AI AI HI HI AI HI AI HI AI AI AI 

 

 
Table 7.3: Linguistic weight set for criteria weights  

 

Linguistic variable Triangular fuzzy number (TFN) 

Very Less Significance (VLS) (0,0,0.2) 

Less Significance (LS) (0,0.2,0.4) 

Medium Significance (MS) (0.2,0.4,0.6) 

Heavy Significance (HS) (0.4,0.6,0.8) 

Very Heavy Significance (VHS) (0.6,0.8,1) 

 

 
Table 7.4: Linguistic value for warehouse alternatives 

 

Linguistic Value TFN 

Extremely High Importance (EHI) (9,10,10) 

Very High Importance (VHI) (7,9,10) 

High Importance (HI) (5,7,9) 

Average Importance (AI) (3,5,7) 

Less Importance (LI) (1,3,5) 

Very Less Importance (VLI) (0,1,3) 

Extremely Low Importance (ELI) (0,0,1) 
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Table 7.5: Weights of SC as discounting co-efficient 

Discounting 
co-efficient 

(γSC௝) 

DEs  
 
Com (γSC௝) 

Finalised 
importance  
weights of SC 
(γ

𝒙𝒋
) 

DE1 DE2 DE3 DE4 

γSCଵ 1 1 1 0.75 0.9375 0.28 

γSCଶ 0.752 1 0.76 0.75 0.8155 0.24 

γSCଷ 0.5 0.749 1 0.75 0.7497 0.22 

γSCସ 0.752 0.749 1 1 0.8752 0.26 

 

Table 7.6: Decision matrix of warehouse alternatives expressed in intervals (DEs combined) 

Warehouse 

alternatives 

SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

W1 [5.5,9] [6.5,9.5] [4.5,8.5] [8,10] 

W2 [5.5,9] [6.5,9.75] [7,10] [4,7.75] 

W3 [5.5,9] [8.5,10] [7.5,10] [7,10] 

W4 [7.5,9.75] [4,8] [4,8] [3.5,7.5] 

Best (𝑊௝ , 𝐵௝) [5.5,9] [8.5,10] [7.5,10] [3.5,7.5] 

Worst (𝑊௝ , 𝐵௝) [7.5,9.75] [4,8] [4,8] [8,10] 

(∑ 𝑊௝ , ∑ 𝐵௝) [24, 36.75] [25.5, 37.25] [23, 36.5] [22.5, 35.25] 

 

Stage 2 (experimental design of attribute criteria):  

We utilize the DoE to assess the influence of each factor on the final ranking results. A 2-level factorial 

design is used to create a data set with all the possible combinations of best interval value and worst 

interval value of selection criteria. This is a  2௡  factorial design where n denotes the no. of factors 

associated with the problem. So, it’s a 2-level factorial design with 2ସ or 16 number of experiments. The 

same is presented in table 7.7. 
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Table 7.7: Experimental design results of selection criteria (DOE) 

Experiment No. SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

1 [5.5,9] [8.5,10] [7.5,10] [3.5,7.5] 

2 [5.5,9] [8.5,10] [7.5,10] [8,10] 

3 [5.5,9] [8.5,10] [4,8] [8,10] 

4 [5.5,9] [8.5,10] [4,8] [8,10] 

5 [5.5,9] [4,8] [7.5,10] [3.5,7.5] 

6 [5.5,9] [4,8] [7.5,10] [8,10] 

7 [5.5,9] [4,8] [4,8] [3.5,7.5] 

8 [5.5,9] [4,8] [4,8] [8,10] 

9 [7.5,9.75] [8.5,10] [7.5,10] [3.5,7.5] 

10 [7.5,9.75] [8.5,10] [7.5,10] [8,10] 

11 [7.5,9.75] [8.5,10] [4,8] [3.5,7.5] 

12 [7.5,9.75] [8.5,10] [4,8] [8,10] 

13 [7.5,9.75] [4,8] [7.5,10] [3.5,7.5] 

14 [7.5,9.75] [4,8] [7.5,10] [8,10] 

15 [7.5,9.75] [4,8] [4,8] [3.5,7.5] 

16 [7.5,9.75] [4,8] [4,8] [8,10] 

 
 

Stage 3 (transforming the decision matrix into deviation degree matrix): 

A decision matrix with interval numbers is not an easy task to manage. That is where, the deviation 

degree matrix comes handy. It turns the interval matrix into normal matrix with crisp numbers by 

calculating the distance between the intervals of the same criteria. First, we determine the best limits as 

[5.5, 10, 10, 3.5] that can be reached to the four alternatives. So,  
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I =  [5.5, 5.5], [10, 10], [10, 10], [3.5, 3.5] is chosen as the ideal alternative. Next, we calculate the 

distance between each factor (table 7.7), and exhibit the same in table 7.8. Distances are calculated 

following equation 7.15 as shown below: 

       𝑑௜௝ = (√2 2⁄ )ට(𝑦௜௝
ି − 𝐵௝

ି)ଶ + (𝑦௜௝
ା − 𝐵௝

ା)ଶ                                                            …..... [7.15] 

Where, (𝑦௜௝
ି, 𝑦௜௝

ା) are the minimum and maximum bounds of experimental design and, (𝐵௝
ି, 𝐵௝

ା) is the 

ideal alternative i.e. 𝐵௝
ି and 𝐵௝

ାbear the same value. Hence, 𝐼 = [𝐵ଵ, 𝐵ଵ], [𝐵ଶ, 𝐵ଶ], … , [𝐵௝, 𝐵௝], is the ideal 

alternative. 

Table 7.8: Deviation degree matrix 

Experiment No. SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

1 2.475 1.060 1.768 2.828 

2 2.475 1.060 1.768 5.590 

3 2.475 1.060 4.472 5.590 

4 2.475 1.060 4.472 5.590 

5 2.475 4.472 1.768 2.828 

6 2.475 4.472 1.768 5.590 

7 2.475 4.472 4.472 2.828 

8 2.475 4.472 4.472 5.590 

9 3.321 1.060 1.768 2.828 

10 3.321 1.060 1.768 5.590 

11 3.321 1.060 4.472 2.828 

12 3.321 1.060 4.472 5.590 

13 3.321 4.472 1.768 2.828 

14 3.321 4.472 1.768 5.590 

15 3.321 4.472 4.472 2.828 

16 3.321 4.472 4.472 5.590 

 

Stage 4 (calculation of DST scores):  
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a) Distance measurement {d (IS), d (AIS), d (IS, AIS)} of possible combinations (the no. of 

experiments) from ideal solution (IS) and anti-ideal solution (AIS) for both beneficial and non 

beneficial criteria by following equation 7.16 and equation 7.17 respectively: 

 

For beneficial selection criteria: 

𝑑(𝐼𝑆) = หmax൫𝑑௜௝൯ − 𝑑௜௝ห, 𝑑(𝐴𝐼𝑆) = |𝑑௜௝ − min൫𝑑௜௝൯ , 𝑑(𝐼𝑆, 𝐴𝐼𝑆) = |𝑑௜௝ −
୫ୟ୶൫ௗ೔ೕ൯ା୫୧୬൫ௗ೔ೕ൯

ଶ
|  .. [7.16]               

For non beneficial criteria: 

𝑑(𝐼𝑆) = ห𝑑௜௝ − min൫𝑑௜௝൯ห, 𝑑(𝐴𝐼𝑆) = หmax(𝑑௜௝൯ − 𝑑௜௝ , 𝑑(𝐼𝑆, 𝐴𝐼𝑆) =  |𝑑௜௝ −
୫ୟ୶൫ௗ೔ೕ൯ା୫୧୬ (ௗ೔ೕ)

ଶ
|  .. [7.17] 

The same results are presented in table 7.9. 

