MORPHOMETRIC ANALYSIS OF BENTHIC FORAMINIFERA AMMONIA FROM CHILIKA LAKE, ODISHA, INDIA

SUBMITTED BY DEBASHISH DAS EXAM ROLL NO. MGEO194028 REGISTRATION NO. 142788 OF 2017-18

UNDER THE GUIDANCE OF Dr. ANUPAM GHOSH

DEPARTMENT OF GEOLOGICAL SCIENCES

JADAVPUR UNIVERSITY,

2019

কলকাতা-৭০০০৩২, ভারত

JADAVPUR UNIVERSITY INDIA KOLKATA-700032,

FACULTY OF SCIENCE: DEPARTMENT OF GEOLOGICAL SCIENCES

CERTIFICATE FROM THE SUPERVISOR

This is to certify that Mr. Debashish Das has worked under the supervision of Dr. Anupam Ghosh, Assistant Professor in the Department of Geological Sciences, Jadavpur University and completed his thesis entitled "Morphometric analysis of foraminifera Ammonia from Chilika lake, Odisha" which is being submitted towards the partial fulfilment of his M.Sc. Final Examination in Applied Geology of Jadavpur University in 2019.

Head of the Department 31 05/2019

Prof. Sanjoy Sanyal

Head Department of Geological Sciences Jadavpur University Kolkata-700032

Supervisor

Dr. Anupam Ghosh

Dr. Anupam Ghosh Assistant Professor Department of Geological Sciences Jadavpur University Kolkata - 700 032, India

দূরভাষ : ২৪১৪-৬৬৬৬/প্রসারণ : ২২৬৮

Website: www.jadavpur.edu E-mail: hod_geological@jdvu.ac.in Phone: 2414 6666/Extn. 2268

ACKNOWLEDGEMENTS

I am greatly indebted to all those people without whose help the completion of this thesis
wouldn't have been possible. First of all I would like to thank my guide Dr. Anupam Ghosh
for his constant guidance, support and all his endeavours during this work.

I want to express my gratitude to my seniors Ms. Utsha Dasgupta and Mr. Dipankar Buragohain for their respective contributions.

Last but not the least, I would like to acknowledge Department of Geological Sciences, Jadavpur University, the department and the institution respectively of which I have been an integral part for the part two years.

Date:	
Place:	Debashish Das

Abstract

This dissertation concerns with the study of *Ammonia* from Chilika Lake, Odisha. Morphologically, three species of *Ammonia* i.e. *Ammonia beccarii*, *Ammonia tepida* and *Ammonia parkinsoniana* were identified. The morphometric parameters were measured by Image Analysis System. Cluster analysis, performed on the morphological data set (e.g. greatest spiral diameter, umbilical diameter, proloculus diameter, radial sutural furrow length etc.). Based on those observations, three different species of *Ammonia* has been identified.

Contents

		Page Number
Chapter 1	Introduction	1-2
	1.1 Introduction	
	1.2 Objective	
	1.3 Location and accessibility	
	1.4 Previous work	
	1.5 Sample collection	
	1.6 Methodologies	
Chapter 2	Taxonomy and Morphology	3-5
	2.1 Introduction	
	2.1 Systematics	
Chapter 3	Morphometric Analysis	6-9
	3.1 Introduction	
	3.2 Morphometric Measurements	
	3.3 Results and Discussions	
Chapter 4	Conclusion	10
References		11

Chapter 1 Introduction

1.1 Introduction

There are two most abundant foraminifera genus known worldwide are *Ammonia* and *Elphidium*. They can occur in slightly brackish water and their environments include shallow marine, intertidal area, deltaic and also lagoonal.

The study focuses on the morphological methods in order to investigate taxonomic relationships within the genus *Ammonia*.

1.2 Objectives

- To identify the *Ammonia* genus from Chilika Lake, Odisha
- Morphometric Analysis of Ammonia spp. found in the Chilika Lake

1.3 Location and accessibility

Chilika Lake (19°43' N, 85° 19' E) is situated on the east coast of Odisha, India (fig1.1). The samples were collected from Satapada area and from the Sea side of the lake. The area can be accessed by train journey to Puri followed by private car from Puri to Chilika.

