(4)

- (b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be homogeneous of degree r and $g: \mathbb{R}^n \to \mathbb{R}$ /be homogeneous of degree s. Then check the homogeneity of the functions $f+g, f\cdot g$ and $\frac{f}{g}$.
- (c) Prove that $(9^n 1)$ is divisible by 8 for every integer $n \ge 1$.

ARTS/ECO/UG/SEC/11/101/2024

BACHELOR OF ARTS EXAMINATION, 2024

(First Year, First Semester)

ECONOMICS

(Mathematical Methods in Economics—1)

Time: Two Hours Full Marks: 30

Answer question number 1 and *any two* questions from the rest.

- 1. (a) State and explain whether the following statements are true or false: 5
 - (i) Let us consider the optimization problem: Maximize z = f(x) s.t. g(x) = c. The second order (sufficient) condition for identifying the maximum is $d^2z < 0$.
 - (ii) An optimum solution will exist to the following problem:

Minimize
$$h(x_1, x_2, x_3)$$
 s.t. $g^1(x_1, x_2, x_3) = k_1$;
 $g^2(x_1, x_2, x_3) = k_2$; $g^3(x_1, x_2, x_3) = k_3$.

(iii) If (x_1^*, x_2^*, x_3^*) is the optimal solution to the problem. Maximize $f(x_1, x_2, x_3)$ and $(\overline{x_1}, \overline{x_2}, \overline{x_3})$ is the solution to the optimization problem:

Maximize
$$f(x_1, x_2, x_3)$$
, s.t. $h(x_1, x_2, x_3) = 115$,
then $f(x_1^*, x_2^*, x_3^*) < f(\overline{x_1}, \overline{x_2}, \overline{x_3})$.

- (iv) If a function is concave, then the domain of the function will always be a convex set.
- (v) A linear function is a convex function but is not strictly convex.
- (b) Given the function $f(x,y,z) = \left(\frac{x-y+z}{x+y-z}\right)^n$, use the properties of homogeneous function to prove : $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = 0.$
- (c) Negate the following statements:
 - (i) $\forall x \exists y$, S.T. $x^2 + y^2 > 1$
 - (ii) $\forall x \forall y, x^2 + y^2 > 1$
 - (iii) $\exists x \forall y$, S.T. $x^2 + y^2 > 1$
 - (iv) $\neg \exists x, \neg (x^2 = 1)$
 - (v) $\neg \exists x, (x^2 = 1)$
 - (vi) $\neg \forall x \neg (x^2 = 1)$
- 2. (a) Suppose $\exists f : A \to B$ such that f is bijective. Prove that $\exists f^{-1}$ (inverse of f): $B \to A$.
 - (b) Identify the extremum of the following function: $F(x_1, x_2, x_3) = x_1^4 + (x_1 + x_2)^2 + (x_1 + x_3)^2$. Is it also a global optimum? Explain your answer.

(3)

(c) Write down the conditions for solving the following optimization problem:

Maximize: $f(x_1, x_2, x_3, l)$ subject to the constraints: $a_1x_1 + a_2x_2 + a_3x_3 + bl = k_1$; Interpret the Lagrange multiplier associated with the constraint with proof.

2.5+2.5

- 3. (a) For the function $f(x,y) = 3x^2 + 2y^3 6xy$, identify and classify all the critical points.
 - (b) Solve the following constrained optimization problem: Maximize $f(L,K) = L^{0.2}K^{0.8}$ subject to the constraint 2L + 8K = 50. Give an interpretation to the first order condition assuming that f represents a production function and the constraint is a cost function. What is the speciality of the function f? What is the interpretation of Lagrange Multiplier in this problem?
 - (c) Prove, for every integer $n \ge 1$, that

$$\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}$$

4. (a) Let $f(x,y) = x^2y - 2xy^2 + 3xy + 4$. Identify and classify the critical points. Also if there is a maximum &/or minimum identify whether it's a local or global maximum/minimum. 2.5+1.5

ECO-**340**

[Continued]

ECO-**340** [*Turn Over*]