 

b) Generation of BPA for each alternative corresponding to distance measures by equation 7.18 as 

follows and the same is shown in table 7.10: 

𝑚 (𝐼𝑆) =  
ௗ (஺ூௌ)

ௗ(ூௌ)ାௗ(஺ூௌ)ାௗ(ூௌ,஺ூௌ)
; 𝑚 (𝐴𝐼𝑆) =  

ௗ (ூௌ)

ௗ(ூௌ)ାௗ(஺ூௌ)ାௗ(ூௌ,஺ூௌ)
; 

𝑚 (𝐼𝑆, 𝐴𝐼𝑆) =  
ௗ (ூௌ,஺ூௌ)

ௗ(ூௌ)ାௗ(஺ூௌ)ାௗ(ூௌ,஺ூௌ)
                                                                                          …… [7.18]   

 

c) Discounting the BPA of performance by equation 7.19, using the finalised importance weights of 

selection criteria, as obtained from the discounting co-efficient  in  table 5:  

𝑚ఈ(𝐼𝑆) = α𝒙𝒋 × 𝑚(𝐼𝑆); 𝑚ఈ(𝐴𝐼𝑆) = α𝒙𝒋 × 𝑚(𝐴𝐼𝑆); 

                                          𝑚ఈ(𝐼𝑆, 𝐴𝐼𝑆) = α𝒙𝒋 × 𝑚(𝐼𝑆, 𝐴𝐼𝑆) + (1 − α𝒙𝒋)                                .….... [7.19]                                                    

The outcome of the same is furnished in table 7.11.  

d) Combining the BPAs of all the criteria to get a compendious evaluation of an AMT by the 

following equation:  𝑚௜ = ∑ 𝐵𝑃𝐴ௌ஼ೕ

ఈೣೕ;                                                                            ..…... [7.20] 

Where, i = no. of experiments, j = no. of criteria.     
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e) Determine the final DST scores [𝑏𝑒𝑡 (𝑖)] based on equation 7.21 as stated below:  

                                                     𝑏𝑒𝑡 (𝑖) = 𝑚௜(𝑃𝐼𝑆) + 𝑚௜(𝑃𝐼𝑆, 𝑁𝐼𝑆) 2⁄                       …..... [7.21]                

The experimental results of fuse multi-criteria data by Dempster combination rule as well as final DST 

scores are showcased in table 7.12. 

 

Table 7.9: Distance from positive and negative ideal solution 

Experiment 

No. 

SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

1 (0,0.846,0.423) (3.412,0,1.706) (2.704,0,1.352) (0,2.762,1.381) 

2 (0,0.846,0.423) (3.412,0,1.706) (2.704,0,1.352) (2.762,0,1.381) 

3 (0,0.846,0.423) (3.412,0,1.706) (0,2.704,1.352) (2.762,0,1.381) 

4 (0,0.846,0.423) (3.412,0,1.706) (0,2.704,1.352) (2.762,0,1.381) 

5 (0,0.846,0.423) (0,3.412,1.706) (2.704,0,1.352) (0,2.762,1.381) 

6 (0,0.846,0.423) (0,3.412,1.706) (2.704,0,1.352) (2.762,0,1.381) 

7 (0,0.846,0.423) (0,3.412,1.706) (0,2.704,1.352) (0,2.762,1.381) 

8 (0,0.846,0.423) (0,3.412,1.706) (0,2.704,1.352) (2.762,0,1.381) 

9 (0.846,0,0.423) (3.412,0,1.706) (2.704,0,1.352) (0,2.762,1.381) 

10 (0.846,0,0.423) (3.412,0,1.706) (2.704,0,1.352) (2.762,0,1.381) 

11 (0.846,0,0.423) (3.412,0,1.706) (0,2.704,1.352) (0,2.762,1.381) 

12 (0.846,0,0.423) (3.412,0,1.706) (0,2.704,1.352) (2.762,0,1.381) 

13 (0.846,0,0.423) (0,3.412,1.706) (2.704,0,1.352) (0,2.762,1.381) 

14 (0.846,0,0.423) (0,3.412,1.706) (2.704,0,1.352) (2.762,0,1.381) 

15 (0.846,0,0.423) (0,3.412,1.706) (0,2.704,1.352) (0,2.762,1.381) 

16 (0.846,0,0.423) (0,3.412,1.706) (0,2.704,1.352) (2.762,0,1.381) 
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Table 7.10: Generating Basic probability assignment (BPA) corresponding to distance measure 

Experiment 

No. 

SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

1 (0.67,0,0.33) (0,0.67,0.33) (0,0.67,0.33) (0.67,0,0.33) 

2 (0.67,0,0.33) (0,0.67,0.33) (0,0.67,0.33) (0,0.67,0.33) 

3 (0.67,0,0.33) (0,0.67,0.33) (0.67,0,0.33) (0,0.67,0.33) 

4 (0.67,0,0.33) (0,0.67,0.33) (0.67,0,0.33) (0,0.67,0.33) 

5 (0.67,0,0.33) (0.67,0,0.33) (0,0.67,0.33) (0.67,0,0.33) 

6 (0.67,0,0.33) (0.67,0,0.33) (0,0.67,0.33) (0,0.67,0.33) 

7 (0.67,0,0.33) (0.67,0,0.33) (0.67,0,0.33) (0.67,0,0.33) 

8 (0.67,0,0.33) (0.67,0,0.33) (0.67,0,0.33) (0,0.67,0.33) 

9 (0,0.67,0.33) (0,0.67,0.33) (0,0.67,0.33) (0.67,0,0.33) 

10 (0,0.67,0.33) (0,0.67,0.33) (0,0.67,0.33) (0,0.67,0.33) 

11 (0,0.67,0.33) (0,0.67,0.33) (0.67,0,0.33) (0.67,0,0.33) 

12 (0,0.67,0.33) (0,0.67,0.33) (0.67,0,0.33) (0,0.67,0.33) 

13 (0,0.67,0.33) (0.67,0,0.33) (0,0.67,0.33) (0.67,0,0.33) 

14 (0,0.67,0.33) (0.67,0,0.33) (0,0.67,0.33) (0,0.67,0.33) 

15 (0,0.67,0.33) (0.67,0,0.33) (0.67,0,0.33)  (0.67,0,0.33) 

16 (0,0.67,0.33) (0.67,0,0.33) (0.67,0,0.33) (0,0.67,0.33) 

α𝒙 0.28 0.24 0.22 0.26 
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Table 7.11: Performance representation by discounted BPA 

Experiment 

No. 

SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

1 (0.188,0,0.09) (0,0.161,0.119) (0,0.147,0.133)  (0.174,0,0.106) 

2 (0.188,0,0.09) (0,0.161,0.119) (0,0.147,0.133) (0,0.174,0.106) 

3 (0.188,0,0.09) (0,0.161,0.119) (0.147,0,0.133) (0,0.174,0.106) 

4 (0.188,0,0.09) (0,0.161,0.119) (0.147,0,0.133) (0,0.174,0.106) 

5 (0.188,0,0.09) (0.161,0,0.119) (0,0.147,0.133) (0.174,0,0.106) 

6 (0.188,0,0.09) (0.161,0,0.119) (0,0.147,0.133) (0,0.174,0.106) 

7 (0.188,0,0.09) (0.161,0,0.119) (0.147,0,0.133) (0.174,0,0.106) 

8 (0.188,0,0.09) (0.161,0,0.119) (0.147,0,0.133) (0,0.174,0.106) 

9 (0,0.188,0.09) (0,0.161,0.119) (0,0.147,0.133) (0.174,0,0.106) 

10 (0,0.188,0.09) (0,0.161,0.119) (0,0.147,0.133) (0,0.174,0.106) 

11 (0,0.188,0.09) (0,0.161,0.119) (0.147,0,0.133) (0.174,0,0.106) 

12 (0,0.188,0.09) (0,0.161,0.119) (0.147,0,0.133) (0,0.174,0.106) 

13 (0,0.188,0.09) (0.161,0,0.119) (0,0.147,0.133) (0.174,0,0.106) 

14 (0,0.188,0.09) (0.161,0,0.119) (0,0.147,0.133) (0,0.174,0.106) 

15 (0,0.188,0.09) (0.161,0,0.119) (0.147,0,0.133) (0.174,0,0.106) 

16 (0,0.188,0.09) (0.161,0,0.119) (0.147,0,0.133) (0,0.174,0.106) 
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Table 7.12: Fuse multi-criteria data 

Experiment No. {PIS, NIS, (PIS, NIS)} 𝒃𝒆𝒕(𝒊) 

1 (0.329,0.024,0.647) 0.6525 

2 (0.188,0.073,0.739) 0.5575 

3 (0.188,0.073,0.739) 0.5575 

4 (0.188,0.073,0.739) 0.5575 

5 (0.437,0,0.563) 0.7185 

6 (0.319,0.026,0.655) 0.6465 

7 (0.520,0,0.480) 0.7600 

8 (0.419,0,0.581) 0.7095 

9 (0.174,0.077,0.749) 0.5485 

10 (0,0.150,0.850) 0.4250 

11 (0.295,0.030,0.675) 0.6325 

12 (0.147,0.086,0.767) 0.5305 

13 (0.307,0.028,0.665) 0.6395 

14 (0.161,0.081,0.758) 0.5400 

15 (0.409,0,0.591) 0.7045 

16 (0.284,0.033,0.683) 0.6255 

 

Stage 5 (construction of regression model (RM) and final ranking result): 

a) We establish the RM by considering the effects of four main criteria and interaction between any 

two criteria, as in equation 7.22.  