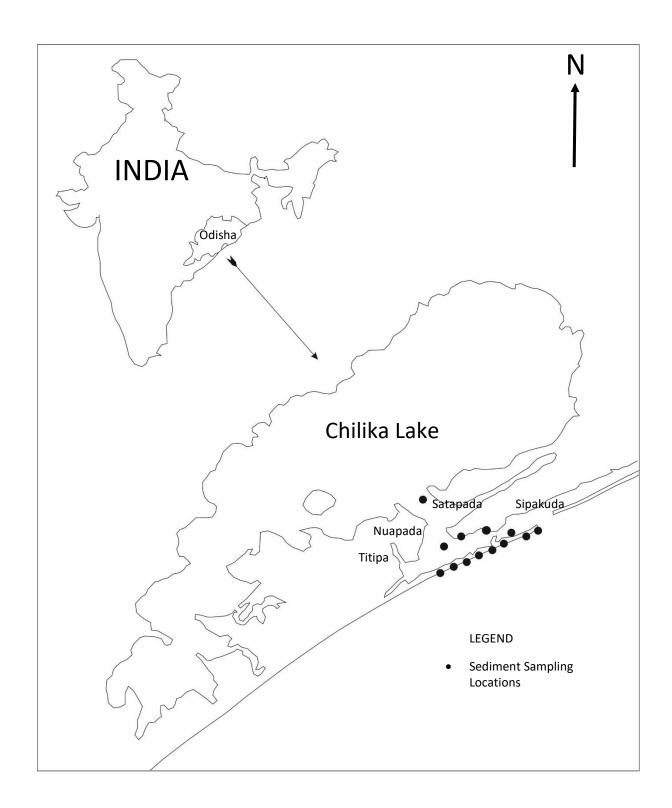


Fig 1.1 Location of Sediment Sample Collection

1.4 Previous Work

Benthic foraminiferal assemblages are widely used as bioproxies for coastal environment monitoring (Areen Sen, Punyasloke Bhadury, 2016). The study investigated seasonal variations in live benthic foraminiferal assemblages from the largest coastal lagoon, Chilika in Asia, which is strongly influenced by tropical monsoons. The investigation revealed an extremely low diversity of benthic foraminiferal assemblages comprising of 12 species of which 8 were agglutinated. The most dominant taxa belong to the genus *Ammonia*. The living assemble was restricted to the topmost 4 cm of the sediment with the majority of assemblages occurring in the top 2 cm. Data analysis revealed the presence of a significant variation in the biotic assemblage, indicating a patchy distribution. As far as the morphometric analysis is concerned, there is no previous work available for *Ammonia* spp. or any other genus from Chilika Lagoon, Odisha.

1.5 Sample Collection

The sampling to collect live specimens of *Ammonia* was done from 13 locations (fig1.1), from which 8 location belongs to the sea side stretch of Chilika and 5 locations were from the interior side of the lagoon in the month of March 2018. The top 10cm x 10cm x 1cm sediments were taken from each location (fig 1.2) and was packed in polythene lock bags (fig 1.3). Each sealed packet was labelled and numbered corresponding to the place of collection. After the collection of sediment samples, they were carefully transferred to the laboratory for further processing and study.

1.6 Methodologies

Top 1cm sediment (10cm x 10cm x 1cm) was collected, washed using 63μm sieve and dried in oven. The dried sediments were splitted using microsplitter. Only the *Ammonia* genus were picked up from 1gm sediments from each location and studied under stereo zoom microscope. Best preserved foraminiferal specimens were chosen for the Scanning Electron Microscope (SEM Facility, Department of Geological Sciences, Jadavpur University) for illustration. Morphometric properties were measured using Image Analysis System.

Fig 1.2 Collecting Sample from the Sea side of Chilika

Fig 1.3 Transferring the sediment sample to polythene lock bag $\,$

2.1 Introduction

Ammonia is a genus of marine foraminifers. It is one of the most abundant foraminifera genera worldwide and occurs in sheltered and shallow marine intertidal environments, sometimes in brackish waters. Their occurrence is so varied that they can be found in salt marshes, in fine sediments, in coarse sediments, estuaries as well as in intertidal zones. This indicates their occurrences in variable conditions, i.e. from extremely low temperature (0-5°C) to high temperatures (35°C). Also they have an extreme tolerance to salinity as they can thrive in low salinity (<1‰) to extremely high salinity (>90‰). Larger heavily ornamented specimens are characteristics of hypersaline conditions whereas smaller and thin calcareous specimens are characteristics of normal salinity conditions. Hence salinity and temperature range is the controlling factors of their geographical distribution and morphology. Ammonia in present study is referred to three species. The systematic descriptions of these species are given below. The Scanning Election photomicrographs of these species are given in Plates I.

