MASTER OF ARTS Examination, 2024

(2nd Year, 1st Semester)

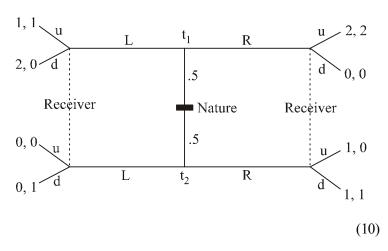
ECONOMICS

PAPER: PG/ECO-301

(Microeconomics-2)

Time: Two Hours Full Marks: 30

Attempt Question no. 1 and any one from the rest:


- 1. (a) Consider a standard Stackelberg duopoly (complete information) with two firms, firm 1 and firm 2. Firms simultaneously choose output levels to maximize their profits. Suppose firm 1 is the first mover and chooses q_1 first. Then after observing q_1 firm 2 chooses q_2 . The market inverse demand is $P = 1 q_1 q_2$ where q_i is firm i's output. Each firm incurs a fixed cost of $\frac{1}{8}$ if it produces positive output (otherwise, its costs are zero). Each firms variable cost is assumed to be zero. Find the Subgame perfect Nash equilibrium of this game.
 - (b) Briefly explain the following concepts:
 - (i) Monopolistic Screening
 - (ii) Vickery Auction (3+3)

ECO-**337** [*Turn Over*]

- (a) Consider the following **Complete Information** version of a Second Price auction. An indivisible object is to be assigned to one of 2 players in exchange of a payment. Player 1's payoff from the consumption of the indivisible good is v_1 while player 2's payoff is v_2 and assume that $v_1 = v_2$ (these can be interpreted as the maximum willingness to pay for both the individuals). Assume v_1 and v_2 to be common knowledge among the players (bidders). The mechanism used to assign the object is a (sealed-bid) second price auction: the players simultaneously submit bids (non-negative amounts), and the object is assigned to the player who submits the highest bid, in exchange for a payment. The payment that the winner makes in a second-price auction equals the second highest bid. If both players submit the same bid then the object is assigned to player 1. If a player fails to win the object he/she gets 0 utility (payoff).
 - (i) Describe the strategy sets and payoffs of both the players.
 - (ii) Try to find the best response strategies for both the players.
 - (iii) Let $b_1 \ge v_1$ and $b_2 \le v_2$. What will be the outcome in this case? Will these be a set of Nash equilibria? (3+4+2)
 - (b) Explain briefly the following concepts:
 - (i) Non-singleton information sets
 - (ii) Common Knowledge (3+3)

3. (a) Describe all the pure strategy **pooling and separating**Perfect Bayesian Equilibrium of the following signalling game:

(3)

(b) Explain whether the following statement is True, False or Uncertain:

"Iterated elimination of strictly dominated strategies always yields a unique prediction in a game". (5)