𝑌௜ =  𝛾଴ +  ∑ 𝛾௜ 𝑦௜ + ∑ ∑ 𝛾௜௝ 𝑦௜ 𝑦௝ + 𝜖ସ
௝ୀଵ

ସ
௜ୀଵ

ସ
௜ୀଵ                                                   …..... [7.22] 
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Here, in equation 7.22, 𝑌௜  is the relation between RA and relevant experimental results 𝑦௜ , 𝛾଴ the co-

efficient of intercept, 𝛾௜ is the first order effect of main factors,  𝛾௜௝  represents two-factor interaction 

between factor i and j, 𝜖 is the statistical error as stated beforehand. 

b) In order to validate the established RA model, it is analysed with analysis of variance (ANOVA). 

This can be achieved by Minitab statistical software. The input data to the software are given in 

table 7.13. The factor levels are the experimental values achieved from deviation degree matrix 

and the responses are the final DST scores achieved from the experiments. The results of 

ANOVA are shown in table 7.14. In the table, p-values less than 0.0500 specify significant 

contributions. The (Adj) R-squared and (Pred) R-squared values are measured as 0.9609 and 

0.8640 respectively, which are in reasonable agreement with each other. So, the model is highly 

suitable to find out the final ranking results of warehouse alternatives for the organisation.  

c) Formation of regression equation for final selection of the warehouse as follows in equation  7.23: 

𝑌 = 0.61861 + 0.03786 𝑆𝐶1 − 0.04939 𝑆𝐶2 − 0.02761 𝑆𝐶3 + 0.04575 𝑆𝐶4 

                              + 0.01489 (𝑆𝐶1 ∗ 𝑆𝐶3)                                                                                     …… [7.23] 

The final ranking is exhibited in table 7.15. 
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Table 7.13: ANOVA Inputs 

Experiment No.  Factor levels  Response 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) DST Scores 

1 2.475 1.060 1.768 2.828 0.6525 

2 2.475 1.060 1.768 5.590 0.5575 

3 2.475 1.060 4.472 5.590 0.5575 

4 2.475 1.060 4.472 5.590 0.5575 

5 2.475 4.472 1.768 2.828 0.7185 

6 2.475 4.472 1.768 5.590 0.6465 

7 2.475 4.472 4.472 2.828 0.7600 

8 2.475 4.472 4.472 5.590 0.7095 

9 3.321 1.060 1.768 2.828 0.5485 

10 3.321 1.060 1.768 5.590 0.4250 

11 3.321 1.060 4.472 2.828 0.6325 

12 3.321 1.060 4.472 5.590 0.5305 

13 3.321 4.472 1.768 2.828 0.6395 

14 3.321 4.472 1.768 5.590 0.5400 

15 3.321 4.472 4.472 2.828 0.7045 

16 3.321 4.472 4.472 5.590 0.6255 

 

Table 7.14: ANOVA for Regression Analysis (RA) 

Source Co-efficient p-value 
Intercept .61861 0 

SC 1 .03786 0 

SC 2 -.04939 0 
SC 3 -.02761 .002 
SC 4 .04575 .000 

SC1* SC2 -.00276 .572 
SC1* SC3 .01489 .022 

SC1* SC4 -.00475 .362 
SC2* SC3 .00426 .394 
SC2* SC4 .00813 .147 

SC3* SC4 .00300 .555 
(Adj) R-squared 0.9609 
(Pred) R-squared 0.8640 
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Table 7.15: The final ranking 

Warehouse alternatives Score RA-DST Ranking 

W1 1.43 4 

W2 1.44 3 

W3 1.52 1 

W4 1.51 2 

 

 

7.2.3 Experimental results  

The proposed approach is pitted with another MCDM tool namely TOPSIS, a universally widely accepted 

tool by the manufacturing world. So, it will be appropriate to make the final selection decision on the 

basis of the comparison. The same warehouse selection problem is taken up with identical values of 

criteria and alternatives. The steps are the following: 

Step 1 Decision Matrix construction (table 7.16) by establishing the criteria values (from table 7.1) as 

TFNs and derivation of comprehensive weights of selection criteria (from table 7.2). As the decision team 

has ħ persons, the weights of criteria as well as values of warehouse choices are calculated as given in 

equation 7.24 and equation 7.25. 

                                                          𝑞௜௝ = (𝑞௜௝
ଵ + 𝑞௜௝

ଶ + ⋯ + 𝑞௜௝
௞ ) ħ⁄                                  …..... [7.24] 

                                                        𝑤௝ = (𝑤௝
ଵ + 𝑤௝

ଶ + ⋯ + 𝑤௝
௞) ħ⁄                                    …..... [7.25] 

Where, i=no. of warehouse alternatives,  j= no. of selection criteria. 

Step 2. Normalising the decision matrix to ensure data integrity and eliminating data redundancy and 

presented in table 7.17. 

In case of fuzzy data represented by triangular fuzzy numbers say, (𝑎௜௝ , 𝑏, 𝑐௜௝) , the normalization 

measures for benefit and cost criteria are calculated in equation 7.26 and equation 7.27, respectively.                                                          

          𝑟௜௝ = (𝑎௜௝ 𝑐௝
∗, 𝑏௜௝ 𝑐௝

∗, 𝑐௜௝ 𝑐௝
∗)⁄⁄⁄                                                                                             …..... [7.26] 

𝑟௜௝ = (𝑎௝
ି 𝑐௜௝ , 𝑎௝

ି 𝑏௜௝ , 𝑎௝
ି 𝑎௜௝⁄⁄⁄ )                                                                                         …..... [7.27]      
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Where, 𝑐௝
∗= max (𝑐௜௝), 𝑎௝

ି= min (𝑎௜௝). 

Step 3. Determining the ideal solution as 𝑟௝
∗ = (1,1,1) and negative ideal solution as 𝑟௝

ି = (0,0,0).    

Step 4. The weighted distances of each warehouse alternative from ideal and anti-ideal solution are 

presented in table 7.18. These can be calculated as given in equation 7.28 and equation 7.29 as follows:  

𝑑௜
ା = ∑[

ଵ

ଶ
{max  (𝑤௟௝ ∣ 𝑎௜௝ − 1 ∣, 𝑤௡௝ ∣ 𝑐௜௝ − 1 ∣) +  𝑤௠௝ ∣ 𝑏௜௝ − 1 ∣}]                            …..... [7.28] 

𝑑௜
ି = ∑[

ଵ

ଶ
{max  (𝑤௟௝ ∣ 𝑎௜௝ − 0 ∣, 𝑤௡௝ ∣ 𝑐௜௝ − 0 ∣) +  𝑤௠௝ ∣ 𝑏௜௝ − 0 ∣}]                            …..... [7.29] 

Where, 𝑤௝ = ൫𝑤௔௝ , 𝑤௕௝, 𝑤௖௝൯ is the aggregate fuzzy criteria weight.  