2.2 Systematic

Phylum: Protista (Haeckel, 1866)

Subphylum: Sarcodina (Schmarda, 1871)

Class : Rhizopodea (Von Siebold, 1845)

Order : Foraminiferida (Eichwald, 1830)

Suborder : Rotaliina (Dellage & Hérouard, 1896)

Superfamily: Rotaliacea (Ehrenberg, 1839)

Family : Rotaliidae (Ehrenberg, 1839)

Subfamily: Rotaliinae (Ehrenberg, 1839)

Genus : *Ammonia* (Brünnich, 1972)

Ammonia tepida (Cushman)

Pl. I, Fig 1

Rotalia beccarii (Linne) var. tepida-Cushman, 1926, Carnegie Inst., publ. 344, p. 79, pl. 1, fig

The test outline is smooth with no ornamentation and rounded periphery. The umbilical side is characterized by sharp, pointed folium as well as strong deeply notched protoforamen. The spiral side shows the development of raised thickened calcite along the radial sutures as well as over central spiral area. It is smaller (0.3-0.6mm), has 7 to 9 chambers in the final whorl, and has no plug or extraneous calcareous material in the umbilical area. Microstructurally, pore density is high and the pores are regular and are present all throughout the test except at the pointed ends of folia.

Ammonia beccarii (Linne)

Pl. I, Fig. 2

Rotalia beccarii (Linne), Cushman, 1931, pl.8, p. 58, pl. 12, figs. 1-7; pl. 13, figs. 102; - Rasheed, 1969-70c, pp. 157-158, pl. 2, figs. 13-18.

It is recognized by the presence of a small cavity around the umbilical region and interlocular space. The surface is ornamented with granules and beaded sutures. The spiral side shows strong reticulate calcite riblets and raised thickened calcite over central spiral area. It is medium sized (0.5-0.8 mm) and has 8-10 chambers in the last whorls.

Ammonia parkinsoniana (d'Orbigny, 1893) Pl. I, Fig. 3

Orbigny, A. D. d'. (1839). Foraminiferes, in de la Sagra T., Histoire physique, politique et naturelle de l'ile de Cuba. A. Bertrand. 1-244., page: p. 99 pl. 4, fig. 25-27

It is recognized by the presence of a small umbilicus with medium sized umbilical area. The test outline is relatively smooth with no ornamentation and rounded periphery. The umbilical side is characterized by the development of raised thickened calcite on folia. The spiral side shows the development of raised thickened calcite along the radial sutures and relatively flat proloculus. It has 7 to 8 chambers in the final whorl. Microstructurally, pore density is high and the pores are regular and are present all throughout the test except at the pointed ends of folia.

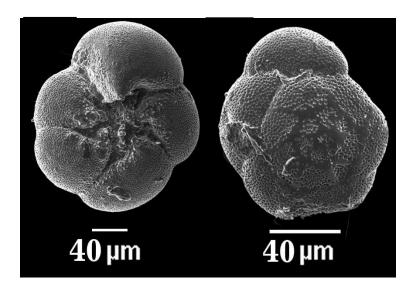


Fig 2.1 Ammonia tepida

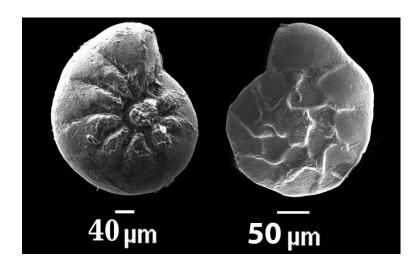


Fig 2.2 Ammonia beccarii

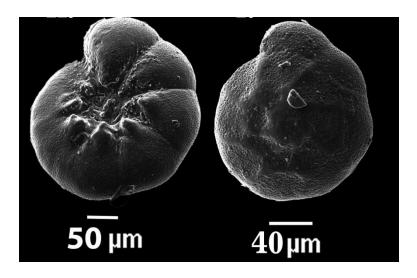


Fig 2.3 Ammonia parkinsoniana

3.1 Introduction

Generally, the species in the genus *Ammonia* are quite closely related as far as morphology is concerned. Hence it is difficult to distinguish them with the help of stereo-zoom microscope with naked eyes. By morphometric analysis different physical parameters are compared and the subtle differences were recognized leading to the recognition of different species the genus with more precision.

