M. TECH. VLSI DESIGN AND MICROELECTRONICS ${\bf 1^{ST}\ YEAR\ 2^{ND}\ SEM\ EXAM-2024} \\ Low\ Power\ VLSI\ Design$

Time: 3 hrs Full marks: 100

	Answer any ten questions [10×10=100]	, o
1.	Why do power dissipation become an important issue in scaled down devices? List out the sources of power dissipation in VLSI circuits and explain them briefly.	[4+6]
2.	What is dynamic power dissipation? Derive the expression and explain each term.	[2+8]
3.	What do you mean by leakage power dissipation? Name various sources of leakage components and explain methods to reduce them.	[3+7]
4.	What is Glitching in static CMOS logic gates? Explain an example to minimize Glitching.	[10]
5.	cribe Medium cost BiCMOS process with neat sketch.	[3+7]
6.	Compare BiCMOS with CMOS process technology. Draw the circuit for BICMOS Darlington pair and explain its working.	[6+4]
7.	Define Peak Power, Average Power and energy related to VLSI circuits. Explain their importance in power dissipation.	[10]
8.	In Low-Power Gate-Level Design explain technology mapping and phase assignment to reduce power dissipation.	[10]
9.	Explain Pin-swapping, Pre-computation, clock gating and input gating to reduce power dissipation in Gate-Level Design.	[3+7]
10.	What do you mean by activity reduction in Algorithmic-Level Design. Explain with a 3 bit counter.	[2+8]
11.	Why do we need Power Gating? Explain fine and coarse-grained methods of power gating. Describe leakage power reduction through Power Gating in CMOS.	[2+4+4]
12.	Define signal probability and signal activity. Given signal probability of A is 0.2, B is 0.5, C is 0.3 and D is 0.4. Implement logic function (A+B). (C+B) using two input NAND and find the total signal probability.	[4+3+3]
12		[10]
13.	Write down the advantages of pseudo nMOS over static CMOS logic. Draw a 2 input NAND gate using Pseudo nMOS logic.	[10]

14. Explain dynamic CMOS logic.