Step 5. The proxomity co-efficient is measured as in equation 7.30 as follows:        

  𝑃𝑁௜ =  𝑑௜
ି (𝑑௜

ା +  𝑑௜
ି)⁄                                                                                                           …..... [7.30] 

 

Table 7.16: Fuzzy decision matrix (TOPSIS) 

Warehouse 

alternatives 

SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

W1 (5.5, 7.5, 9) (6.5, 8.25, 9.5) (4.5, 6.5, 8.5) (8, 9.5, 10) 

W2 (5.5, 7.5, 9) (6.5, 8.5, 9.75) (7, 9, 10) (4, 6, 7.75) 

W3 (5.5, 7.5, 9) (8.5, 9.75, 10) (7.5, 9.25, 10) (7, 9, 10) 

W4 (7.5, 9, 9.75) (4, 6, 8) (4, 6, 8) (3.5, 5.5, 7.5) 

Weight (0.55, 0.75, 0.95) (0.45, 0.65, 0.85) (0.4, 0.6, 0.8) (0.5, 0.7, 0.9) 
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Table 7.17: Fuzzy normalized decision matrix (TOPSIS) 

Warehouse 

alternatives 

SC 

SC1 (-) SC2 (+) SC3 (+) SC4 (-) 

W1 (0.61,0.73,1) (0.65,0.83,0.95) (0.45,0.65,0.85) (0.35,0.37,0.44) 

W2 (0.61,0.73,1) (0.65,0.85,0.98) (0.7,0.9,1) (0.45,0.58,0.88) 

W3 (0.61,0.73,1) (0.85,0.98,1) (0.75,0.93,1) (0.35,0.39,0.5) 

W4 (0.56,0.61,0.73) (0.4,0.6,0.8) (0.4,0.6,0.8) (0.47,0.64,1) 

Weight (0.55, 0.75, 0.95) (0.45, 0.65, 0.85) (0.4, 0.6, 0.8) (0.5, 0.7, 0.9) 

 

Table 7.18: Distance measurements of alternatives and ranking (TOPSIS) 

Warehouse 

alternatives 

𝑑௜
ା 𝑑௜

ି 𝑃𝑁௜  Ranking 

W1 1.08 2.29 0.6795 4 

W2 0.741 2.67 0.7827 1 

W3 0.735 2.542 0.7757 2 

W4 1.04 2.285 0.6872 3 

                                                    

The final ranking result of TOPSIS is based on propinquity coefficient (𝑃𝑁௜), and, is given in table 7.18.                

The final ranking is slightly different in TOPSIS than that in DST-DOE method. In DST-DOE method, 

warehouse alternative W3 gets the highest ranking. In TOPSIS, the same gets the second place, although, 

the difference with the first place is too marginal. The first ranked alternative in TOPSIS i.e. W2 gets the 

third rank in DST-DOE method. This little difference in ranking is due to the fact that, DST-DOE method 

considers the influence of interactions between the criteria. According to the p-values in ANOVA, the 

interaction between SC1 and SC3 has significant influence on the final selection decision. On the other 

hand, TOPSIS is a simpler method considering the individual factors alone and not the influences 

originating from the interactions of more than one factor.  The final outcome of the comparison and logic 
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behind it proves that, the DST-DOE method proposed here is a rational, robust and efficient one and can 

extensively be used for making different selection decisions in the world of design and manufacturing. 

 

7.3. Conclusion 

In this chapter, a hybrid DST-DOE approach has been proposed to solve a complex MCDM problem 

associated with fuzziness and uncertainty. The integration of DST- DOE and comparing the results with 

TOPSIS has made the model a distinguished one. The advantages of this model are simplicity and ease of 

use. It can handle the ambiguity and vagueness inherent in these kinds of MCDM problems in a smooth 

manner. It uses TFNs and defuzzify them to generate crisp data. It uses interval valued numbers and 

transforms the same into deviation degree matrix to get a simpler form of the problem for the sake of 

calculation. On adding or removing any alternative, the DAs don’t need to take up the calculation from 

scratch. Instead, they could use the developed RM to obtain the final outcome, thereby, saving precious 

time and design cost as well.  

The end result goes to verify the capability and robustness of our proposed method. So, it can be 

concluded that, the proposed DST-DOE method is very much applicable to solve complex fuzzy MCDM 

problems associated with uncertainty in real world applications. It provides manufacturing organizations 

an edge in the competitive world. Future scopes include use of other DOE as 2௡ factorial design got the 

inability to distinguish between linear and higher order factor effects, solving different types of 

engineering problems involving optimum decision making, integration of DOE with some other well 

established MCDM tool, the effects of addition or removal of particular selection criteria on the outcome 

as well.   
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8. Case Study: ANALYSIS OF DIFFERENT MCDM METHODS FOR SUPPLIER EVALUATION IN 
A SUPPLY CHAIN MANAGEMENT  

8.1. Methodology:  Fuzzy Analytic Hierarchy Process (FAHP), K-means Clustering. 

   8.1.1 Problem Definition 

Current world of manufacturing works efficiently on a resilient supply chain (figure 8.1.).  

 

Figure 8.1: Resilient supply chain framework 

Choice of appropriate supplier can grow business to a great extent. Otherwise vulnerability in the supply 

chain occurs. This is not desirable for any manufacturing organization. A manufacturing organization 

might excel or might go down owing to the performance of supplier. That leads to the problem of 

appropriate supplier selection for an organization.  

The current chapter presents a paraphrasing of supplier selection problem in volatile market environment. 

Three experts in a group are given the responsibility in selecting the most appropriate supplier amongst 
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the five possible choices. They have the experience and expertise in their respective fields. The profile of 

experts is shown in figure 8.2. They look for factors such as technological soundness, market awareness, 

goodwill, responsiveness, adherence to quality in the suppliers. They make use of their judgments in 

linguistic forms to cope with the uncertainty and fuzziness. Some suitable scale is defined to convert the 

same into trapezoidal fuzzy numbers (TrFN). Linguistic values like extreme insignificance, 

insignificance, equal significance, moderate significance and extreme significance are used in 

determining factor weights. 

   
 
 
Expert (E) 

 

 

   
Age  45 years 56 years 52 years 

Qualification Doctorate in Philosophy Master of Business 
Administration 

Master of Engineering 

Experience 20 years in industry 32 years in industry 26 years in education & 
industry combined 

Adroitness 

 
Supply Chain Management 

 
Finance Management 

 
Production Management 

 

Figure 8.2: Profile of Experts 

 A conversion scale in the range from 0 to 1 is borne by the experts. Similarly, importance of alternatives 

takes values from 1 to 10 in the form of linguistic. Multi-criteria methods include fuzzy AHP in factor 

weight compilation. Subsequently K-means is used to process the supplier choices against the factors to 

form clustering in ranking cycle. Lastly, cost of supplier goodwill is considered as the objective factor 
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measure (OFM) to find out the supplier selection index for the most optimum supplier. The cognitive 

mind of individual expert plays a keen role here. It is quite similar to a tip of iceberg as discussed in 

earlier chapter. The experts introduce cognition co-efficient (Ϲ) to balance between subjective factor and 

objective factor. An optimistic expert may choose a higher value of Ϲ, whereas, a pessimistic one likes to 

put a lower value.  The cognitive navigation (Dey et. al., 2017) of an individual expert is given in figure 

8.3. 

 

Figure 8.3: Cognitive navigation of individual expert 
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 Novelty in the proposed approach lies in the fact that, it makes an integration of FAHP and K-means 

clustering. It incorporates the cognitive mind of decision maker into the model and post optimality check 

comes into play for the validation and robustness of the chosen supplier. 

      8.1.2 Background research 

This section depicts the background research leading to the present model. It gives some insight on the 

likes of fuzzy decision matrix, linguistic weight set, TrFNs, defuzzification and α-cut, FAHP, K- means 

respectively that helps developing a thorough understanding about the background research of the 

proposed model. 

8.1.2.1 Fuzzy decision matrix 

A fuzzy preference of an expert is presented in a decision matrix in a supplier evaluation problem. It 

provides an overview about the preference values of suppliers with respect to the factors influencing the 

selection. The preference values are in linguistic weight set in the first place and are transformed into 

TrFNs eventually. The matrix takes the following form: 

𝐴ሚ =

𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐹𝑎𝑐𝑡𝑜𝑟⁄ F1 F2 … F𝑛

S1
S2
⋮

S𝑚

൦

𝜓ଵଵ 𝜓ଵଶ

𝜓ଶଵ 𝜓ଶଶ
⋯

𝜓ଵ௡

𝜓ଶ௡

⋮ ⋮ ⋱ ⋮
𝜓௠ଵ 𝜓௠ଶ ⋯ 𝜓௠௡

൪
 

 𝑤ℎ𝑒𝑟𝑒, 𝜓௜௝ = ൫𝑎௜௝ , 𝑏௜௝ , 𝑐௜௝ , 𝑑௜௝൯ are the TrFNs;  𝑚: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑠 ; 𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎.  

8.1.2.2 Linguistic weight set and TrFNs   
 

 In general, multi-criteria problems are associated with uncertainty and vagueness. Linguistic weight set 

could eliminate the fuzziness and uncertainty by the use of linguistic variables. An expert in the field has 

to deal with subjective and objective factors that could possibly influence a selection decision. While, the 

objective factors can be represented by crisp values, it is not the case for the subjective factors. Linguistic 

variable such as ‘significance’ or ‘importance’ plays a pivotal role in adapting to the situation. These 
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variables could further be processed by TrFNs (Chan et. al., 2000) in representing opinion of experts. 