3.2 Morphometric Measurements

Following parameters were taken into consideration in the morphometric measurements of *Ammonia* spp. (fig 3.1, fig 3.2):

Profile, quantitative measurement:

1. Gsd= greatest spiral diameter

Profile, qualitative 5-point assessment:

- 1. Umb= umbilical side (concave, flat, low convex, convex, high convex)
- 2. Spi= Spiral side (concave, flat, low convex, convex, high convex)

Umbilical side, quantitative measurement:

- 1. Du/d= relative diameter of umbilicus = gsd/largest diameter of umbilicus between end of folia
- 2. Rfl/w= relative lenth of radial sutural furrows = lenth of radial sutural furrows (n-1:n-2)/ width (perpendicular to periphery) of chamber n-1
- 3. Maxbos= diameter of largest umbonal boss (if present)
- 4. Nobos= number of umbonal bosses (if present)
- 5. Fol^= folium angle (in degrees) of chamber n-1

Umbilical side, qualitative 5 point assessment

- 1. Thckfol= development of thickened calcite on folia
- 2. Protof= deeply notched protoforamen on chambers n... n-3
- 3. Ragfol= blunt, ragged folium on chambers n... n-3
- 4. Pntfol= sharp pointed folium on chambers n... n-3

Spiral Side, quatitative measurements:

- 1. Prol= proloculus largest diameter
- 2. Chwh1= number of chambers in first whorl
- 3. Chwh2= number of chambers in second whorl
- 4. d/wh= mean diameter of each whorl= gsd-prol/2 x no of whorls
- 5. ch/wh= mean number of chambers per whorl= number of chambers /wh
- 6. lc/wc= relative chamber (n-1) proportions= max length (parallel to periphery) of chamber/ max width (perpendicular to periphery) of chamber
- 7. rad^= angle between radial (n-1:n-2) and spiral sutures

Spiral side, qualitative 5 point assessment:

- 1. radsutcv= radial sutural curvature (suture n-1: n-2)
- 2. thckrad= development of raised thickened calcite along radial sutures of last whorl
- 3. spicac= development of raised thickened calcite over central spiral area
- 4. retcac= development of reticulate pattern of calcite riblets over central spiral area.

