Detection and Classification of Transient
Disturbances in Power System using
Advanced Signal Processing and Machine
Learning Techniques

Thesis Submitted by
Ananya Chakraborty
(INDEX NO. D-7/ISLM/90-18)

Doctor of Philosophy (Engineering) Degree of

Jadavpur University

School of Energy Studies
Faculty Council of Interdisciplinary Studies, Law and
Management
Jadavpur University
Kolkata-700032
India

2024






1. Title of the thesis

Detection and Classification of Transient Disturbances in
Power System using Advanced Signal Processing and Machine
Learning Techniques

2. Name, Designation and Institution of the
Supervisors

Dr. Ratan Mandal
Professor,
School of Energy Studies
Faculty Council of Interdisciplinary Studies, Law, and
Management
Jadavpur University
Kolkata 700032.

Dr. Soumya Chatterjee
Assistant Professor,
Electrical Engineering Department,
National Institute of Technology Durgapur
Durgapur-7132009.






List of Publications:

A. Chakraborty, S. Chatterjee and R. Mandal, "Power Quality
Recognition in Noisy Environment Employing Deep Feature
Extraction from Cross Stockwell Spectrum Time-Frequency
Images", Electrical Engineering, Springer, (SCI), vol. 106, pp.
443-458, 2024.

A. Chakraborty, S. Chatterjee and R. Mandal, "Time-Frequency
Image Representation Aided Deep Feature Extraction-Based Grid
connected Solar PV Fault Classification Framework", Applied
Solar Energy, Springer, (Scopus), vol. 60. no.2, 2024 (In press).

List of Presentations in International/National
Conferences

A. Chakraborty, S. Chatterjee and R. Mandal, "Autocorrelation
Aided Islanding Detection Using Bi-directional Long-short Type
Memory Network," Proceedings of 2" IEEE International
Conference on Power Electronics and Energy (ICPEE),
Bhubaneswar, India, 2023.

A. Chakraborty and R. Mandal “A novel technique employing
DWT-based envelope analysis for detection of power system
transients”, Proceedings of IEEE International Conference on
Energy, Communication, Data Analytics and Soft Computing
(ICECDS), Chennai, India, 2018.






Certificate from the supervisors

This is to certify that the thesis entitled “Detection and Classification
of Transient Disturbances in Power System using Advanced
Signal Processing and Machine Learning Techniques” submitted
by Ms. Ananya Chakraborty, who got her name registered on
27/12/2018 for the award of Ph.D (Energy Studies) degree of
Jadavpur University is absolutely based upon her own work under the
supervision of Prof. Dr. Ratan Mandal and Dr. Soumya Chatterjee and
that neither her thesis nor any part of the thesis has been submitted for
any degree/diploma or any other academic award anywhere before.

Signature of the Supervisor and Date
with Official Seal

Signature of the Supervisor and Date
with Official Seal






DECLARATION OF ORIGINALITY

I, Ananya Chakraborty (INDEX NO. D-7/ISLM/90-18)
registered on 27/12/2018 do hereby declare that this thesis
entitled “Detection and Classification of Transient
Disturbances in Power System using Advanced Signal
processing and Machine Learning Techniques”, includes a
literature review and original research conducted by the
undersigned candidate for a Ph.D degree. I attest that in
accordance with the guidelines and conduct, I have accurately
referenced and made reference to any materials and conclusions
that are not unique to this work. Additionally, I certify that this
thesis is in accordance with the “policy on anti-plagiarism,
Jadavpur University 20197, and authenticate software found
07% of similarity.

Signature:
Date:

Certified by:

Signature of the Supervisor and Date
with Official Seal

Signature of the Supervisor and Date
with Official Seal






DECLARATION OF ORIGINALITY AND
COMPLIANCE OF ACADEMIC ETHICS

I hereby certify that the undersigned candidate completed his
doctoral studies in energy science and technology during the
academic year 2023-2024 and that this thesis contains both an
analysis of literature and original research. The sources from
which the data in this document were gathered and presented all
followed the standards of academic integrity.

I further confirm that I have correctly referred and cited all data
and conclusions that are not original to my work in accordance
with these rules and conduct.

Name: Ananya Chakraborty
(INDEX NO. D-7/ISLM/90-18)

Signature:

Date:






Acknowledgment

The author would like to express her sincere gratitude and deep appreciation
to her supervisors Professor Ratan Mandal School of Energy Studies,
Jadavpur University and Dr. Soumya Chatterjee, Assistant Professor,
Electrical Engineering Department, National Institute of Technology,
Durgapur, for their valuable guidance in carrying out the thesis work. The
author has been provided with necessary freedom during the course of the
research work and at the same time the intense supervision by the supervisors
has helped to enhance the quality of the research. Their moral support,
amiable and amicable personality, encouragement, and profound knowledge
about the subject have made the research work possible. Besides, the author
is also grateful to the supervisors for providing necessary mental support
during difficult times helping her to become a better individual which led to
her overall professional development.

The author would especially like to express her heart-felt gratitude to her
husband Mr. Jitendra Kumar Jaiswal for supporting her mentally and
emotionally and helping her to complete her research work.

The author would like to convey her deep love and respect towards her
parents for their never-ending support and encouragement during difficult
times. Without their support, the work could never have been completed.

Finally, as it is impossible to mention everybody by name, the author would
like to convey her gratitude to all who have contributed in one way or
another, in making the work possible.






Dedicated to-
Family






List of Symbols and abbreviations

Symbol Description

PQ Power Quality

PV Photovoltaic

EV Electric Vehicles

NILM Non-intrusive load monitoring
WAMS Wide-area measurement systems
PMU Phasor measurement unit

DG Distributed Generation

ANN Artificial Neural Networks

DT Decision Trees

PNN Probabilistic Neural Networks
SVM Support Vector Machines

BVM Ball Vector Machines

ELM Extreme Learning Machines

EL Ensemble Learning

VMD Variational mode decomposition
EMD Empirical mode decomposition
XWT Cross Wavelet transform

PCA Principal component analysis
SSA Stacked sparse autoencoder
TFR Time frequency representation
SPWVD Smoothed pseudo-Wigner-Ville distribution
LPPT Limited power point tracking
MPPT Maximum power point tracking
WVD Wigner-Ville Distribution

NB Naive Bayesian

TP True Positive

TN True Negative

FP False Positive

FN False Negative

THD Total harmonic distortion
XGBost Extreme gradient boosting machine
Light GBM Light gradient boosting machine
ANN Artificial Neural Network

RNN Recurrent Neural Network

LSTM Long short-term memory



FFT Fast Fourier Transform

DTCWT Dual Tree Complex Wavelet Transform
DWT Discrete Wavelet Transform

MRA Multi Resolution Analysis

HT Hilbert Transform

ANOVA Analysis of Variance

T-F Time Frequency

ST Stockwell Transform

MST Modified Stockwell Transform

HST Hyperbolic Stockwell Transform

FST Fast Stockwell Transform

DOST District Orthogonal Stockwell Transform
CWT Continuous Wavelet Transform

XST Cross Stockwell Transform

CNN Convolutional Neural Networks

FDR False Discovery Rate

DL Deep Learning

TL Transfer Learning

SNR Signal to noise ratio

ILSVRC Image net large scale visual recognition challenge
VGG Visual geometry group

RF Random Forest

ML Machine learning

OSH Optimum separating hyper plane

SRM Structural risk minimization

kNN k-nearest neighbor

MS Source Model

MT Target Model

STFT Short time Fourier transform

MM Mathematical morphology

PNN Probabilistic neural networks

EMD Empirical mode decomposition
Bi_LSTM Bi-directional long short type memory network
NDZ Non detection zone

AFD Active frequency drift

APS Automatic phase shift

SMS Slip mode frequency shift

ROCOF Rate of change of frequency

PCC Point of common coupling

CB Circuit breaker

EF Extracted features

1



Preface

The present thesis entitled “Detection and Classification of Transient
Disturbances in Power System using Advanced Signal Processing and
Machine Learning Techniques” is submitted for the degree of Doctor of
Philosophy (Engineering) at Faculty Council of Interdisciplinary Studies,
Law and Management, Jadavpur University, Kolkata. The research work
presented here was carried out under supervision of Prof. Ratan Mandal,
School of Energy Studies, Jadavpur University and Dr. Soumya Chatterjee,
Electrical Engineering Department, National Institute of Technology
Durgapur, in between the period of December 2018 to April 2024. To the
best of my knowledge, this work is original except where acknowledgement
and references are made to previous work. Neither this nor any substantially
similar thesis has been or has been submitted for any other degree, diploma
or other qualification at any other University.