There are some ordinal approaches as well, which are not based on TrFNs. Algorithms based on 

sentiment analysis with multi-granular fuzzy linguistic modeling (Morente-Molinera et. al., 2018), 

unbalanced fuzzy linguistic information (Cabrerizo et. al., 2015) have been developed in the recent times 

for the representation of user information.  

The present paper expressed a TrFN as a quadruplet 𝜓 = (𝑎, 𝑏, 𝑐, 𝑑) as shown in figure 8.4. 

 

Figure 8.4: Representation of TrFN 

 A fuzzy set 𝜓 is defined as 𝜓 = {ቀ𝑥, 𝜇ట (𝑥)ቁ : 𝑥 ∈ X}; where, X:Universe of discourse. The membership 

function 𝜇ట (𝑥): 𝑋 → [0,1] is defined as in equation 8.1 (Kauffman & Gupta, 1985): 

                                          𝜇ట (𝑥) =  

⎩
⎪
⎨

⎪
⎧

0, 𝑥 < 𝑎  
(ೣష౗)

(ౘష౗)
,   ୟஸ௫ஸ௕

ଵ,          ୠஸ௫ஸ௖
 

(ౚషೣ)

(ౚషౙ)
  ,ୡஸ௫ஸௗ

଴,        ௫வௗ

                                                                      …….. [8.1] 

Thus variables in the linguistic weight set can be represented by trapezoidal fuzzy scaling. The upper and 

lower limits of such a weight set could be extreme significance = (0.7, 0.8, 0.9, 1) and extreme 

insignificance = (0, 0, 0.1, 0.2). This is a conversion scale defined by experts that could take values 

between 0 and 1. Some other conversion scale could be defined to take the values between 0 and 10. The 

upper and lower limits of such a weight set could be extremely high importance = (9, 9, 10, 10) and 

extremely low importance = (1, 2, 3, 4).  

8.1.2.3 Defuzzification and α-cut 
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The TrFNs need to be defuzzified for crisp estimation of experts at some later stage of the problem 

solving after overcoming the uncertainty present in the initial stage. The α-cut, α ∈  (0,1)  is a very 

handful method in doing so, as it minimizes the loss of information going forward. It is a crisp set defined 

as 𝜓 (𝛼) = 𝑥 ∈ R: 𝜓(𝑥) ≥ 𝛼, where, 𝜓 (𝛼) is a closed interval of the form[𝜓௅(𝛼), 𝜓௎(𝛼)], 𝑅 is a real 

line and TrFN 𝜓 is a subset 𝑅; 𝜓: 𝑅 → [0,1] (Savitha & George, 2017).    Some operations on the TrFNs 

are presented in the following section  (Vahidi & Rezvani, 2013). 

If 𝜓ଵ = (𝑎, 𝑏, 𝑐, 𝑑) and 𝜓ଶ = (𝑝, 𝑞, 𝑟, 𝑠)are the two TrFNs, then 

a) Addition of 𝜓ଵand 𝜓ଶ is by following equation 8.2:  

       𝜓ଵ ⊕ 𝜓ଶ = [𝑎 + 𝑝, 𝑏 + 𝑞, 𝑐 + 𝑟, 𝑑 + 𝑠]                                                   ......... [8.2] 

b)  Subtraction of 𝜓ଵand 𝜓ଶis by equation 8.3:   

                                         𝜓ଵ ⊖ 𝜓ଶ = [𝑎 − 𝑠, 𝑏 − 𝑟, 𝑐 − 𝑞, 𝑑 − 𝑝]                             ......... [8.3] 

c) The value of a TrFN 𝜓 = (𝑎, 𝑏, 𝑐, 𝑑) is given by equation 8.4: 

                                            𝑣𝑎𝑙 (𝜓) = (
௔

଺
+

௕

ଷ
+

௖

ଷ
+

ௗ

଺
)                                                    ......... [8.4] 

d) The α-cut interval of a TrFN 𝜓 = (𝑎, 𝑏, 𝑐, 𝑑) is given by equation 8.5: 

                  𝜓 (𝛼) = [𝜓௅(𝛼), 𝜓௎(𝛼)] = [𝑎 + 𝛼(𝑏 − 𝑎), 𝑑 − 𝛼(𝑑 − 𝑐)]                          ......... [8.5] 

e) The multiplication is as follows in equation 8.6: 

𝜓ଵ(𝛼) ⊗ 𝜓ଶ(𝛼) = [𝜓ଵ௅(𝛼)𝜓ଶ௅(𝛼), 𝜓ଵ௎(𝛼)𝜓ଶ௎(𝛼)]                                                     ......... [8.6] 

𝑤ℎ𝑒𝑟𝑒, 𝜓ଵ (𝛼) = [𝜓ଵ௅(𝛼), 𝜓ଵ௎(𝛼) 𝑎𝑛𝑑 𝜓ଶ (𝛼) = [𝜓ଶ௅(𝛼), 𝜓ଶ௎(𝛼) are the α-cuts of the TrFNs. 

When, 𝛼 = 0, i.e. 𝜓ଵ(0) ⊗ 𝜓ଶ(0) = [𝑎𝑝, 𝑑𝑠];  

When, 𝛼 = 1, i.e. 𝜓ଵ(1) ⊗ 𝜓ଶ(1) = [𝑏𝑞, 𝑐𝑟]; 

 The approximated multiplication of 𝜓ଵand 𝜓ଶis as in equation 8.7: 

                                      𝜓ଵ ⊗ 𝜓ଶ = [𝑎𝑝, 𝑏𝑞, 𝑐𝑟, 𝑑𝑠]                                     ......... [8.7]                                  

f) The division of 𝜓ଵand 𝜓ଶ is as in equation 8.8: 

                                     𝜓ଵ ⊘ 𝜓ଶ =  [
௔

௣
,

௕

௤
,

௖

௥
,

ௗ

௦
]                                                         ......... [8.8]                                          
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8.1.2.4 Analytic hierarchy process (AHP) and FAHP 

 

AHP was first introduced in 1980 as an aid in decision science to decipher complex unstructured 

problems in different areas of science, engineering, economics and management. It can handle both 

qualitative and quantitative predictions given by experts. It helps analyse and organize a decision problem 

into a hierarchy much like a family tree. The main stem of AHP is pair wise comparison matrix which is a 

𝑛 ⨯ 𝑛 square matrix. It takes the following form: 

                                    𝐹𝑎𝑐𝑡𝑜𝑟 𝐹𝑎𝑐𝑡𝑜𝑟⁄ F1 F2 … F𝑛

      

                                  F1
                       P =  F2

                                    
⋮

F𝑛

൦

1 𝛽ଵଶ

𝛽ଶଵ 1
⋯

𝛽ଵ௡

𝛽ଶ௡

⋮ ⋮ 1 ⋮
𝛽௡ଵ 𝛽௡ଶ ⋯ 1

൪
 

Where,𝑛 = number of factors evaluated,  𝛽௜௝ = pairwise preference values of factors 

The FAHP is the advancement over traditional AHP, where the pair wise preference values are by means 

of variables in the linguistic weight set. These are converted into TrFNs by means of trapezoidal fuzzy 

scaling predefined by experts. Here, in the proposed approach, FAHP has been utilized to obtain the fuzzy 

pair wise comparison matrix and elimination of uncertainty in expert judgment.   Then, these values are 

processed by arithmetic operations to calculate the weight vector of factors in a crisp form. 

8.1.2.5 K-means clustering 

The idea of K-means clustering was first conceptualised by Steinhaus (1957). Although the term ‘K-

means’ was introduced much later (MacQueen, 1967). It was proposed by Lloyd (1957) and officially 

published by Forgy (1965).  

It is a method of vector quantization, taken originally from pulse-code modulation in signal processing. It 

is famous for analysis of cluster in data mining. It aims to break-up 𝑛 observations into 𝐾 numbers of 

clusters. Each of the observations is assigned to a cluster with the closest cluster centroid. 
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This iterative K-means algorithm is also known as Lloyd’s algorithm. It follows two steps alternatively. 

The first one assigns observation to cluster, according to minimum Euclidean distance measurement. And 

this, intuitively, is the nearest mean. Since, the square root is a monotone function, this is a minimum 

Euclidean distance assignment.  

The second step checks the appropriateness of assignment of observations into clusters by taking the 

minimum Euclidean distances of observations from different clusters. 

The algorithm converges when the assignment of observations into clusters no longer differ. 
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8.2 The proposed model 

The 3-phase framework of the proposed model is shown in figure 8.5.  