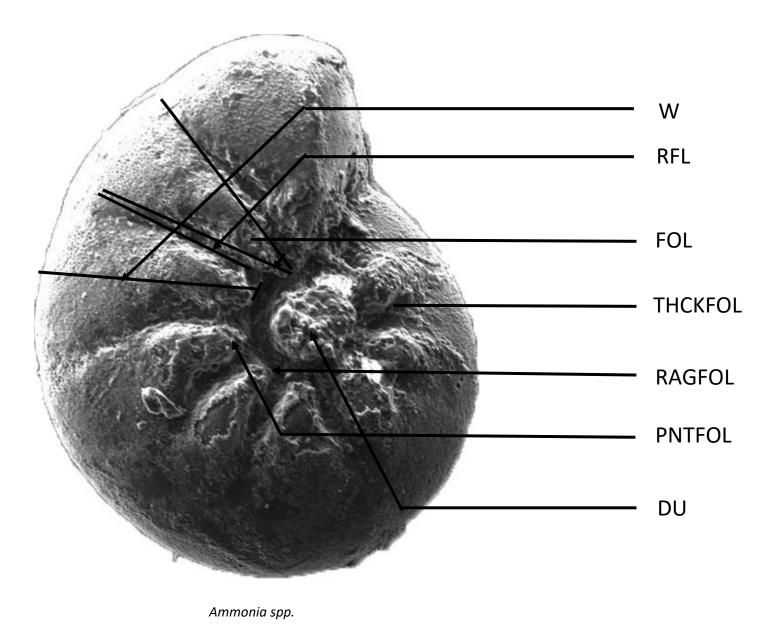


Fig 3.1 Ammonia sp. with various morphoparameters marked for the umbilical side

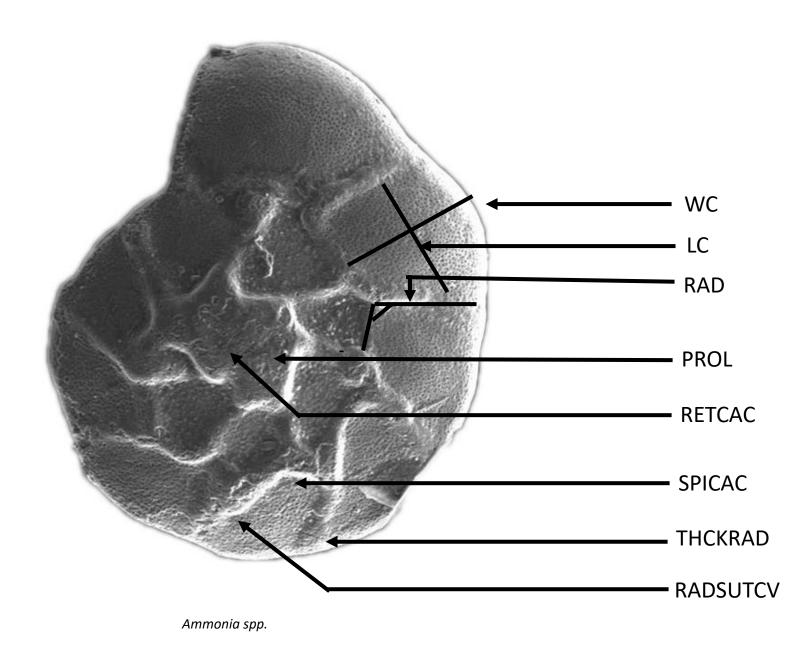


Fig 3.2 Ammonia sp. with various morphoparameters marked for the spiral side

Nobos	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	1	П
	₽	0	0	1	Н	1	7	1	1	Н	Т	1	Т	7	7	0	0	0	0	0	0	0	0	Н	7	0	0	1	0	1	Н	₽
Bos	4	2	2	2	2	2	3	2	2	2	3	4	3	3	3	c	3	4	3	4	3	3	3	3	4	3	4	4	4	3	3	3
Spi	0	1	1	0	2	2	1	0	0	1	0	3	0	0	0	0	0	0	1	0	0	0	1	0	0	0	3	1	2	1	1	0
Retcac																																
Spicac	0	0	Т	1	2	2	2	c	2	Н	2	Т	Т	2	Н	c	3	3	2	2	2	2	2	3	2	2	Н	2	Т	Т	Н	Н
Thckrad	2	3	2	2	1	1	1	1	2	П	1	2	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	Н
Radsutcv Th	1	ч	ч	2	3	c	Н	ч	Т	Н	Н	Т	Н	Н	Н	c	3	Н	3	3	3	3	4	3	2	3	2	4	2	2	н	Н
Ra	71.024	72.967	75.982	80.275	71.872	77.872	72.491	75.119	78.738	75.977	72.092	76.435	79.955	70.247	71.968	60.258	50.704	80.494	51.843	47.666	62.556	62.556	60.03	61.225	62.512	50.301	58.1	48.237	64.995	58.588	65.618	63.194
rad^																											.71					
v	82.455	45.615	46.951	87.167	17.038	53.430	52.289	29.434	42.435	30.186	38.196	47.416	31.740	23.610	30.875	47.878	31.319	46.427	27.652	32.799	28.823	41.006	37.576	39.935	35.272	27.475	30.571	22.100	28.619	27.587	43.943	35.075
WC	82.197	57.733	63.281	84.685	51.302	51.760	62.139	33.308	38.724	35.756	28.234	41.914	28.505	38.204	29.786	99.420	86.048	56.201	83.486	62.764	53.621	78.442	77.505	57.007	64.291	70.879	56.695	87.666	86.201	72.322	59.170	45.701
ပ	4	8	2	9	10	7	4	2	6	6	6	9	2	6	2	5	9	2	9	9	9	9	9	7	7	∞	2	2	9	9	2	2
Chwh2					1																											
Chwh1	9	9	9	9	∞	9	7	2	9	9	9	9	2	9	9	2	∞	5	∞	∞	∞	∞	7	∞	7	∞	6	9	7	∞	6	6
Prol	35.983	65.945	55.316	50.477	49.389	44.696	46.984	34.685	28.205	29.627	35.46	57.247	35.083	27.396	27.643	80.297	40.804	43.307	35.167	27.704	36.384	42.024	44.566	41.699	36.042	32.904	40.143	32.603	35.063	32.72	50.754	35.946
Gsd	236.807	221.622	189.541	307.445	173.781	195.284	199.114	126.4	133.225	129.934	128.327	187.971	109.789	116.847	122.106	212.267	177.444	179.738	175.42	146.507	143.403	172.661	177.711	163.893	178.645	190.753	155.208	154.209	163.277	156.439	233.007	162.611
SI No.	1	2	3	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29	30	31	32