The present work dealt with detection and classification of various transient
events that occur in power systems. For this purpose, several advanced signal
processing and machine learning models have been implemented. Transient
disturbances are a major concern as they have far-reaching consequences.
Moreover, they have severe impact on life of power equipment endangering
their proper functionality. If appropriate detection schemes are not designed
then these transients can cause insulation degradation, over-heating,
malfunction of relays causing catastrophic failure. Considering the aforesaid
fact, this present thesis work is aimed to develop accurate methods that can
correctly identify and categorize transient events and that too in presence of
noise of spurious data. The thesis is aimed to develop novel signal processing
and machine learning models for accurate identification of impulsive and
oscillatory transients, single and mixed power quality events, islanding and
non-islanding events as well as faults in grid connected solar PV systems.
Hopefully this work will help future researchers working in the area of power
system transient detection to some extent. The aims and objectives of this
work are elaborated in Chapter 1 of the thesis.
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Abstract

Accurate detection of transient disturbances in power systems is key from the
point of view of reliability and safety of power system operation. Transient
overvoltage and overcurrent occurring in power systems jeopardize the life of
power equipment significantly leading to their unwanted and premature
failure. If not detected early, they may lead to malfunctioning of relays and
circuit breakers which may result in partial or complete shutdown of power
substations as well as distribution substations. Moreover, transients degrade
the quality of power leading to power quality issues. Accurate and early
detection of transient events can prevent catastrophic events and maintain the
reliability of power transmission systems. Considering the foresaid fact, the
present thesis is aimed at identification as well as segregation of different
types of power system transients. For this purpose, advanced signal
processing as well as machine learning including the newly developed state
of the art deep learning techniques have been implemented for accurate
detection and classification of various transient events. It has been observed
that the methods presented in this thesis are capable of discerning transient
events accurately achieving very high recognition accuracy even in presence
of noisy or spurious data. Thus, the proposed methods can be implemented in
real-life environments. A brief overview of the present thesis work is given
below.

In Chapter 2, the objective was to detect impulsive as well as oscillatory
transients occurring in power systems. For this purpose, a method is proposed
using non-stationary signal processing tools like discrete wavelet transform-
based multi-resolution analysis and Hilbert transform. Finally, SVM
classifier has been used for classification of impulsive and oscillatory
transients.

In Chapter 3, a novel PQ detection framework employing cross-spectral
analysis using Stockwell transform and deep learning based automated
feature extraction is proposed. The proposed framework has been developed
in such a way that it can detect single and multiple PQ events correctly even
in noisy environmental conditions. The proposed framework has been
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validated on simulated PQ signals as well as on real life PQ signals to
validate the practicability of the proposed method.

The aim of Chapter 4 is to propose a novel method for detection and
classification of islanding and other transient disturbances (non-islanding
events) in renewable energy grid connected systems. For this purpose, an
autocorrelation-based feature extraction method is proposed. The features
were extracted from negative sequence voltage signals. A deep learning
algorithm has been designed to classify islanding and non-islanding events
using extracted features from auto correlograms for classification of islanding
and other disturbances.

In Chapter 5, a method has been developed for accurate identification of
faults in grid connected solar PV systems based on current data obtained
from real-life grid connected solar PV system. A novel extended Park’s
vector modulus-based fault detection algorithm has been developed and
smoothed pseudo-Wigner-Ville distribution-based time frequency analysis of
different faults and fault free current data has been analyzed in time-
frequency frame. In addition, unsupervised machine learning has been
developed for accurate identification of faults in grid connected solar PV
systems.

Finally, Chapter 6, concludes the thesis by presenting a summarized

overview based on findings of the present work and provides some idea
regarding the possible future extensions of the proposed research work.
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Synopsis

The present thesis work deals with detection and classification of various transient events that
occur in power systems. For this purpose, several advanced signal processing and machine
learning models have been implemented. Transient disturbances are a major concern as they
have far-reaching consequences. Moreover, they have severe impact on the life of power
equipment endangering their proper functionality. If appropriate detection schemes are not
designed then these transients can cause insulation degradation, over-heating, malfunction of
relays causing catastrophic failure. Considering the aforesaid fact, this present thesis work is
aimed to develop accurate methods that can correctly identify and categorize transient events
and that too in presence of noise of spurious data. The thesis is aimed to develop novel signal
processing and machine learning models for accurate identification of impulsive and
oscillatory transients, single and mixed power quality events, islanding and non-islanding
events as well as faults in grid connected solar PV systems. Hopefully this work will help
future researchers working in the area of power system transient detection to some extent.
The aims and objectives of this work are elaborated briefly.

@) Development of a novel for accurate detection of impulsive and oscillatory
transients occurring in power systems. In the present thesis work an efficient
method for accurate classification of impulsive and oscillatory transients is
developed.

(i1) In real life power systems, different types of transient disturbances can happen
which results in poor power quality (PQ). The PQ disturbances can be broadly
classified as single as well as multiple PQ disturbances. So accurate detection and
classification of PQ disturbances is essential from the point of view of safety of
operators as well prevention of malfunction of power apparatus. Detection of
single as well as multiple PQ events is a challenging task in a noisy environment.
Hence, in this work, a method has been developed to accurately classify single
and multiple PQ events in noisy background.

(iii)) In grid connected renewable energy sources, detection of islanding and non-
islanding is a major issue that still needs to be addressed carefully. Appropriate
signal processing and feature extraction methods need to be developed for
accurate detection of islanding as well as non-islanding events. In the present
thesis work a novel method has been proposed to distinguish between islanding
and non-islanding events.

(iv)  Accurate detection of faults in grid connected solar PV systems is also a
challenging issue. Proper methodologies for accurate fault detection are still
lacking and there is still a dearth of accurate fault detection models. In the present
thesis work, an accurate fault detection model in grid connected solar PV systems
is developed.



Abstract

Accurate detection of transient disturbances in power systems is key from the point of view
of reliability and safety of power system operation. Transient overvoltage and overcurrent
occurring in power systems jeopardize the life of power equipment significantly leading to
their unwanted and premature failure. If not detected early, they may lead to malfunctioning
of relays and circuit breakers which may result in partial or complete shutdown of power
substations as well as distribution substations. Moreover, transients degrade the quality of
power leading to power quality issues. Accurate and early detection of transient events can
prevent catastrophic events and maintain the reliability of power transmission systems.
Considering the foresaid fact, the present thesis is aimed at identification as well as
segregation of different types of power system transients. For this purpose, advanced signal
processing as well as machine learning including the newly developed state of the art deep
learning techniques have been implemented for accurate detection and classification of
various transient events. It has been observed that the methods presented in this thesis are
capable of discerning transient events accurately achieving very high recognition accuracy
even in presence of noisy or spurious data. Thus, the proposed methods can be implemented
in real-life environments. A brief overview of the present thesis work is given below.

In Chapter 2, the objective was to detect impulsive as well as oscillatory transients occurring
in power systems. For this purpose, a method is proposed using non-stationary signal
processing tools like discrete wavelet transform-based multi-resolution analysis and Hilbert
transform. Finally, SVM classifier has been used for classification of impulsive and
oscillatory transients.

In Chapter 3, a novel PQ detection framework employing cross-spectral analysis using
Stockwell transform and deep learning based automated feature extraction is proposed. The
proposed framework has been developed in such a way that it can detect single and multiple
PQ events correctly even in noisy environmental conditions. The proposed framework has
been validated on simulated PQ signals as well as on real life PQ signals to validate the
practicability of the proposed method.

The aim of Chapter 4 is to propose a novel method for detection and classification of
islanding and other transient disturbances (non-islanding events) in renewable energy grid
connected systems. For this purpose, an autocorrelation-based feature extraction method is
proposed. The features were extracted from negative sequence voltage signals. A deep
learning algorithm has been designed to classify islanding and non-islanding events using
extracted features from auto correlograms for classification of islanding and other
disturbances.

In Chapter 5, a method has been developed for accurate identification of faults in grid
connected solar PV systems based on current data obtained from real-life grid connected



solar PV system. A novel extended Park’s vector modulus-based fault detection algorithm
has been developed and smoothed pseudo-Wigner-Ville distribution-based time frequency
analysis of different faults and fault free current data has been analyzed in time- frequency
frame. In addition, unsupervised machine learning has been developed for accurate
identification of faults in grid connected solar PV systems.

