M.Tech. (VLSI and Microelectronics) 2nd YEAR EXAMINATION, 2024 (2nd Semester)

EMI/EMC AND SYSTEM TESTING AND TESTABLE DESIGN

Use separate answer scripts for each part.

Time: Three hours

Full Marks 100

PART I

No. of questions

	Answer Q. no. 1 and any tree questions.
	Values of physical constants may be assumed, if necessary.
1.	Choose the correct alternative in each case.
(a)	Wavelength is inversely proportional to
` ,	i) Frequency
	ii) velocity
	iii) power loss
	iv) attenuation constant
(b)	A random process can be associated with
	i) only discrete random variables
	ii) only continuous random variables
	iii) either only discrete or only continuous random variables
	iv) both discrete and only continuous random variables simulteneously
(c)	SAR stands for
	i) Specific Absorption Rate
	ii) Specific Attenuation Rate
	iii) Special Absorption Rate
	iv) Spectral Attenuation Rate
(d)	Proper grounding may reduce
	i) conducted emission
	ii) radiated emission
	iii) all sorts of emission
()	iv) none of the above
(e)	An antenna is a
	i) transducer
	ii) transformer
	iii) randomizer
(f)	iv) all of the above
(f)	An event that is likely to cause tremendous amount of EMI is i) lightning
	ii) warfare
	iii) construction
	iv) all of the above
(g)	As regards EMI, an antenna can act
(6)	i) only as emitter
	ii) only as susceptor
	iii) both as emitter and susceptor 7X2
	iv) none of the above =14

2.	Prove that for a real signal in time domain, the magnitude spectrum is an even function of frequency and phase constant of frequency.	12
3. (a) (b)	If $f(t) \leftrightarrow F(\omega)$, evaluate the Fourier transforms of df/dt $f(t-at)$ for any real value of 'at'	6
4.	Find the Fourier series for a rectangular pulse train of amplitude 'A', pulse width ' τ ' and time period 'T'	12
6.	Consider a transmission line to which a 20V ideal battery is connected at t=0 at the source end. The line has a total length of 400m, velocity of propagation 200m/ μ s and characteristic impedance 50Ω . It is terminated in a 100Ω resistor. Plot the received voltage against time from 0 to 12μ s.	12
7.	Write a note on EMC standards in vogue.	12

Ref. No: EX/MECE 512/2024

M.TECH. VLSI AND MICROELECTRONICS SECOND YEAR SECOND SEMESTER EXAM.-2024

EMC/EMI & SYSTEM TESTING & TESTABLE DESIGN

(50 Marks for each Part)

TIME: THREE HOURS

Use separate answer script for each Part Part – II (50 Marks)

FULL MARKS: 100

Answer any five questions. Each question carries equal marks. Answers must be brief and to the point. Answer to one question should be at one place.

- 1. What are the basic purposes of testing? Discuss the basic principle of testing of a digital integrated circuit.
- 2. With the help of a flow chart explain where testing process is carried out in traditional digital VLSI design cycle. What are the limitations of the traditional design flow? Explain how the testing process gained interest in the new VLSI design flow.
- 3. (a) Define (i) fault coverage, (ii) process yield and (iii) defect level in the context of VLSI testing. (b) Classify faults according to the way they manifest themselves in time.
- 4. (a) Define behavioral fault model. Discuss how a statement 'if (Y) then {B1} else {B2}' can fail.(b) Define functional fault model. Derive the possible functional fault model for a 2-to-1 multiplexer circuit.
- 5. What do you mean by fault model? Explain with the help of proper circuit diagrams, the concept of stuck-open and stuck-on fault model? For a 2 input NAND gate, show that logic monitoring technique is not enough to detect all single stuck-on faults. What other method is required therefore?
- 6. Consider the circuit shown in Figure 1. Show that the faults 'c' s-a-1 and 'f' s-a-1 are equivalent.

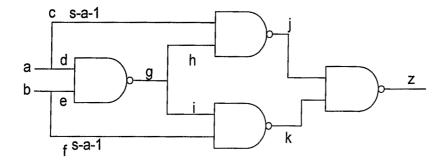
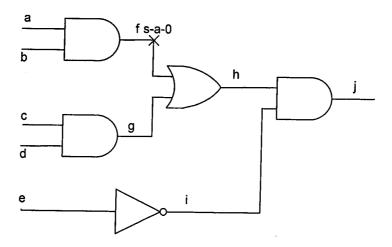



Figure 1:

7. What is meant by ATPG? Discuss the ATPG principle. Find out the test vector for the following circuit with the marked single stuck-at-fault in the circuit.