1	1	1	1	1	1	1	0	1	0	1	1
Н	Н	Н	Н	Н	Н	Н	0	Н	0	Н	1
3	3	3	3	3	2	2	3	2	3	3	2
0	0	0	1	1	0	0	0	0	0	0	0
2	4	0	1	1	2	1	0	1	2	2	1
0	1	1	0	0	1	0	1	1	0	1	1
П	1	1	1	1	1	1	1	1	1	1	П
67.218	59.621	63.146	52.219	52.219	63.501	66.905	73.595	71.29	63.958	70.189	62.541
39.616	30.444	31.961	26.327	26.327	30.907	35.792	30.056	45.206	33.530	29.066	34.779
42.519	34.785	37.994	26.138	26.138	37.454	39.762	49.056	40.278	54.165	45.012	35.195
8	1	2	2	7	1	က	9	0	0	9	2
∞	6	∞	6	6	6	∞	∞	∞	∞	7	6
34.205	38.875	25.167	36.042	28.024	32.577	23.546	23.329	28.546	25.866	33.286	36.23
147.716	140.957	136.013	136.374	135.199	130.365	115.734	133.467	136.371	122.896	126.896	132.737
33	34	35	36	37	38	39	40	41	42	43	44

Н

3

0

7

0

 \vdash

70.462

27.720

35.316

4

∞

24.396

125.345

45

	Maxbos	np	₹	>	tol^	qwn	thckfol	protof	ragfol	pntfol	ps9/np	rfI/w	maxbos/gsd	ch/wh	lc/wc
₽	42.024	64.272	58.979	65.48	48.796	e	4	4	4	3	0.271411	0.900718	0.17746097	5.00	0.996871
7	0	60.618	46.374	93.537	36.423	0	4	33	3	1	0.27352	0.495782	0	7.00	1.265658
3	0	39.867	45.525	71.706	54.754	0	က	æ	m	1	0.210334	0.634884	0	5.50	1.347809
4	35.208	52.465	118.524	127.254	42.581	2	4	4	4	æ	0.170648	0.931397	0.114518044	9.00	0.971526
2	19.522	27.375	66.336	70.7	32.777	2	4	4	က	33	0.157526	0.938274	0.112336792	9.00	3.011034
9	21.213	47.281	53.293	75.151	42.68	П	1	2	2	2	0.242114	0.709146	0.108626411	6.50	0.968744
7	19.784	45.905	52.594	68.861	48.414	П	က	æ	2	æ	0.230546	0.76377	0.099360166	5.50	1.188376
∞	18.409	22.44	32.335	43.055	32.89	2	က	2	2	æ	0.177532	0.751016	0.145640823	5.00	1.131616
6	25.485	33.54	39.08	43.378	35.6	c	က	2	2	33	0.251755	0.900918	0.191292926	7.50	0.912549
10	15.853	33.388	37.144	47.346	43.892	П	2	2	1	2	0.256961	0.784522	0.122008096	7.50	1.184523
11	17.724	26.785	39.439	49.944	42.873	П	က	2	m	æ	0.208725	0.789664	0.138115907	7.50	0.739187
12	38.579	58.798	45.627	57.829	49.172	æ	4	2	2	က	0.312804	0.788999	0.205239106	9.00	0.883963
13	25.167	30.183	32.46	38.799	38.833	2	က	3	2	2	0.274918	0.83662	0.229230615	5.00	0.898078
14	10.425	17.604	39.346	46.832	43.233	Н	2	2	က	æ	0.150659	0.840152	0.089219235	7.50	1.618128
15	11.049	19.59	36.747	41.403	49.002	П	1	2	æ	2	0.160434	0.887544	0.090486954	5.50	0.964729
16	0	17.507	69.085	81.261	42.97	0	0	2	1	4	0.082476	0.850162	0	5.00	2.076528
17	0	15.691	59.893	70.47	51.712	0	1	c	1	4	0.088428	0.849908	0	7.00	2.74747
18	0	10.746	76.717	85.614	63.364	0	0	2	1	4	0.059787	0.89608	0	5.00	1.210524
19	0	14.858	71.076	75.048	49.247	0	0	2	1	4	0.0847	0.947074	0	7.00	3.019167
20	0	13.289	60.07	82.193	55.917	0	1	2	1	4	0.090706	0.730841	0	7.00	1.913595
21	0	13.698	60.942	62.568	47.741	0	0	c	1	33	0.095521	0.974012	0	7.00	1.860355
22	0	12.119	73.005	81.86	62.621	0	0	4	2	4	0.07019	0.891828	0	7.00	1.91294
23	0	13.096	70.141	81.52	60.729	0	0	33	1	4	0.073693	0.860415	0	6.50	2.06262
24	11.119	15.036	61.496	69.63	64.142	Н	1	3	1	3	0.091743	0.883183	0.067843044	7.50	1.427495
25	11.545	14.079	90.002	101.038	48.042	Н	1	4	2	4	0.07881	0.890774	0.064625374	7.00	1.822721
56	0	13.544	69.221	80.893	61.254	0	0	3	1	4	0.071003	0.855711	0	8.00	2.579763
27	0	10.506	55.874	59.094	65.429	0	1	4	1	3	0.06769	0.945511	0	7.00	1.854535
28	13.821	15.367	63.792	75.983	45.635	Н	0	3	1	n	0.09965	0.839556	0.089625119	5.50	3.966787
29	0	10.746	78.587	82.069	66.617	0	2	4	2	4	0.065815	0.957572	0	6.50	3.01202