Finally, Chapter 6, concludes the thesis by presenting a summarized overview based on
findings of the present work and provides some idea regarding the possible future extensions
of the proposed research work.
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Transient events in power system

Chapter 1

Introduction

1.1 Introduction

Transients in power transmission and distribution systems originate from
various sources, exerting detrimental impacts on system equipment and its
overall reliability. Although transients are typically short-lived occurrences,
in the context of electrical systems, they have significant implications. These
momentary surges of energy affect power, data, and communication lines,
disrupting the functionality of vital amenities. Characterized by intense
voltage and current spikes and substantial current flow lasting anywhere from
microseconds to milliseconds, transients drive the system from stability to a
temporary disruption, and then return it to its stable state. The eventual return
to a stable state is known as the steady-state operating mode. According to
the traditional definition, a transient event refers to an abrupt alteration in the
system state, triggering a momentary surge of energy for a limited duration
[1]. Transients in power systems can be mainly classified as voltage and
current transients. Detection of transients is extremely important as they can
lead to serious consequences due to overvoltage and overcurrent which can
cause critical failure of power system equipment. Although many of the
electrical transients have relatively minor magnitudes, they still pose a
serious threat to the performance of circuits and protective devices [2]. These
transients cause overheating of circuit components and semiconductor
devices, leading to malfunctions and failures. Additionally, a significant
proportion These electrical transients carry enough energy to potentially
compromise the insulation of power system equipment. Adverse transient
conditions can inflict significant damage on the power system, protective
equipment, and switchgear. The maloperation of relays and circuit breakers
can cause serious threat to the protection system. The effects on devices
differ depending on their specific characteristics and their position within the
power system. As a result, power system engineers must continuously
develop strategies to mitigate transient magnitudes and control their effects
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Chapter 1

on operational equipment. Development of suitable transient detection
methods can render reliable operation of power system components thereby
preventing unwanted failure of power supply. Thus, in the context of power
system reliability, detection and categorization of transient events is an
important problem to address.

1.2 Sources of transient disturbances in power systems

Transient disturbances in power transmission and distribution systems stem
from two main sources: internal and external factors. Internally, the intricate
network of electrical components and devices, both within and outside the
system, plays a crucial role in generating transient events.

1.2.1 Internal Sources

Components such as transformers and motors, known for their inductive
properties, can instigate voltage transients when their magnetic fields
collapse during current flow disruptions [3]. The impact of these transients
depends on factors like the system's location, source size, time intervals, and
rise time, as well as their effects on neighboring equipment and the electrical
configuration. Various internal sources of transient voltages include internal
capacitor switching, current interruptions in motors, and switching of power
electronics devices involving silicon-controlled rectifiers (SCRs) or thyristors
are among the factors contributing to internal transients [4]. Additionally,
internal transients can result from electrostatic discharge, arc welding,
photocopiers, faulty wiring, circuit breaker malfunctions, contact and relay
closures, as well as load start-ups or disconnects [5]. While these internal
sources can cause transients, they usually do not lead to significant voltage
surges. Research indicates that internal sources seldom raise the system
voltage to twice the normal level. Moreover, internal sources of transient
voltages, originating from the everyday operation of devices such as low
voltage motors, welding stations, electrical furnaces, ovens, and induction
heaters within the facility, can also affect nearby equipment. These internal
transients, though less widely recognized, can still exert a substantial
influence on the overall stability of the electrical system.
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1.2.2 External Sources

Transient voltages, originating from both external and internal sources, can
substantially affect the seamless operation of an electrical facility. External
factors such as lightning strikes, capacitor bank switching, line cable
transitions, transformer operations, and current-limiting fuse actions, can
create transient voltages that propagate through the facility's electrical
system. These transients can lead to disruptions in the normal functioning of
equipment and machinery, potentially causing damage and downtime.

Lightning, as one of the most prominent external sources of transients, can
induce transient voltages into nearby conductors when it strikes in the
vicinity of power lines. While direct lightning strikes are infrequent, the
induced electric fields during a discharge can generate substantial induced
transients, even without physical contact with the power lines. Apart from
lightning, various normal utility operations, like the switching of loads,
disconnect, and capacitor banks, can introduce transients into the power lines
[6]. Loose connections in the distribution system, often caused by adverse
weather conditions such as high winds, can result in power lines colliding or
arcing, producing further transients that can disrupt the smooth operation of
electrical systems. It is essential to mention that shared transformers can also
contribute to transient activities. Given that multiple users are connected at
the secondary side of the transformer, any transient activity generated within
the shared system can impact the electrical main, affecting the overall
functioning of the facility. One prominent trigger for the formation of
transients is the occurrence of lightning, although their impact typically
manifests indirectly by affecting the power line. This influence generates
induced transients by coupling with the power system. Routine utility tasks,
such as switching facility loads, toggling on-off disconnects on energized
lines, operating capacitor banks, and tap-changing transformers, represent
another significant external factor contributing to transient generation [7].

Natural calamities and other environmental factors can lead to the
development of transients by causing poor connections within power
distribution networks. Energization of power transformers can contribute
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transient over voltages [8]. The underlying reason behind transformer
transients lies in the collapse of the magnetic field upon energization, leading
to transient generation. Arcing arises from malfunctions in the operation of
breakers and contractors, often occurring when voltage fluctuations occur
abruptly, resulting in disruptive electrical arcs. In addition to the above,
faults in electrical systems can lead to momentary voltage sag and voltage
swelling. Faults in electrical systems can be broadly categorized into four
types: (i) Line to ground fault (LG) (ii) Line to line fault (LL) (iii) Line to
line and ground fault (LLLG) (iv) Open circuit fault [9]. All these faults
cause substantial increase in overvoltage and overcurrent that may lead to
mal operation of protective devices. Understanding, managing and
diagnosing these various sources of transient voltages and currents are crucial
for maintaining the stability and efficiency of the electrical transmission and
distribution network.

1.3 Categorization of transients in power systems

According to the definition outlined in the IEEE 1150-90-2019 standard,
Transients can be classified into two main types: impulsive and oscillatory
[10]. An impulsive transient is characterized by a sudden, non-power
frequency alteration in voltage or current with a unidirectional polarity, such
as lightning strikes and electrostatic discharges. The impulsive transients are
known as fast front over voltages. In terms of response, impulsive transients
typically rise within 0.1 ms and endure for about 1 ms. Conversely,
oscillatory transients can exhibit a frequency surge of up to 5 kHz [11].
Analytically, these transients are calculated for benchmarking and
troubleshooting purposes, aiding in the understanding and management of
transient events within the electrical system. Conversely, oscillatory
transients feature a sudden, non-power frequency shift in voltage or current
with a bidirectional polarity, like capacitor bank energization or cable
switching etc. for a longer duration unlike switching transients [11]. The
oscillatory transients are slow front over voltages characterized by transient
periods of oscillation that, although brief in comparison to the standard power
frequency, can exert significant stress on the various components and



Transient events in power system

electrical equipment comprising the system. These two transients are mainly
witching transients as they are characterized by high frequency components.

Besides, there are two other types of transients such as electromagnetic and
electromechanical transients, though closely linked, exhibit some nuanced
differences. Electromagnetic transients primarily revolve around fluctuations
in voltages and currents, often triggered by the actuation of circuit breakers,
malfunctions in power electronic or electronic equipment, faults, or lightning
strikes [3]. On the other hand, electromechanical transients arise from
imbalances between power generation and consumption, resulting in a shift
in the generator's speed relative to its normal rotation. This typically occurs
due to disturbances in the system, such as the sudden outage of a neighboring
transmission line. Unlike electromagnetic transients, which occur rapidly,
electromechanical transients manifest over a more extended period due to the
inertia of the two generator shafts. Understanding the intricate nature of these
transients is pivotal, particularly in instances where the transient waveform
arises from multiple simultaneous switching actions, resulting in the
convergence of transients. Moreover, phenomena like current chopping,
which occurs when a circuit breaker's current reaches zero before the natural
zero crossing, and restrike, which can happen during the de-energization of a
capacitor by a gradually moving switch, underscore the complexity and
multifaceted nature of these transient events [5].

In addition, any type of power quality disturbances like harmonics, voltage
sags, voltage swell, sudden interruption, voltage flicker etc. may also come
under the umbrella of power system transients [12]. These power quality
disturbances are transient events which are not strictly oscillatory or
impulsive transients. Recently, with the integration of renewable energy
sources to grid, islanding events also characterize a typical transient event
which is difficult to detect. Thus, categorization of transients is difficult in
the true sense as different types of power system disturbances can occur
whose amplitude, frequency content may vary from pure sinusoid.

The consequences of these afore-mentioned transients can be far-reaching,
leading to a range of issues such as over-voltages, which can trigger



Chapter 1

flashovers or insulation breakdown, and over-currents that may result in
power equipment damage due to electromagnetic forces and excessive heat
generation. Sources of power system transients are diverse and encompass
lightning strikes on power system elements or the ground, as well as
switching activities occurring in network components and end-user
equipment. In the next section, the detrimental effects of power system
transients are discussed in detail.

1.4 Detrimental effect of transients

Transient-induced equipment damage can manifest in various forms,
including dielectric breakdown, electric flashover, fracture, and thermal
overloads caused by surpassing specific dV/dt and dI/dt limits. Additionally,
transients can render dielectric materials electrically conductive, especially
when exposed to high magnitudes of stress. For instance, the physical
separation of two conductive mediums at different voltage potentials can
cause air, serving as a dielectric, to become conductive resulting in dielectric
breakdown. Dielectric breakdown, often identified as electric flashover or arc
flash, is associated with the exceeding of electrical stresses. These stresses
can convert into mechanical energy, causing fractures in component materials
at both microscopic and macroscopic scales. Additionally, transients produce
thermal energy, which can degrade the insulation material [12]. On a
molecular level, the speed of voltage and current fluctuations induced by
transients plays a crucial role in determining the effects these stresses impose
on the materials and components.

