BACHELOR OF ARTS EXAMINATION, 2024

(2nd Year, 1st Semester)

ECONOMICS

(Advanced Statistics)

Time: Two Hours Full Marks: 30

Answer any three from the following four questions.

1. (a) Let X be a random variable with moment generating function

$$M(t) = [(2 + e^t)/3]^9, -\infty < t < +\infty.$$

Calculate the expectation of X and variance of X. 4

- (b) A box contains 10 marbles out of which θ are white and the rest are red. We want to test the hypothesis $H_0: \theta=5$ against $H_1: \theta=4$. Suppose that H_0 is rejected if two marbles taken at random with replacement, are both red. Calculate probability of type I error.
- (c) Arnab is shooting at a target. The probability of a hit is 0.4. What is the probability that his 10th trial results in the second hit.
- 2. (a) If the joint density function of X and Y is given as

$$f(x, y) = 2, 0 < x < 1, 0 < x < y < 1,$$

0, otherwise

What is the expectation of X?

5

ECO-**175**

[Turn Over]

(2)

- (b) Describe the steps to use random sampling numbers for drawing a sample of size 7 from a population of size 30. Consider SRSWOR.
- 3. (a) Suppose a pair of numbers (x, y) is chosen randomly from the interval [0, 1], what is the probability that $y \le x^2$?
 - (b) Test whether the following data is compatible with the assumption that there is no association between the weight and colour of the eyes:

 6

Weight (in kg)	Colour of the eyes		
	Black	Brown	Blue
Less than 50	10	20	20
50–65	12	22	30
65–80	15	30	40
More than 80	8	10	8

4. (a) The random variable y has a probability density function

$$f(y) = (1 - \theta) + 2\theta y$$
 for $0 < y < 1$

= 0, otherwise

Suppose y_1 and y_2 are two sample observations drawn independently from this distribution. (i) Suggest a method of moment estimator of θ based on sample observations. (ii) Find maximum likelihood estimator of θ based on these sample observations. 3+3

(3)

- Suppose X is a random variable following any distribution with mean μ and standard deviation σ .
 - (i) What is the maximum value of $P\{|x-\mu| \ge 4\sigma\}$?
 - (ii) If X follows normal distribution what is the value of $P\{|x-\mu| \ge 4\sigma\}$? 1+3