2.621597	1.346517	1.302951	1.073278	1.14259	1.188761	0.992821	0.992821	1.211829	1.110919	1.632153	0.890988	1.615419	1.548614	1.011961	1.274026
7.00	7.00	7.00	5.50	5.00	6.50	7.00	8.00	5.00	5.50	7.00	8.00	8.00	6.50	5.50	00.9
0.065853144	0.147647925	0.11899564	0.142245931	0.101832474	0.09653489	0.177350521	0.106679783	0.095094542	0.121528678	0	0.086528661	0	0.164622998	0.080957081	0.139479038
0.97022	0.79987	0.790871	0.92778	0.966906	0.951374	0.899871	0.986143	0.909915	0.965103	0.920642	0.661151	0.862992	0.85869	0.595117	0.806889
0.084806	0.197724	0.205915	0.186094	0.119107	0.128811	0.233373	0.177198	0.109661	0.141091	0.080514	0.101165	0.084828	0.215893	0.110075	0.157318
က	n	n	n	n	n	n	n	n	n	4	ĸ	က	က	က	8
1	2	1	1	1	2	0	1	2	2	1	33	1	1	2	2
7	4	က	က	က	က	2	က	0	2	4	က	က	1	1	1
П	Т	3	2	3	Т	2	Т	Т	2	Т	2	Т	2	Т	2
П	2	2	2	2	2	2	2	7	2	0	Т	0	Т	Т	2
65.613	40.076	53.685	38.698	38.938	49.294	39.329	42.539	47.023	33.304	48.94	51.644	43.632	53.722	46.547	55.141
66.757	72.583	67.585	63.639	54.633	56.39	49.656	61.846	46.911	51.237	59.893	50.58	62.208	46.154	43.946	44.477
64.769	58.057	53.451	59.043	52.825	53.648	44.684	60.986	42.685	49.449	55.14	33.441	53.685	39.632	26.153	35.888
13.267	46.071	33.484	27.489	16.789	17.52	31.826	23.957	14.296	16.329	10.746	13.796	10.425	27.396	14.611	19.719
10.302	34.403	19.35	21.012	14.354	13.13	24.186	14.423	12.397	14.065		11.8	0	20.89	10.746	17.483
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45

3.4 Results and Discussions

The spiral side character has been plotted in fig 3.3 i.e., Prol (diameter of proloculus) versus Gsd (greatest spiral diameter). After plotting the data for all the specimens, three clusters were found (indicated by different colours). Here the three clusters represent three different species.

The umbilical side characters has been plotted in fig 3.4 i.e. du/gsd (diameter of umbilicus/ greatest spiral diameter) versus rfl/w (length of radial sutural furrow/width). After plotting the data for all the specimens, three clusters were found (indicated three different colours). Here the three clusters represent three different species.