The impact of transients is primarily felt through disruptions to the accurate
functioning of electronic equipment, leading to decreased efficiency and
shortened device lifespans. Integrated circuits (ICs) are particularly
susceptible, often experiencing burnouts because of the transient-induced
voltage and current stress. Transients also trigger excessive heating in
motors, affecting their overall performance. They interfere with device
timing, causing functional disruptions and generating noise, while also
hastening the deterioration of installations.
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In technical terms, transients lead to increased hysteresis loss, resulting in
higher current injections for the same output, thereby straining the motor
further. Additionally, transients can severely compromise the performance of
lightning protection systems, causing a decrease in operational capacity and
even complete failure [12]. Visible darkening of the anode's ring, induced by
transients, signals a decline in system effectiveness. Controlling transient
phenomena is crucial for extending the lifespan of these vulnerable devices.

The distribution system is critically affected, as evidenced by the degradation
of contact areas in breakers and switches. This deterioration causes faulty
breaker behavior, leading to circuit interruptions under false pretenses [13].
Voltage transients can impact electrical equipment in four primary ways:
intermittent interruption, chronic degradation, latent failure, and catastrophic
failure. Intermittent interruption occurs when transients are injected into data
or control networks, leading to data loss or corruption and the malfunctioning
of loads or devices. Chronic degradation occurs when repeated transients
gradually compromise the integrity and reliability of exposed components,
ultimately rendering them inoperable.

Latent failures resemble chronic degradation but stem from significant
transient events that damage components without fully impairing their
function. Over time, these components become inoperable due to the stresses
of normal operation. Catastrophic failures are more immediately identifiable,
as the affected component or device stops functioning properly almost
instantly. Such events often exceed the component's rated threshold, resulting
in permanent open circuits or short circuits.

Devices such as microprocessors and programmable logic controllers (PLCs)
are particularly susceptible to damage caused by voltage transients,
potentially reducing their reliability and operational lifespan. The shrinking
scale of device components due to technological advancements further
exacerbates their susceptibility to damage from transients. Consequently,
transient voltages can disrupt normal operations, leading to erratic behavior
and reduced product quality. In industrial settings, interruptions in continuous
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manufacturing processes can result in significant revenue losses due to
production downtime.

1.5. Effect of transients on power quality (PQ) issues

The significance of power quality in power systems cannot be overstated, as
subpar electricity not only poses hazards but also proves uneconomical for
both utilities and consumers. Consequently, a concerted emphasis on
enhancing the quality of power supplied to loads is imperative. Scrutinizing
the root causes of poor power quality, diverse measuring parameters,
established power quality standards, and an array of techniques to bolster
power quality represents a crucial starting point. Essentially, power quality
reflects the power grid's efficacy in delivering power proficiently to
consumers and the capability of equipment to efficiently consume the
supplied power [14]. Technically, it involves the assessment, refinement, and
examination of sinusoidal waves at specified frequency and voltage levels.
The financial and operational aspects of the power system are heavily
influenced by power quality, necessitating a certainty that the power
consumed by the system adheres to desired standards. Modern consumers
exhibit heightened awareness regarding power quality, prompting numerous
governments to amend policies and compel heightened sensitivity to any
fluctuations in power quality. Manufacturers, utilities, and consumers all
share a vested interest in power quality, contributing to the escalating
concerns in this domain. Power system transients stand out as a primary
catalyst for degradation of power quality [15]. Poor power quality can have
detrimental effects on both the utility and consumer ends [15]. Some of the
primary consequences within the power system resulting room subpar power
quality include:

1. Harmonics contribute to waveform distortion, potentially subjecting
equipment to elevated wave form peaks, which in turn can inflict
damage. Excessive voltage levels can also force equipment into a
saturation state, introducing further disruptions.
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2. Harmonics induce over-voltages that cause significant damage to the
insulation endangering the life of high voltage apparatus like power
transformers, cables etc.

3. Equipment longevity is compromised due to factors like overheating
and noise, leading to reduced lifespan. The suboptimal power
quality substantially diminishes system efficiency and performance.

4. Power outages or interruptions can result in the loss or corruption of
critical data, leading to significant losses.

5. The costs associated with power systems substantially escalate when
power quality is lacking.

6. In the event of power failures, consumers can encounter a multitude
of issues due to power unavailability, which also impacts utility
expenses.

7. Consumer loads suffer from detrimental effects and potential
damage stemming from power quality concerns.

8. In certain cases, the power system may need to be oversized to cope
with the additional stress imposed by poor power quality, inevitably
leading to elevated installation costs.

Thus, considering the detrimental effect of transients on PQ, it is necessary to
develop methods that can efficiently detect different type of PQ events
accurately so that the reliability of power transmission and malfunctioning of
power equipment can be prevented.

1.6. Transients in grid connected renewable energy sources

Over the past decade, electrical power systems have evolved from
conventional energy systems to advanced next-generation smart grid systems.
Conventional power systems primarily depend on a few centralized, large-
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scale power generation sources, predominantly hydropower or fossil fuel-
based systems. These systems utilize a vast transmission network to
distribute power to consumers through a distribution system. However, the
emergence of smart grids and smart energy systems has increasingly captured
the attention of researchers. Unlike their conventional counterparts, smart
grids facilitate two-way power and information flow, transforming them into
active grids. This transformation is attributed to the integration and
contribution of various distributed and renewable energy resources. The
bidirectional flow of power and communication not only enhances the
reliability, security, and efficiency of power systems but also positions the
smart grid as the future of power distribution. Its benefits include improved
energy efficiency, cost-effectiveness, reduced emissions, lowered costs, and
enhanced utility. A pivotal aspect enabling the smart grid's multifaceted
operations compared to conventional systems is the plethora of
interconnected devices capable of exchanging commands and information to
execute energy-related tasks efficiently [16]. This shift from conventional to
smart grids has ushered in a myriad of distributed generation (DG) systems,
encompassing photovoltaic (PV), wind energy, and electric vehicles (EV)
[17]. Essentially, the smart grid amalgamates processes, technologies, and
distributed renewable generation systems, augmenting the intelligence and
efficiency of the conventional power grid.

However, the integration of diverse DGs introduces several challenges. These
encompass load forecasting, fault and failure analysis, demand-side
management, non-intrusive load monitoring (NILM) [7], cybersecurity,
electricity theft detection, and islanding detection [among others. The
increasing prevalence of intermittent and DG systems, coupled with
technological advancements, necessitates the development of more accurate
and reliable solutions for these challenges. Switching of renewable energy
sources to grid results in transients which are often difficult to discern from
naturally occurring transients like capacitor switching load switching etc.
[17]. Islanding is one such phenomenon where the renewable energy source
gets disconnected from the main grid and operates in a standalone mode if
there is some disturbance in the main grid. Detection of islanding is a key
challenge in distributed generation system. Failure to detect islanding events
results in maloperation of relays and circuit breakers resulting in unwanted
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tripping of transmission lines. So, detection of islanding and non-islanding
events in grid connected renewable energy sources is a key challenge.

In addition to the above, grid connected renewable energy sources need lots
of power electronics components for grid integration. Power electronic
converters and inverters are the main components which are used to integrate
renewable energy sources to the grid. Switching of these power electronic
components often results in transients which are difficult to identify. In
addition, faults in converters also lead to mal operation of power electronic
components which may lead to unwanted islanding, tripping and catastrophic
failure. Early and accurate detection of faults in grid connected renewable
energy sources is thus a major challenge and suitable methods need to be
developed so that accurate measures can be taken, and pre-mature failure can
be minimized.

In existing literature several methods have been proposed for detection and
classification of transients in power systems in presence or absence of
renewable energy sources with or without grid connected mode. In the next
section, a brief overview of different signal processing and machine learning
methods available for voltage and current signal analysis is presented.

1.7. Overview of signal processing and machine learning
methods

Evaluating transient detection and protection in power systems presents a
considerable challenge due to the swift reactions and complex infrastructure
inherent in these systems. This task is pivotal for operational considerations
and is crucial in monitoring stability status and constraints [1]. Nonetheless,
conventional power systems, characterized by their low sampling frequencies
for measurement devices, make the monitoring of power system transients
nearly unfeasible. The emergence of wide-area measurement systems
(WAMS) and advanced measurement tools, notably phasor measurement
units (PMUs), has furnished the necessary infrastructure for real-time
transient security assessment. Local measurement devices may not always
cover predefined areas and can experience temporary or permanent failures.