 

Figure 8.5: Flowchart of the proposed model 

Phase I is dedicated to determining the factor weights by FAHP and weights of supplier alternatives by 

means of fuzzy decision matrix. Phase II works on clustering of suppliers, removal of bad clusters and 
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retainment of optimal clusters. The objective factor is introduced in phase III and final results are 

analysed after a post optimality check. The operational procedure is as follows: 

Step1. Denotation of linguistic weight set by experts in terms of TrFNs. 

Step2. Formation of pair wise comparison matrix by FAHP and conversion of the same into crisp data by 

following equation 8.4.  

Step3. Determination of factor weights from the comparison matrix. 

Step4. Formation of principal decision matrix in terms of linguistic weight set. Conversion of the same 

into TrFNs. 

Step5. Normalization of the matrix by following equation 8.19 and equation 8.10 for beneficial and non-

beneficial factors respectively, as follows: 

 𝜓పఫ
෪ = (

𝑝௜௝

𝑠௝
∗ ൘ ,

𝑞௜௝

𝑠௝
∗ ൘ ,

𝑟௜௝

𝑠௝
∗ ൘ ,

𝑠௜௝

𝑠௝
∗ ൘ ); 𝑗 ∈ 𝑌                                                                          ......... [8.9] 

𝜓పఫ
෪ = ൬

𝑝௝
ି

𝑠௜௝
൘ ,

𝑝௝
ି

𝑟௜௝
൘ ,

𝑝௝
ି

𝑞௜௝
൘ ,

𝑝௝
ି

𝑝௜௝
൘ ൰ ; 𝑗 ∈ 𝑍                                                                         ......... [8.10] 

Where, 𝑠௝
∗ : max൫𝑠௜௝൯, 𝑝௝

ି ∶ min 𝑝௜௝ ,  𝑖 = 𝑛𝑜. 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠, 𝑗 = 𝑛𝑜. 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎, 𝑌 =

𝑠𝑒𝑡 𝑜𝑓 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎, 𝑍 = 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎. 

Step6. Conversion of normalised decision matrix into 2-level data by α-cut method following equation 8.5 

and subsequently finding weighted normalised defuzzified data. 

Step7. Formation of clusters by determining the clustering points from the crisp decision matrix in 

previous step. Assignment of alternatives to clusters by minimum Euclidean distance measurement.  

Step8. Calculation of new means of the clusters to be the centroids. 

Step9. Euclidean distance measurement of alternatives from cluster centroids. A particular alternative 

belongs to that cluster from which the distance is minimum. This is to check the assignments of 

alternatives into clusters in the previous step. 

Step10. Distance measurement of clusters (𝐾௜) from the best alternative (1, 1, 1, 1, 1). Minimum distance 

corresponds to the best cluster. Alternatives in the best cluster are processed further.  



 

158 
 

Step11. Introduction of Goodwill Cost (𝐺𝐶௜) of suppliers as objective factor in the problem. Calculation 

of objective factor measure (𝑂𝐹𝑀௜) of alternatives by equation 8.11 as follows: 

𝑂𝐹𝑀௜ = [𝐺𝐶௜ × ∑(1
𝐺𝐶௜

ൗ )]ିଵ                                                                                                      ......... [8.11] 

Step12. Final selection according to the supplier selection index (𝑆𝑆𝐼௜) as in equation 8.12. The higher the 

value, the better the ranking. 

𝑆𝑆𝐼௜ = Ϲ ൫𝐾௜
ିଵ൯ + (1 − Ϲ)(𝑂𝐹𝑀௜)                                                                                             ......... [8.12] 

Where Ϲ is the co-efficient of cognition as mentioned earlier.   

 

8.2.1 A numerical analysis of the proposed model 

A manufacturing organization is looking for selection and evaluation of its supplier from a set of 

alternatives. Considering the market competitiveness in the present scenario, they engage three experts of 

repute with vast expertise and experience. Their observations are given equal weightage. They choose 

five factors namely technological soundness (TS), market awareness (MA), goodwill (G), responsiveness 

(R) and adherence to quality (AQ). Five suppliers’ alternatives are shortlisted at the first place. The 

fuzziness present in the problem is eliminated by the use of linguistic weight set and corresponding 

trapezoiodal fuzzy scaling, devised by judgments of experts. It is nothing but a conversion scale 

comprising of TrFNs. Conversion scale for factor weights and weights of alternatives are shown in table 

8.1 and table 8.2 respectively. Pair wise comparison matrix in AHP is given by table 8.3 in terms of 

linguistic weight set. Table 8.4 gives the compiled data for factor weights in fuzzy form.  

Table 8.1: Presentation of TrFNs for factor weights (judgment by experts) 

Linguistic weight set  Trapezoidal fuzzy scaling 

Extreme Insignificance (EI) (0,0,0.1,0.2) 

Insignificance (I) (0.1,0.2,0.3,0.4) 

Equal Significance (ES) (0.3,0.4,0.5,0.6) 

Moderate Significance (MS) (0.5,0.6,0.7,0.8) 

Extreme Significance (ExS) (0.7,0.8,0.9,1) 
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Table 8.2: Presentation of TrFNs for weights of alternatives (judgments by experts) 
 

Linguistic weight set Trapezoidal fuzzy scaling  

Extremely High Importance (EHI) (9,9,10,10) 

Very High Importance (VHI) (8,9,10,10) 

High Importance (HI) (7,8,9,9) 

Medium Importance (MI) (6,6,7,8) 

Low Importance (LI) (5,5,6,7) 

Very Low Importance (VLI) (3,4,5,6) 

Extremely Low Importance (ELI) (1,2,3,4) 

 
Table 8.3: AHP Pair wise comparison matrix of factors by experts 

 
Expert  E1 E2 E3 

Factor  TS MA G R AQ TS MA G R AQ TS MA G R AQ 

TS ES EI I ExS ExS ES I I MS MS ES EI I ExS EI 

MA ExS ES ES I MS MS ES ExS EI ES ExS ES MS I MS 

G MS ES ES EI EI MS EI ES I EI MS I ES EI EI 

R EI MS ExS ES I I ExS MS ES I EI MS ExS ES EI 

AQ EI I ExS MS ES I ES ExS MS ES ExS I ExS ExS ES 

 
 
 

Table 8.4: Fuzzy compiled data for factor weights 
 

Factor TS MA G R AQ 

TS (.3,.4,.5,.6) (.033,.067,.167,.267) (.1,.2,.3,.4) (.633,.733,.833,.933) (.4,.467,.567,.667) 

MA (.633,.733,.833,.933) (.3,.4,.5,.6) (.5,.6,.7,.8) (.067,.133,.233,.333) (.433,.533,.633,.733) 

G (.5,.6,.7,.8) (.133,.2,.3,.4) (.3,.4,.5,.6) (.033,.067,.167,.267) (0,0,.1,.2) 

R (.033,.067,.167,.267) (.567,.667,.767,.867) (.633,.733,.833,.933) (0.3,0.4,0.5,0.6) (.067,.133,.233,.333) 

AQ (.267,.333,.433,.533) (.167,.267,.367,.467) (.7,.8,.9,1) (.567,.667,.767,.867) (0.3,0.4,0.5,0.6) 

 
 



 

160 
 

Table 8.5 gives a crisp estimation of factor weights by following equation 8.4. Principal decision matrix 

of supplier evaluation is presented in table 8.6 in linguistic weight set. It exhibits the judgment of all 

individual experts. Table 8.7 exhibits the judgment of experts in the form of TrFNs.  