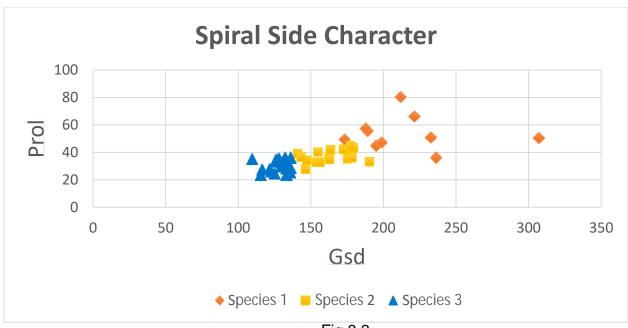


Fig 3.3

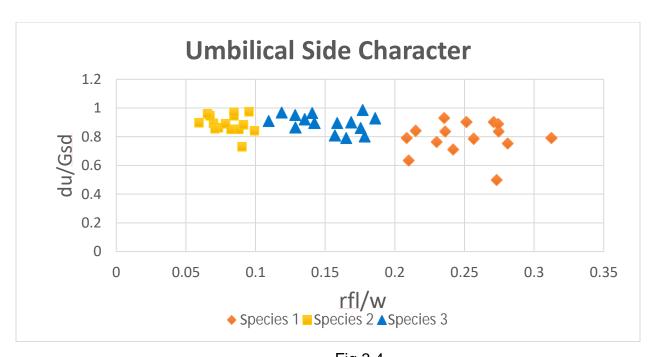
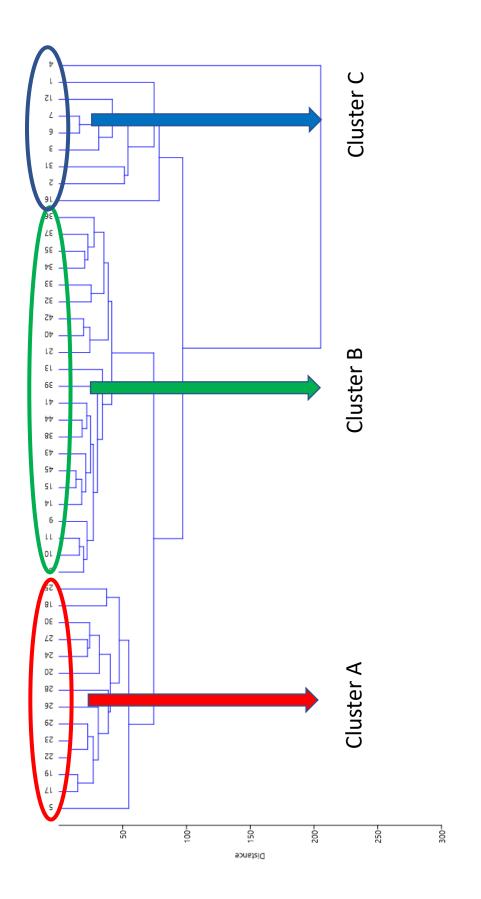



Fig 3.4

Cluster analysis was carried out with the help of Past 3.14 software using all the morphometric parameters and plotted in figure 3.5. Here also three clusters were found indicated by three ellipses (each in different colour) and named as Cluster A, Cluster B and Cluster C.

After correlating with morphometric data, Cluster A was recognized as *Ammonia tepida* as they had smooth rounded periphery, pointed folium in the umbilical side, thickened calcite along the radial sutures as well as over central spiral area, 7 to 9 chambers in the final whorl. Cluster B was recognized as *Ammonia parkinsoniana* as they had small umbilicus, relatively flat proloculus, 7 to 8 chambers in the final whorl, test outline is relatively smooth. Cluster C was recognized as *Ammonia beccarii* as they had 8 to 10 chambers in the final whorl, presence of small cavity around the umbilical region, large boss etc.

CLUSTER ANALYSIS

Past 3.14

CHAPTER 4 Conclusion

So far three different species of *Ammonia* have been identified from Chilika Lake, Odisha from morphometric analysis:

- 1. Ammonia tepida
- 2. Ammonia parkinsoniana
- 3. Ammonia beccarii

REFERENCES

- Ghosh, A, 2004 A study of *Ammonia* (foraminiferida) from Saurashtra coast, unpublished M.Sc. thesis, IIT Bombay, page. 15-24
- Hayward,B.W;Holzman,M;Grenfell,H.R;Pawlowski,J;Triggs,C.M,2004
 Morphological distinction of molecular types in Ammonia- towards a taxonomic revision of the world's most commonly misidentified foraminifera, Marine Micropalaeontology 50(2004) 237-271.
- Jayalakhshmy, K.V & Rao, K.K,2001 Frequency distribution of Foraminifera in the Chilika Lake, J.mar.biol.Ass.India, 42 (1&2), 65-80
- Loeblich, A.R.Jr and H.Tappan (1983) Foraminiferal genera and their classification.
 Van Nostrand Reinhold Company, New York
- Rao, K.K., Jayalakshmy, K.V., Venugopal, P., Gopalakrishnan, T.C., Rajagopal, M.D,
 2002 Foraminifera from the Chilika Lake on the east coast of India,
 J.mar.biol.Ass.India, 42 (1&2), 47-61
- R, A.K., K,B.N & R.K.,2014 Agglutinated foraminifera from the Chilika Lake on the east coast of India, Indian Journal of Geo-Marine Sciences, 44(4), 531-538
- Sen, A. & Bhadury, P., 2016 Exploring the seasonal dynamics within the benthic foraminifera biocoenosis in a tropical monsoon-influenced coastal lagoon, Aquat Biol 25: 121-138