11
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Consequently, designing a comprehensive model has become essential. In
existing literature, various signal processing and machine learning methods
are available for analyzing power system transients. Signal processing
methods involve analyzing measured voltage and current signals in both time
and frequency domains to ascertain stable or unstable conditions. The
available signal processing methods for analysis of voltage and current
signals in power systems can be broadly classified into three types:

1.7.1 Types of signal processing algorithms

Signal processing algorithms allow analysis of voltage and current signals in
three domains namely:

1. Time domain analysis
2. Frequency domain analysis
3. Time frequency domain analysis

1.Time domain analysis

In time domain analysis, the voltage and the current signals are analyzed
using different time domain signal analysis methods like cross-correlation,
autocorrelation, derivative based method etc. [18]. These methods do not
allow any frequency information present in a signal. The features can be
extracted from the time domain analysis of the signals itself without losing
the temporal information.

2. Frequency domain analysis:

In frequency domain analysis, the voltage and current signals are usually
converted from time domain to frequency domain to observe the frequency
components present in a signal. Popular signal processing methods for
converting a signal from time domain to frequency domain include discrete
and fast Fourier transform [19], power spectral density estimate etc. [19].

12
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Frequency domain analysis gives only spectral information present in a
signal, but the temporal information is lost.

3. Time-frequency domain analysis

In time-frequency domain analysis, the time domain voltage signals are
converted from time domain to time-frequency domain. To elucidate further,
the time-frequency analysis provides time as well as frequency information
of a signal at the same time. Thus, unlike frequency domain, where the
frequency information of a signal is lost, time-frequency analysis provides
joint time and frequency information at the same time. Some of the popular
time-frequency analysis methods like short time Fourier transform (STFT)
[20], continuous wavelet transform (CWT) [20], Stockwell transform [20]
etc. Time frequency domain method is mainly used to analyze non-stationary
signals.

Many analytical techniques demand significant computational resources,
relying on intricate physical models and predefined thresholds. In contrast,
data-driven methods leverage historical data for decision-making and are
suitable for real-time monitoring. These data-driven approaches generally
categorize into three types: shallow, deep, and hybrid methods. Currently,
power systems are undergoing rapid transformation towards more active,
flexible, and intelligent smart grids. This evolution introduces challenges
across various domains, including the integration of distributed renewable
energy sources, cybersecurity, demand-side management, and decision-
making in system planning and operation. The successful implementation of
advanced functionalities in the smart grid largely hinges on the robustness of
its information and communication infrastructure. Additionally, effectively
managing the vast amounts of data generated from multiple sources, such as
smart meters, phasor measurement units, and various sensors, is crucial. In
recent years, there has been a growing interest and trend in leveraging
machine learning-based techniques to address the myriad challenges faced by
smart grids. Machine learning is expected to be a major driving force in
future smart electric power systems. In the next section, brief overview of
different machine learning algorithms is given.

1.7.2 Types of Machine Learning algorithms
13
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Machine learning encompasses four distinct categories of techniques, namely
[21]:

1. Supervised Learning

2. Unsupervised Learning

3. Semi-Supervised Learning
4. Reinforcement Learning

1. Supervised learning:

In supervised machine learning, machines are trained using labeled datasets,
using this information to predict future outcomes. This training process is
based on guidance and supervision, hence the name 'supervised.' The labeled
dataset serves as a roadmap for machines, as specific input values are
associated with corresponding output values. Subsequently, test datasets are
provided post-training to validate the accuracy of predictions. The primary
objective of supervised learning techniques is to establish relationships
between input and output variables. Supervised machine learning can be
classified into two distinct problem types [21]:

. Classification: Classification algorithms are employed when the
output variable assumes a binary or multiclass in nature. These algorithms
categorize responses into distinct classes such as 'Available' or 'Unavailable,'
"Yes' or 'No,' 'Pink' or '‘Blue,' based on the labeled datasets provided during
training. This method is extensively used in tasks like spam detection.

. Regression: Unlike classification, regression algorithms address
problems where a linear relationship exists between input and output
variables. Regression techniques are employed to make predictions in
scenarios like weather forecasting and market conditions.

2. Unsupervised Learning

14
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Unlike supervised learning, unsupervised learning operates without guidance
or supervision. It uses unlabeled and unclassified datasets for machine
training, allowing machines to make autonomous predictions without human
intervention. This approach is often employed to categorize or group
unorganized data based on their inherent characteristics, similarities, and
differences. Machines excel in uncovering hidden patterns and trends within
the input data. Unsupervised learning can be again broadly classified into two

types:

. Clustering: Machines segment data based on inherent features,
similarities, and differences. They identify clusters within complex data to
facilitate object classification. This method is commonly used to understand
customer segments and purchasing behaviors across diverse geographical
contexts.

. Association: Machines detect relationships and connections among
variables within extensive datasets. This approach is particularly popular in
domains like web usage mining and plagiarism detection in doctoral research.

3. Semi-Supervised Learning

This approach combines the strengths of both supervised and unsupervised
learning techniques, using a mix of labeled and unlabeled datasets for
training. It leverages all available data, making it cost-effective. Initially,
similar data is grouped using an unsupervised learning algorithm, aiding in
labeling unlabeled data [21].

4. Reinforcement Learning

Reinforcement learning operates without labeled data, relying on experiences
and a trial-and-error approach based on feedback. Al explores data, learns
from previous experiences, and enhances its performance.

. Positive Reinforcement Learning
. Negative Reinforcement Learning
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Shallow-architecture methods, such as artificial neural networks (ANNSs),
decision trees (DT) [22], random forests, kernel regression, Lasso regression,
probabilistic neural networks (PNN) [22], support vector machines (SVMs)
[22], ball vector machines (BVM), extreme learning machines (ELM), and
ensemble learning (EL) [22], are established tools in power system security
assessment. However, these shallow architectures may struggle to precisely
capture the nuances and characteristics of transient behavior, often lacking
generality due to their constrained hypothesis space.

Deep learning, an emerging subset of machine learning, has demonstrated
success in various engineering applications in recent years, adept at capturing
intricate, nonlinear, and highly variable features [23]. In the area of power
systems, deep learning has been deployed for tasks including residential load
forecasting, induction machine condition monitoring, wind turbine
surveillance, controller design for renewable energy systems, power quality
evaluation, and power transformer protection, among others [23].
Nonetheless, the application of deep learning in transient security assessment
remains a relatively uncharted territory. For instance, a contingency-based
security assessment is framed as a CNN-based classification problem with
two classes. In another approach, a deep autoencoder is integrated with the
Vine Copulas model to bolster transient security evaluation and discern stable
from unstable conditions with heightened accuracy. The intrinsic capability
of deep networks for automatic feature extraction markedly enhances
performance.
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1.8 Limitations of the existing signal processing and machine
learning methods for transient detection

Although numerous signal processing and machine learning algorithms have
been implemented for detection and classification of different power system
transients, yet from the practical point of view of transient detection in power
systems existing methods have certain limitations. The potential drawbacks
of the existing methods are mentioned below.

1. In the context of detection of transient disturbances, there is need to
develop an accurate method for analysis of both impulsive and
oscillatory transients. Also, selection of suitable features and
machine learning algorithms is a major challenge for accurate
detection of impulsive and oscillatory transients.

2. For reliable detection and classification of power quality (PQ)
disturbances, detection in noisy environment is a challenging issue.
In general, analysis of PQ signals in joint in time-frequency plane is
done using traditional signal processing algorithms. However,
performance of most of the available methods will fail miserably
under low signal to noise ratio condition. Another important issue is
the feature extraction. Manual feature extraction always imposes the
risk of selection of redundant features that may peril and degrade the
performance of the classifier. Hence, automated feature extraction
from time-frequency analysis of PQ signals in noisy environments is
an important problem to address.

3. In grid connected renewable energy sources, detection of islanding
and non-islanding is a major issue that still needs to be addressed
carefully. Appropriate signal processing and feature extraction
methods need to be developed for accurate detection of islanding as
well as non-islanding events. Additionally, design of suitable deep
learning models for classification of islanding events also needs to
be looked at meticulously for accurate segregation of non-islanding
events from the islanding ones.
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4. In addition to islanding, detection of faults in grid connected
systems is also a challenging issue. Proper methodologies for
accurate fault detection are still lacking and there is still a dearth of
deep learning models for unsupervised fault detection in grid
connected renewable energy systems. Unlike supervision
classification models where the machine learning models work on a
pre-labelled dataset, in unsupervised learning the models are not
pre-labeled. Unsupervised machine learning models are becoming
very popular owing to their ability to work satisfactorily on
unlabeled data. Hence, there is need to develop unsupervised
machine learning tools for accurate classification of faults in grid
connected renewable energy systems.

Thus, based on the limitations of the existing methods as stated above, the
present thesis is aimed to fill some of the research gaps. The aims and scope
of the present thesis are enumerated below.

1.9 Scope and objective of the thesis

The main objective of the present thesis is to develop advanced signal
processing and machine learning algorithms for transient detection and
classification in power systems. In this context, the present thesis is divided
into the following chapters which are explained below.

