M.Tech. VLSI Design and Microelectronics Technology, 2024 Second Year First Semester

QUANTUM AND NANOELECTRONIC DEVICES

Time: 3 Hours Full M		arks: 100	
Answer any FIVE Questions.			
Q1.a)	Describe features of three different types of band edge line-ups that may occur at a Heterojunction. Also mention one example of each category.	8	
b)	With adequate band diagram, show that in above cases band gap offset (ΔE_g) is either the sum or the difference of conduction band discontinuity (ΔE_c) and valence band discontinuity (ΔE_v) .	6	
c)	Describe a scheme for the experimental determination of the value of $Q (= \Delta E_c / \Delta E_g)$. Use a parabolic quantum well for that.	6	
Q2.a)	Describe Poisson effect in context with the pseudomorphic growth of an epitaxial layer over an appropriate semiconductor substrate.	8	
b)	Verify whether pseudomorphic growth of $SiGe$ alloy on Si substrate is feasible or not. If possible, determine the critical thickness (d_c) of the $Si_{1-x}Ge_x$ layer for $x = 0, 0.1, 0.3, 0.5, 0.7, 1$; and form the boundary between regions for Pseudomorphic and Metamorphic growths. Take lattice constants for Si and Ge as 5.43 Å and 5.65 Å respectively.	2+8+2	
Q3.a)	Formulate the time-independent Schrodinger equation from the general time-dependent Schrodinger equation.	6	
b)	Elaborate an appropriate scheme for determination of the following: (i) Energies of an electron confined in a well with finite barrier, (ii) Transmission co-efficient of an electron through a double-barrier system. Consider appropriate structures and make necessary assumptions for each case.	8+6	
Q4.a)	Write (no derivation) the general form of DOS function for bulk semiconductor. Next, determine the (i) DOS function and (ii) Carrier	1+7+6	

	concentration for a long semiconductor wire of rectangular cross-section $d_y d_z$, where both d_y and d_z are comparable to the electron wavelength. Assume the $E-k$ dispersion relation for the semiconductor to be parabolic.	
b)	Sketch variations in <i>DOS functions</i> with <i>Energy</i> for Bulk, QW, QWW and QD in a single figure.	6
Q5.a)	Discuss a model that helps in determining the ordering of atoms A and B in alloy A_xB_{1-x} .	6
b)	Explain how the Heavy hole (HH) and Light hole (LH) bands originate.	6
c)	What is Landau quantization and what are the conditions favorable to such quantization? Describe the changes in electron distribution under its influence.	4+4
Q6.a)	Explain <i>Resonant Tunneling</i> . Describe the <i>J-V</i> characteristics of a Resonant tunneling diode (RTD) with appropriate energy band diagrams.	4+8
b)	Determine the no. of NDR regions expected in an RTD comprising of a 30 nm $GaAs$ QW sandwiched between $Al_{0.3}Ga_{0.7}As$ barriers. Given that: for $AlAs$ $E_g = 2.16$ eV, for $GaAs$ $E_g = 1.42$ eV and $m_n^* = 0.067$ m_0 , m_0 being the free electron mass, $Q = \Delta E_c/\Delta E_g = 0.62$ at above heterojunctions.	8
Q7.	Differentiate: a) Maxwell – Boltzmann distribution and Fermi – Dirac distribution, b) Compositionally graded superlattice and <i>n-i-p-i</i> superlattice, c) Acoustic phonon and Optic phonon.	6+8+6
Q8.	Write notes on any TWO:	2x10
a) b) c) d)	Real Space Transfer of electrons, Quantum Hall Effect, SEED as an optical switch, Single Electron Transistor.	