Table 8.5: Crisp estimation for factor weights 
 

Factor TS MA G R AQ 

TS .45 .128 .25 .783 .523 

MA .783 .45 .65 .189 .583 

G .65 .256 .45 .128 .067 

R .128 .717 .783 .45 .189 

AQ .389 .317 .85 .717 .45 

Factor 

Weights 

(𝑊ி) 

0.175 0.284 0.104 0.198 0.301 
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Table 8.6: Principal decision matrix (linguistic)  
 

  Expert (E) 

Factor Supplier E1 E2 E3 

TS (+ve) S1 

S2 

S3 

S4 

S5 

HI 

VHI 

EHI 

VHI 

HI 

HI 

VHI 

EHI 

VHI 

HI 

HI 

VHI 

VHI 

VHI 

HI 

MA (+ve) S1 

S2 

S3 

S4 

S5 

HI 

EHI 

EHI 

VHI 

HI 

HI 

EHI 

VHI 

VHI 

VHI 

EHI 

EHI 

VHI 

HI 

VHI 

G (+ve) S1 

S2 

S3 

S4 

S5 

VHI 

EHI 

EHI 

HI 

HI 

VHI 

EHI 

EHI 

HI 

HI 

VHI 

EHI 

VHI 

VHI 

HI 

R (+ve) S1 

S2 

S3 

S4 

S5 

VHI 

VHI 

EHI 

VHI 

HI 

VHI 

EHI 

EHI 

VHI 

HI 

VHI 

EHI 

EHI 

VHI 

VHI 

AQ (+ve) S1 

S2 

S3 

S4 

S5 

VHI 

EHI 

HI 

VHI 

HI 

VHI 

EHI 

HI 

VHI 

HI 

VHI 

HI 

EHI 

EHI 

HI 
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Table 8.7: Decision matrix combining expert judgments 

Supplier Factor 

TS MA G R AQ 

S1 (7,8,9,9) (7.67,8.33,9.33,9.33) (8,9,10,10) (8,9,10,10) (8,9,10,10) 

S2 (8,9,10,10) (9,9,10,10) (9,9,10,10) (8.67,9,10,10) (8.33,8.67,9.67,9.67) 

S3 (8.67,9,10,10) (8.33,9,10,10) (8.67,9,10,10) (9,9,10,10) (7.637,8.33,9.33,9.33) 

S4 (8,9,10,10) (7.67,8.67,9.67,9.67) (7.33,8.33,9.33,9.33) (8,9,10,10) (8.33,9,10,10) 

S5 (7,8,9,9) (7.67,8.67,9.67,9.67) (7,8,9,9) (7.33,8.33,9.33,9.33) (7,8,9,9) 

 

The matrix in table 8.7 is normalized by following equation 8.9 and equation 8.10 for maximized and 

minimized factors respectively. The same is presented in table 8.8. One α-cut method given in equation 

8.5 is used to defuzzify the matrix and it is converted into 2-levelk data as in table 8.9. The data is then 

converted into crisp ones by simple arithmetic mean and weighted crisp estimation is presented in table 

8.10.  

Table 8.8: Normalized matrix 

Supplier Factor 

TS MA G R AQ 

S1 (.7,.8,.9,.9) (.767,.833,.933,.933) (.8,.9,1,1) (.8,.9,1,1) (.8,.9,1,1.0) 

S2 (.8,.9,1,1) (.9,.9,1,1) (.9,.9,1,1) (.867,.9,1,1) (.833,.867,.967,.967) 

S3 (.867,.9,1,1) (.833,.9,1,1) (.867,.9,1,1) (.9,.9,1,1) (.767,.833,.933,.933) 

S4 (.8,.9,1,1) (.767,.867,.967,.967) (.733,.833,.933,.933) (.8,.9,1,1) (.833,.9,1,1) 

S5 (.7,.8,.9,.9) (.767,.867,.967,.967) (.7,.8,.9,.9) (.733,.833,.933,.933) (.7,.8,.9,.9) 

 
Table 8.9: Defuzzification into 2-level data by α-cut 

 
Supplier Factor 

TS MA G R AQ 
S1 (0.72,0.9) (0.78,0.933) (0.82,1) (0.82,1) (0.82,1) 
S2 (0.82,1) (0.9,1) (0.9,1) (0.874,1) (0.84,0.967) 
S3 (0.874,1) (0.846,1) (0.874,1) (0.9,1) (0.78,0.933) 
S4 (0.82,1) (0.787,0.967) (0.753,0.933) (0.82,1) (0.846,1) 
S5 (0.72,0.9) (0.787,0.967) (0.72,0.9) (0.753,0.933) (0.72,0.9) 

Factor Weights 
(𝑊ி) 

0.175 0.284 0.104 0.198 0.301 
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Table 8.10: Weighted normalized data 

Supplier Factor 

TS MA G R AQ 

S1 .142 .243 .095 .180 .274 

S2 .159 .270 .099 .186 .272 

S3 .164 .262 .097 .188 .258 

S4 .159 .249 .088 .180 .278 

S5 .142 .249 .084 .167 .244 

 

The experts then divide the alternatives into 2 clusters as shown in figure 8.6.  

 

Figure 8.6: Segregation of supplier alternatives into clusters according to distance measurement 

For cluster 1, they take S1 as the reference supplier. For cluster 2, S3 is taken as the reference supplier. 

The clustering results after distance measurement is shown in table 8.11.  

Table 8.11: Clustering result 

Supplier Clustering Point Distance Measurement Cluster 

Selection From cluster 1 From cluster 2 

S1 (.142, .243, .095, .180, .274) 0 .03419 1 

S2 (.159, .270, .099, .186, .272) .03277 .01918 2 

S3 (.164, .262, .097, .188, .258) .03419 0 2 

S4 (.159, .249, .088, .180, .278) .01975 .02853 1 

S5 (0.142,0.249,0.084,0.167,0.244) 0.03501 0.03819 1 
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The results of table 8.11 reveal that suppliers S1, S2, S4 belong to cluster 1 and suppliers S2, S3 belong to 

cluster 2. Next, centroid points of the clusters are found out by taking the mean of all points in each 

cluster. They are found to be (0.148, 0.247, 0.089, 0.176, 0.265) and (0.162, 0.266, 0.098, 0.187, 0.265) 

for cluster 1 and cluster 2 respectively. The distances of all the suppliers from cluster centroids are 

measured and presented in table 8.12.  

Table 8.12: Verification of clustering result 
 

 

 Supplier 

Distance Measurement  

Cluster Selection From centroidal point of 

cluster 1 

From centroidal point of 

cluster 2 

S1 0.01360 0.03268 1 

S2 0.02998 0.00872 2 

S3 0.02717 0.00843 2 

S4 0.01764 0.02482 1 

S5 0.02423 0.04155 1 

 

Results show that suppliers S1, S4, S5 are having minimum distances from centroid of cluster 1 and 

suppliers S2, S3 are nearer to the centroid point of cluster 2. This exactly matches with the result in table 

8.11. So, allocations of suppliers in the clusters are optimum (figure 8.7).  

 

Figure 8.7: Cluster checking result 
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Next, the distances of the clusters centroids from the ideal solution (1, 1, 1, 1, 1) are found out. These are 

found to be 1.8281 and 1.8043 for cluster 1 and cluster 2 respectively. The values reveal that cluster 2 is 

the closest to ideal solution and hence, the best cluster. We have suppliers S2 and S3 in cluster 2. Their 

distances from cluster centroiod are measured and an initial ranking is established (table 8.13) based on 

that.  

Table 8.13: Initial result 

Supplier Distance from the optimum cluster 

centre (𝐾௜) 

Ranking based on clustering result 

S2 0.00872 2nd 

S3 0.00843 1st  

 

According to the initial ranking, S3 is the highest ranked supplier followed by S2. The experts complete a 

survey to find out the goodwill cost of supplier (GC) and introduce the same as an objective factor in the 

problem as in table 8.14.  

 
 
 

Table 8.14: Final Ranking 
 

Supplier Subjective 

Factor Measure 

(𝐾௜)ିଵ 

Goodwill Cost of 

Supplier (GC) 

(thousands of $) 

Objective 

Factor 

Measure 

(𝑂𝐹𝑀௜) 

Supplier 

Selection Index 

(𝑆𝑆𝐼௜) 

Final Ranking 

Result 

S2 114.679 8.43 0.5058 89.330 2nd  

S3 118.624 8.64 0.4936 92.399 1st 

 
 

They utilize their knowledge and experience to set the value ofϹ, the co-efficient of cognition, at 0.778 

unanimously. The co-efficient of cognition is a measure of positivity or optimistic mind. The higher the 

value, the optimistic mind a person possesses. It also establishes a relationship between subjective factor 
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measure and objective factor measure in the problem as in equation 8.17. A supplier selection index is 

measured by the equation. The final ranking is found out by integrating objective factor and subjective 

factor of supplier selection. The ranking establishes S3 as the optimum supplier in the context of the 

present problem scenario. 

 
8.2.1.1  Post optimality check 

 
Post optimality check, as the name suggests, is carried out to measure the robustness of the problem with 

the alterations in alternative, selection factors, influence of objective factor.  In general, multi-criteria 

decision problems are associated with uncertainty and fuzziness. Uncertainty present in the input data 

level is managed by using linguistic weight set and TrFNs. But the same present in the design level is 

managed by post optimality check. In the present problem, post optimality check is carried out to get the 

influence of objective factor on selection of supplier alternatives. It finds a feasible range of Ϲ, the co-

efficient of cognition, for which the selection of optimum supplier is viable (figure 8.8).  