In Chapter 2, a method for accurate detection of impulsive and oscillatory
transients occurring in power systems is proposed using non-stationary signal
processing tools like discrete wavelet transform-based multi-resolution
analysis and Hilbert transform. As stated earlier, impulsive and oscillatory
transients are one of the most frequently occurring power system
disturbances. So, accurate detection of these two transient disturbances is a
challenging task. Moreover, these two transient disturbances are short-time
disturbances which are either manifested as sudden voltage spikes or
oscillation for finite duration. These voltage waveforms are predominantly
non-stationary in nature. So, non-stationary signal analysis is needed for
proper analysis of power system transient disturbances. In addition to signal
analysis, proper feature extraction is necessary for accurate classification of
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impulsive and oscillatory transients. So, in Chapter 2, a new method to detect
impulsive and oscillatory transients in power systems is proposed by
applying discrete wavelet transform-based envelope analysis and supervised
machine learning algorithms.

In Chapter 2, it has been observed that application of discrete wavelet
transform based multiresolution analysis and envelope analysis using Hilbert
transform has delivered accurate results for detection and classification of
oscillatory and impulsive transients. However, only lightning and switching
transients were considered in the earlier chapter. In real life power systems,
several other types of transient disturbances can happen which results in poor
power quality (PQ) issues. The PQ disturbances can be broadly classified as
single as well as multiple PQ disturbances. So accurate detection and
classification of PQ disturbances is essential from the point of view of safety
of operators as well prevention of malfunction of power apparatus.
Considering the aforementioned facts, in Chapter 3, a novel PQ detection
framework employing cross-spectral analysis using Stockwell transform and
deep learning based automated feature extraction is proposed. The proposed
framework has been developed in such a way that it can detect single and
multiple PQ events correctly even in noisy environmental conditions. The
proposed framework has been validated on simulated PQ signals as well as
on real life PQ signals to validate the practicability of the proposed method.

In Chapter 3, a novel framework for detection and classification of PQ
disturbances in noisy environment employing cross spectral analysis and
deep learning is proposed. However, in the previous chapter, generalized and
commonly occurring PQ disturbances in power systems are considered where
the effect of transient disturbances occurring due to renewable energy
systems connected to grid are not considered. When renewable energy
sources are connected to grid, detection of islanding and other transient
disturbances becomes a challenging issue. Considering the above facts, in
Chapter 4, a novel method employing autocorrelation-based feature
extraction method is proposed for detection of islanding and other transient
disturbances in renewable energy grid connected systems. A deep learning
algorithm has been designed to classify islanding and non-islanding events
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using extracted features from auto correlograms for classification of islanding
and other disturbances.

In Chapter 4, only detection of islanding and non-islanding events using
autocorrelation-based feature extraction and deep learning has been proposed.
However, in addition to islanding, detection of faults in grid connected solar
PV systems is a challenging issue and if not detected properly may lead to
severe maloperation. Hence, in Chapter 5, a method has been developed for
accurate identification of faults in grid connected solar PV systems based on
current data obtained from real-life grid connected solar PV system. A novel
extended Park’s vector modulus-based fault detection algorithm has been
developed and smoothed pseudo-Wigner-Ville distribution-based time
frequency analysis of different faults and fault free current data has been
analyzed in time- frequency frame. Finally, an unsupervised machine
learning has been developed for accurate identification of faults in grid
connected solar PV systems.

In Chapter 6, deals with the summary and conclusions of the present thesis
work. In addition to conclusions, the scope of the future work has been
discussed in chapter 6.

In Appendix, some additional results like mathematical formulae of PQ
events and confusion matrix of PQ classification are shown.

1.10 Originality of the thesis

To the best of author’s knowledge, the original contributions of the thesis are
as follows:

1 Development of a novel discrete wavelet transform based
multiresolution analysis and envelope extraction method using
Hilbert transform for accurate detection of impulsive and oscillatory
transients in power systems.

2 Application of cross Stockwell transform and deep feature
extraction employing convolutional neural network for detection and
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classification of single and multiple PQ events in noisy
environment.

3 Development of a novel islanding detection method for grid
connected renewable energy sources employing autocorrelation and
bi-directional long-short term memory classifier.

4 Application of smoothed-pseudo-Wigner-Ville distribution-based

time-frequency analysis and autoencoder based unsupervised fault
classification model for grid connected solar PV systems.
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Chapter 2

A Novel Technique Employing Discrete
Wavelet Transform-Based Envelope Analysis
for Detection of Power System Transients

2.1 Introduction

The term ‘transient’ in power systems can be thought of a phenomenon
leading to a sudden alteration in voltage and current waveforms persisting for
a very small duration [1]. Occurrence of power system transients are very
frequent in power transmission and distribution networks. Although
persisting for a very short duration, power system transients can endanger the
life of power equipment by imposing severe electrical and thermal stress on
power equipment. In the long run, a complete failure of the power equipment
may take place leading to a catastrophic failure of the entire power system
network. Therefore, detection of power system transients has been a major
focal point of research for the past few years. In this context, researchers all
over the world have implemented several advanced signal processing and
machine learning techniques which have been able to detect and classify
different transient phenomenon occurring in power systems with reasonable
efficacy.

Since power system transients represent highly nonstationary behavior
application of wavelet transform for automated detection of transient
disturbances have been reported in many existing literatures. Detection and
classification of different transient phenomena occurring in power
transformers using combined wavelet transform and neural network have
been reported in [2]. Automated detection and classification of power system
transients implementing wavelet transform and feed forward artificial neural
network has been reported in [3]. Power system transient analysis based on
using scalograms and wavelet multi resolution analysis have been reported in
[4]. Features based on dual tree complex wavelet transform (DTCWT) and
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artificial neural network for detection of power system transients have been
reported in [5]. In [6], a sparse representation classifier based on DTCWT
based features has been successfully implemented for recognition of different
power system transients. It is therefore evident from the existing literatures
that, wavelet transform is a very popular feature extraction tool that have
been widely used to analyze different types of power system transients.
Hence, in the present work, a novel technique based on envelope analysis of
discrete wavelet transform (DWT) coefficients has been proposed to detect
different type of power system transients. DWT based envelope analysis has
been recently proposed as a novel feature extraction technique from non-
stationary signals. Application of DWT based envelope analysis have been
reported in biomedical engineering for detection of epilepsy in [7] and in
mechanical engineering also for condition monitoring in rolling element
bearings [8]. In this paper, it has been used for the first time in the area of
power systems to detect different transient disturbances.

2.2 Theoretical background

2.2.1 Discrete wavelet transform

Discrete wavelet transform (DWT) is an efficient technique to analyze any
nonstationary time series. DWT based multiresolution analysis (MRA) offers
localization both in joint time and frequency frame. DWT based MRA offers
good frequency resolution for the low frequency components of a signal and
good time resolution for the high frequency components of a signal.
Moreover, DWT has low computational complexity and easy to implement.
The mathematical details of DWT can be found out in many available
literatures [2-3] and hence are not discussed in greater details in this paper.
Mathematically, DWT of any signal f(¥) can be expressed as:

1

DWT(p.q) = [, F(O) 7 () dt @.1)

where is the mother wavelet and 2”7 and 27 are the translation and dilation
parameters, respectively. One of the major issues associated with DWT based
analysis is the choice of the mother wavelet. In the present work
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‘Daubechies-4’ mother wavelet is used to decompose the power system
transient signals, since, it has been reported in existing literatures that
‘Daubechies’ wavelet can detect high frequency short time disturbances [9].

2.2.2 Hilbert transform

For envelope detection of any nonlinear & nonstationary signal, Hilbert
Transform is a very efficient and popular method. Mathematically, Hilbert
transform of a signal f(t) is given by:

_ 1 e @
fu® =f®) x—=[_ dr (2.2)
where fy(f) is the Hilbert transform of f(f). The envelope spectrum E(f)
corresponding to each frequency sub bands are calculated by the following
equation:

E(®) = |fu(®)] (2.3)

In the present work, instead of using envelope spectrum from the signals
directly, the envelope of the detail coefficients of different frequency sub
bands have been extracted for the purpose of detection of power system
transients. The proposed methodology is therefore a modification over the
existing method [10] which directly uses envelope extraction from the signal
itself.

2.3 Methodology

2.3.1 Synthetic signal generation

In the present study, two common power system transient signals have been
generated in MATLAB 2016 (a) environment using numerical models as per
IEEE Standard-1159 [11]. The sampling frequency of the signals are kept at
10 kHz. Further, it is reported in [12], that the simulated power system
transient signals generated using numerical models closely resemble real time
transient disturbances that take place in power system networks. Fig. 2.1(a)
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and Fig. 2.1(b) show the typical oscillatory and impulsive power system

transient signals used in the present work.
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Fig, 2.1 Typical nature of (a) oscillatory voltage transient and (b) Impulsive
voltage transient signal

2.3.2 Feature extraction from DWT Envelope

The power system transient signals are at first decomposed using DWT into
different frequency sub bands. Since most of the transient phenomenon are

28



A Novel Technique Employing Discrete Wavelet Transform-Based Envelope Analysis for
Detection of Power System Transients

high frequency short time disturbances, hence, the first four detail
coefficients D,-D, have been chosen in this work since high frequency
information of a signal are mostly retained within the first few detail
coefficients. Table 2.1 shows the respective frequency sub bands for the first
4 level of wavelet decomposition.

Table 2.1 Extracted features

Level of Decomposition | Range of Frequency
D, 5kHz-2.5kHz
D, 2.5kHz-1.25kHz
Ds 1.25kHz-625Hz
Dy 625Hz-312.5Hz

After extraction of different frequency sub bands using DWT based MRA,
HT is applied on each of the first four decomposed sub bands and using
equation (3), the envelope spectrum corresponding to each sub band have
been obtained. Fig.2.2 shows the first four detail coefficients D,-D, obtained
for oscillatory transient signal after wavelet decomposition and the
corresponding envelope of each frequency sub bands are shown in Fig.2.3.
The choice of features is very important in any classification problem. The
selection of suitable features can be done by either hit and trial method or on
prior experience. Similar types of features has been found to yield reasonably
high degree of classification accuracy in existing literatures [6-7]. Hence,
from the envelope spectrum corresponding to each sub band following
statistical features have been extracted in the present work for the
classification of power system transients.

F;=Standard deviation of the envelope for each sub band
F>,=Mean of the envelope for each sub band
F;=Energy of the envelope for each sub band

F,=Maximum value of the envelope for each sub band

2.3.3 ANOVA test of the extracted features

After extracting the selected features from the DWT envelope spectrum of
both type of transient signals, a statistical null hypothesis test known as
analysis of variance (ANOVA) test is done to analyze the discriminative
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probability of the selected features. Based on the output of the ANOVA test,
which yields a ‘p’
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Fig.2.2 First four detail coefficients of the oscillatory voltage transient signal
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Fig.2.3Envelope of the First four detail coefficients of the oscillatory voltage
transient signal E;-E,.

value, the discriminative capability of the features can be assessed. A lower
‘p’ value is an indicator of very high discriminative capability [13]. Table 2.2
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and Table 2.3 show the variation of the extracted features from the envelope
spectrum along with respective ‘p’ values computed for each feature
corresponding to each sub band for oscillatory and impulsive transients,
respectively. It can be observed from the results presented in Table 2.2 and
Table 2.3, that the extracted features from the envelope spectrum of each sub

Table 2.2 Variation of extracted features (mean * standard deviation) with
‘p’ values for oscillatory transient

Envelope
corresponding | Standard ‘v’
to each Sub- | Deviation Mean Energy Max values
band
E, 0.005 0.0008 0.024 0.119 4.33x10°
(£0.0006) | (£0.0001) | (£0.002) | (+0.00003) 1
E, 0.0087 0.002 0.014 0.073 5.69x10°
(£0.0009) | (£0.0009) | (£0.003) | (+0.005) 13
E, 0.024 0.006 0.144 0.162 5.80x10°
(£0.007) | (£0.002) | (0.062) | (x0.021) 1
E, 0.029 0.009 0.215 0.197 4.49x10°
(£0.009) | (+0.002) | (+0.129) | (+0.055) H

Table 2.3 Variation of extracted features (mean + standard deviation) with

‘p’ values for impulsive transient

Envelope
corresponding | Standard ‘v’
to each Sub- | Deviation Mean Energy Max values
band

E, 0.035 0.004 1.143 0.849 2.43%x10°
(£0.005) | (£0.0008) | (£0.338) | (£0.112) 14

E, 0.031 0.003 0.769 0.598 7.95%10°
(£0.013) | (£0.001) | (20.693) | (0.288) 17

E; 0.029 0.004 0.603 0.452 3.48%x10°
(20.016) | (£0.002) | (0.713) | (0.278) 13

E, 0.023 0.006 0.218 0.244 8.65x10
(£0.009) | (+0.002) | (+0.181) | (+0.117) 18
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band for both types of transient signals are significantly different from each
other. Besides, from the results of the ANOVA test, it is evident that the
selected features have a significant discrimination capability between two
classes with ‘p’ value < 0.0001, and henceforth can be used as inputs to the
classifier for the classification of power system transients.

2.3.4 Support vector machines

Support Vector machines is a very popular machine learning algorithm which
has been implemented by researchers in various fields for solving
classification problems. SVM is proposed to solve a binary classification
problem using the principle of structural risk minimization. Details of SVM
can be found in [14]. Here, a brief description of the classifier is given below.

An SVM aims to classify sample points belonging to two different classes by
finding an optimum hyperplane which maximizes the margin i.e. separation
between the data points with the nearest data points better known as support
vectors. Nonlinear SVMs can map the training samples to a high dimensional
feature space with the help of several mapping functions known as kernel
functions. There are several kernel functions present in an SVM like linear,
polynomial, RBF etc. In the present work, initially, the performance is
evaluated using all kernel functions of SVM, and it has been observed that
RBF kernel yields better performance compared to other kernel functions,
based on which the classification accuracies are reported in this work.
Moreover, since the present problem is a simple binary classification
problem, hence, SVM has been used in the present work.

2.3.5 Performance analysis

The performance of the proposed method based on extracted features from
the envelope spectrum from each frequency sub bands and employing SVM
classifier have been analyzed in this section. Since, four statistical features
are extracted from the first four frequency sub bands, hence the size of the
input feature vector is 16 X 150.The performance of the present work is being
assessed in terms of the following statistical testing parameters which are
given in equations (2.4) -(2.6). In the following equations, the true positives,
true negatives, false positives and false negatives are computed from the
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confusion matrix for the classification of power system transient signals. In
the present study 150 signals belonging to either class of transients i.e.
oscillatory or

Table 2.4 Performance analysis using all features for different training
testing ratio

Training Testing Accuracy | Sensitivity | Specificity
data data (%) (%) (%)
(%) (%)

70 30 100 100 100
60 40 100 100 100
50 50 99.1 100 98.8
40 60 98.5 98.7 97.8

impulsive transients have been generated. Out of 150 signals, at first 40% of
the signals are selected randomly to be used for training and the rest of 60%
for testing purpose. Next the training and the testing ratio has been varied and
the performance of the classifier has been evaluated for each case. The
performance of the SVM classifier for classification of different power
system transients has been reported in Table 2.3.

TruePostive+TrueNegative

Accuracy = - - — —— x 100 (2.4)
TrueNegative+FalseNegative+TruePositive+FalsePositive
P TruePositive
Sensitivity = — — x 100 (2.5)
TruePositive+FalseNegative
AP TrueNegative
Specificity = g 100 (2.6)

TrueNegative+FalsePositive

From the results presented in Table 2.4, it can be observed that the
classification accuracy of 100% is obtained when the ratio of training data to
the testing data is 70:30. Besides classification accuracy, 100% sensitivity
and specificity is also obtained in classification of different type of transient
signals.Further, it can be observed from Table 2.4, the classification accuracy
is found to decrease with the decrease in training to testing data ratio. The
maximum reported classification accuracy is 98.5% when the training to
testing data ratio is 40:60. However, the classification accuracy achieved in
the present work using statistical features derived from DWT based envelope
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and SVM classifier is reasonably high, even when the training to testing data
ratio is less than 1, which further indicates that the efficacy of the proposed
method.

2.3.6 Effect of noise

The performance of the SVM classifier in presence of background noise has
been estimated in this section. In real life power systems, signals often get
corrupted with noise and interference from the mains. The detection system
should therefore be robust against noise. To emulate background noise, white
Gaussian noise of different signal to noise ratios starting from 35 dB to 5dB
have been mixed with different transient signals. Table 2.5 report the
performance of SVM classifier in presence of different noise levels. It can be
observed from Table 2.5, that the maximum classification accuracy of 100 %
is obtained when the SNR is 35dB. The performance of SVM classifier is
found to degrade with the increase in noise level yielding a maximum
classification accuracy of 94.5%, in presence of background noise as low as 5
dB, which clearly indicates the robustness of the proposed method.