 

Figure 8.8: Post optimality check 

The analysis reveals that selection of supplier S2 is valid for Ϲ value less than 0.003. But, selection of 

supplier S3 is valid for almost entire range of Ϲ, which complements the final ranking. Therefore, the post 
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optimality check proves the high robustness of the model. The result of the check is presented in table 

8.15 as follows: 

Table 8.15: Post optimality check 

 Range of Ϲ  Optimum supplier 

Ϲ < 0.003 S2 

Ϲ ≥ 0.003 S3 

 

 

8.3 Conclusion and future scope 
 

The present chapter consists of a novel group decision making model on selection of supplier for a 

manufacturing organization. It makes use of FAHP and K-means clustering techniques in doing so. The 

K-means clustering with FAHP focus on closest distance and produce better initial cluster centers, thus, 

improving the accuracy of clustering result. The proposed method efficaciously fulfils the objective of 

developing a decision model. It incorporates the cognitive navigation of individual expert by means of co-

efficient of cognition. Thus, it maintains an integrative balance between subjective and objective factor in 

the problem. The outcome of the investigation provides a comprehensive selection of supplier for almost 

entire solution space. So, it becomes very evident from the result, that there is only one potentially 

optimal supplier for the manufacturing organization.  

Novelty aspects of the study include the integration of FAHP, K-means with post optimality check on the 

final selection. The inclusion of goodwill cost carries a heavy weightage and influences the final outcome 

to a great deal. Also, the cognitive navigations of decision makers are considered in the present work.    

K-means integrated with classification and regression trees (CART) can be a future research direction in 

machine learning. Also, comparison of other ranking algorithms with clustering algorithm can be an 

interesting scope in future. The model in the present form can also be implemented to other MCDM 

problems prevalent in real world of manufacturing.  
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9. CONCLUSION 

Modern world is a competitive one. It’s very important for any manufacturing organization to keep pace 

with dynamic conditions of the competitive world. The ability of any organization to make optimum 

decision, now-a-days, is very important in the face of increasing competition from a number of 

competitors. Hence, continuous quality improvement and optimum decision making are the success keys 

for any organization. Also, optimum utilization of time and available resources are the other main factors 

contributing to the success of any organization. In a highly competitive and volatile market, the role of 

supply chain management (SCM) is the main deciding factor for the growth of an organization. It is a 

chain that links customer to supplier. The same is done through manufacturing and services. Material, 

money and information flow are effectively managed to meet the business requirements. In an 

organization, not only material, but, information and finances also move from supplier to manufacturer in 

a process. Then these go to wholesaler, retailer and lastly, the consumer. The flow chain oversights the 

same.  It coordinates and integrates these flows within the organization. Product design, manufacturing 

and distribution strategies might change customarily due to this. In this kind of circumstances, the 

challenge for a company is to continue producing a technically advanced and competitive product. At the 

same time, design, development and manufacturing time need to be reduced in line with demands of the 

market. The four performance measures in a supply chain are production cost, product quality, product 

lead times and after sales service.  
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For a supply chain to be resilient, it has to operate under smart environment. Smart 

manufacturing broadens the goal of manufacturing with optimized concept generation and product 

transaction. A resilient supply chain makes good optimization at different levels of supply chain. At the 

upstream level, it is to evaluate appropriate supplier to grow business. Supplier selection is one of the 

most critical phases of a resilient supply chain. A positive relationship with supplier makes a good impact 

in business. Also, the supplier reputation is of great importance. So, supplier selection for company needs 

to be utmost taken care of. In the middle stream level, selection of advanced optimum technology helps a 

supply chain to be resilient. At this day and age, modern technology helps business to grow at a rapid 

pace. It also helps to achieve competitive advantage in today’s volatile market environment. If evaluated 

carefully, modern technologies can do wonders for a company. It helps achieve flexibility, profitability 

and superior quality products. Resilient supply chain and smart manufacturing are directly linked with the 

downstream level of a supply chain i.e. selection of appropriate warehouse location. Selection of 

warehouse location can be influenced by political, social, economic, environmental aspects. In a supply 

chain, the location of warehouse is one of the most fundamental and critical decisions to be made. This 

contributes enormously towards the resilience of a supply chain. The most important factor while 

selecting warehouse location is to minimize the logistics costs. And, that contributes fairly towards 

profitability. So, for a supply chain to be resilient, this broad aspect needs to be taken care of.  

 The performance of a manufacturing organization in today’s volatile environment is largely dependent 

on the marketing strategy adopted. It should be involved in producing in masses as demanded by the 

customer, using latest innovative technologies while setting a new benchmark as well. As far as 

customization is concerned, that is also the need of the hour. Again, CODP is an important factor in 

manufacturing design as well as supply chain. It is a point in the material flow where a particular product 

links to a specified order from customer. Instead of consolidating orders to stock products for later sale, 

organizations can take a different approach. It is built for immediate or near-instant sale. This does not 

mean that the product being produced is out of the box months or years ago. Rather, they can be days or 
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weeks old, depending on how far and how long they travel to reach their destinations. The marketing 

strategies corresponding to this can typically be buy-to-order, make-to-order, assemble-to- order and 

make-to-stock having different ratios of production lead time (P) and delivery lead time (D). CODP is 

also known as order penetration point (OPP). The buy-to-order approach is highly customized wherein, 

make-to-stock approach is highly responsive. That is where, the need of smart supply chain arises. 

Advanced Manufacturing Technology (AMT) plays a pivotal role to obtain a smart supply chain. The 

significant contribution of AMT is to achieve strategic objectives and improved competitiveness of 

manufacturing organizations. AMTs represent numerous modern technologies such as Computer Aided 

Design, Computer Aided Manufacturing, Flexible Manufacturing System, Computer Aided Process 

Planning, Artificial Intelligence, Robots, and Just-In-Time etc. Selection of the proper AMT amongst 

these is one of the most paramount issues for any manufacturing organization. Benefits offered by AMT 

to the manufacturing organizations are like improved productivity, awe-inspiring flexibility, shortened 

lead times, improved quality, lowered inventories, innovative product design, reduced costs, improved 

competitiveness, increased customer satisfaction, sustainable green environment and many more. The 

quest for all these has driven many manufacturing organizations to opt for AMT. The most important 

outcome of this is very evident from the fact that there has been a shifting of strategic pattern to mass 

customized product from large scale productions. Although, the adoption of AMT is beneficial to 

manufacturing organizations, at the same time, it is very risky as well. It involves a major investment and 

a high degree of uncertainty. Considerable attention is needed within the organization while implementing 

the AMT. So, before investing on AMT, manufacturing organization must assess its strengths and 

weaknesses. Thus, identification of factors in selecting a particular AMT is very crucial for the 

organizations. The factors chosen must have lasting effects on the performance of a company.  

The aim of this study is to focus on the research of models for decision support in smart supply chain 

management under uncertainties from fuzzy type. The experimentations in the study include the use of 

techniques like Fuzzy Multi Criteria Decision Making, Fuzzy AHP, Fuzzy TOPSIS, Fuzzy Set Theory, 
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COPRAS-G, EVAMIX, PROMETHEE, Fuzzy Dempster- Shafer theory, Taguchi loss function, fuzzy 

VIKOR, regression analysis, K- means clustering technique etc. The objective is to create a customized 

methodology for dealing with qualitative and quantitative characteristics in the preliminary stages of the 

design process. The model needs to apply soft computing in the form of fuzzy logic to simulate human 

decision making. The method proposed here not only solves the problem of not being able to measure the 

blur and uncertainty of the conventional method, but also avoids the drawback that the calculated value 

becoming unstable by other methods. 

This research work has got ample real time applications in the field of manufacturing decision making. It 

could be selection of appropriate supplier of raw materials or evaluation of advanced technology for a 

manufacturing organization to achieve competitive advantage or selection of proper warehouse location 

for optimized usage of resources and cost minimization. So, this present analysis can be widely used in 

various fields of engineering and management. 

The originality of the research lies in the fact that, it contributes innovative methods for performance 

measure of resilient supply chain at different levels of it. So, in a way, this research suggested means of 

improvement to a supply chain that could make it a resilient one.  
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