Table 2.5 Variation of classification accuracy with SNR (dB)

SNR Classification Accuracy
(dB) (%)
35 100
25 98.4
15 96.2
5 94.5

2.4 Conclusions

In the present work, a novel method based on DWT based envelope analysis
has been proposed for automated detection and classification of power
system transients. Signals representing two very common and frequently
occurring power system transients namely oscillatory transient and impulsive
transient are at first decomposed using DWT into set of different frequency
sub bands. Then, by applying HT on the first four decomposed sub bands, the
envelope spectrum corresponding to each subbands is obtained by taking the
absolute value of the analytic frequency sub bands. From the envelope
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spectrum, four set of distinct statistical features have been obtained. The
statistical analysis of the extracted features has been done using one way
ANOVA to test the discriminative probability of the selected features
between different classes. It has been observed that 100% accuracy is
obtained in classifying different transient disturbances using the proposed set
of statistical features and SVM classifier. Besides, the performance of the
proposed method is found to be reasonably satisfactory, when evaluated in
the presence of different background noise levels. Hence, it can be inferred
that that the proposed method of DWT-based envelope analysis for detection
of power system transients can be implemented in real life power
transmission and distribution systems for monitoring of various transient
disturbances.
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Chapter 3

Power Quality Recognition in Noisy
Environment Employing Deep Feature
Extraction from Cross Stockwell Spectrum
Time-Frequency Images

3.1 Introduction

Electric power utilities all over the world are concerned with the quality of
electric power since it plays a vital role in maintaining the reliability of
transmission and distribution networks [1]. In this context, monitoring of
power quality (PQ) at regular intervals is important so that the voltage
waveforms do not deviate significantly from pure sinusoid. However, due to
operations such as capacitor switching, faults, lighting strike, non-linear load
switching etc. the voltage waveforms get seriously distorted [2]. Recently,
with the integration of renewable energy sources into the grid using power
electronic devices, voltage waveforms most often tend to become non-
sinusoidal in nature [3]. These high frequency and distorted waveforms may
endanger the life of costly power equipment thereby hindering the smooth
operation of power system network. Thus, accurate and fast detection of
power quality is important so that appropriate preventive measures can be
taken to prevent pre-mature failure of the power equipment.

In this context, researchers have proposed several signal processing and
machine learning algorithms for automated detection of PQ signals.
Detection and classification of PQ signals using fluctuations of amplitude and
decision tree (DT) algorithm has been reported in [4]. Since most of the PQ
signals are nonstationary in nature, many signal processing techniques have
been proposed for analysis of PQ signal in joint time-frequency (T-F) plane
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[5]. Application of discrete wavelet transform (DWT) and wavelet networks
for classification of PQ signals have been reported in [6]. Detection and
classification of PQ signals using curvelet transform and optimized extreme
learning machine has been reported in [7]. Classification of PQ signals using
wavelet packet transform and multiclass support vector machines have been
reported in [8]. Application of tunable Q-factor wavelet transform and dual
multiclass SVM for classification of PQ signals have been reported in [9]. In
[10], empirical wavelet transform has been used to classify single and
multiple PQ disturbances. In [11], an adaptive window-based fast generalized
S-transform has been proposed for analysis of simulated as well as real-time
PQ events. Application of hybrid model employing Stockwell transform (ST)
and dynamics for classification of PQ events have been reported in [12]. In
[13], classification of PQ signals using S-transform and modular neural
network has been reported. Application of Stockwell transform (ST) and
hidden Markov model for classification of PQ events have been reported in
[14]. Thus, it is imperative that ST is a popular signal processing technique
mainly used for analysis of PQ signals in joint time-frequency (T-F) plane.
The ST spectrogram i.e. T-F plot indicates the variation in instantaneous
frequency of a non-stationary signal which can be used to discriminate
various types of PQ signals.

Compared to continuous wavelet transform (CWT), ST offers certain
advantages. ST is proposed as a phase corrected version of CWT. Thus, ST
can preserve instantaneous phase characteristics of the signal [15]. Moreover,
the performance of ST does not depend on the selection of the mother
wavelet [16]. Considering the aforesaid advantages, various versions of ST
like, modified Stockwell transform (MST) [17], hyperbolic Stockwell (HST)
[18], fast ST (FST) [19], discrete orthogonal ST (DOST) [20] etc. have been
successfully implemented for analysis and feature extraction from PQ
signals. Although different versions of ST have been successfully
implemented for PQ signal analysis, yet one limitation of the ST based T-F
analysis is that the spectrogram images obtained using ST becomes noisy
especially when SNR of the input signal is low. This makes it extremely
difficult to discern between single and multiple power quality signals based
on the information obtained from conventional ST spectrogram. One way to
improve the noisy spectrum is to optimize the Gaussian window parameters
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of ST [15]. However, the aforesaid technique is computationally complex,
and the performance depends on the type of optimization algorithm used.
Considering the aforesaid issue, in this work, we propose cross Stockwell
transform (XST)-a much simpler modification of ST which can improve the
anti-noise performance of ST significantly.

In this chapter, XST is used to analyze single and multiple PQ signals. A
distinct advantage of cross spectrum analysis is that it can eliminate the effect
of random and uncorrelated noise present in any two cross-correlated signals
i.e. if two signals are contaminated with random uncorrelated noise, then the
effect of that noise will not be reflected in the cross-correlogram as cross
correlation coefficient value for random uncorrelated noise is very small [21].
This eliminates the need of additional denoising of PQ signals in the data-
pre-processing stage. Also, real life noisy PQ signals with low SNR can be
accurately distinguished. Moreover, as reported in [22], cross spectrum
analysis points to those regions in the T-F plane where two signals have
highest common power in T-F plane [23]. Thus, XST has better noise
rejection capability in T-F plane compared to ST. Considering the advantages
of cross-spectrum analysis, XST is proposed in this work for analysis of PQ
signals in T-F plane.

In this chapter, single as well as multiple PQ signals representing various
transient events are generated using standard mathematical models as
described in [24]. After generation of PQ signals, they were transformed into
T-F frame using XST. The T-F images represent RGB color images of the
transformed PQ signals. Next, instead of manual feature extraction from the
T-F images, deep learning was employed for automated feature extraction
from T-F images. The advantage of deep learning-based feature extraction is
that it is fully automated compared to manual feature extraction method
which is unsophisticated and tedious. In this study, convolutional neural
network (CNN)-a state of the art deep learning model is used for automated
deep feature extraction from T-F images of PQ signals obtained using XST.
The outline of the proposed PQ detection model is shown in Fig. 3.1.

To the best of the authors’ knowledge, following are the original
contributions of the present chapter:
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Deep Feature
Extraction Using Pre-
trained CNN Models

I

L Selection of Deep
Classification of PQ Featuiiesusing

signals using Machine ANOVA and FDR
Learning Classifiers

Generation of
PQ signals

Time-frequency
Analysis using XST

correction

Fig. 3.1 Illustration of the flowchart of the proposed method

@) Cross Stockwell transform (XST) based novel time-frequency (T-F)
analysis of PQ signals is proposed in this work. The cross spectrum is done to
improve the noise robustness of T-F images so that classification of single as
well as multiple PQ signals can be done accurately in presence of noise.

(ii) Four benchmark deep neural network architectures have been
trained for extraction of deep features from cross spectrum images. To reduce
training time, a transfer learning strategy has been employed here. The
extracted deep features were further subjected to feature selection using one-
way analysis of variance (ANOVA) and false discovery rate (FDR)
correction.

(iii) Three machine-learning classifiers have been used to classify the PQ
signals based on extracted deep features. Extensive studies have been carried
out by varying noise-level, fundamental frequency, train-test ratio etc. and by
comparing with other T-F methods.

(iv) Finally, the method has been validated on real-life PQ data to verify
the practicability of the proposed method.
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3.2 Generation of synthetic PQ signals

In this chapter, synthetic PQ signals were generated using the formulae
prescribed in IEEE std. 1159-2009. Detailed description of PQ signals is
given in Table 3.1. The mathematical formulae used to generate the signals
are reported in Appendix in Table A.1 [7, 24]. The synthetic PQ signals were
generated using MATLAB 2020 a. Total 22 classes of PQ signals were
generated and for each class of PQ signal, 500 signals were generated. To
emulate real-life PQ signals, white Gaussian noise of varying SNR from 10
dB to 30 dB. The generated PQ signals are described in Table 3.1. It is to be
mentioned here that the generated PQ signals consist of both single as well as
multiple PQ events since occurrence of both are very common in power
system network. In addition to synthetic signals, several real-life PQ signals
were also procured, and the proposed methodology has also been validated
on real-life PQ signals to validate the practicability of the proposed PQ
detection scheme.

3.3 Methodology

3.3.1 Brief theory of Stockwell transform

Stockwell Transform (ST) was proposed by R.G. Stockwell [25] to study
non-stationary geophysical signals. Stockwell introduced ST as the “phase
corrected” adaptation of the Continuous Wavelet Transform (CWT) that
retains the absolute phase information of the signal. In general, the ST can be
seen as a fusion of Gabor transform and CWT. It uses a Gaussian frequency
localization window whose width varies in proportion to frequency, thus
providing a time-frequency representation with frequency dependent
resolution. The basic definition of ST of a signal A(¢) is given by [25]:

S, )= [ h(t)g(r — t)e /2™ tdt (3.1)

where 7 and f denote the time instant of spectral localization and Fourier
frequency, respectively and g(t) is the Gaussian window function. The
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Table 3.1: Generated PQ signals

Signal PQ signal type Type of PQ

identifier signals
Sy Sine + noise Single
S, Harmonics + noise Single
S; Sag + noise Single
Sy Swell + noise Single
Ss Flicker + noise Single
Se Transient + noise Single
S, Interruption + noise Single
Sg Notch + noise Single
So Harmonics + Sag + noise Multiple
S1o Harmonics + Swell + noise Multiple
Si Harmonics + Flicker + noise Multiple
Siz Harmonics + Interruption + noise Multiple
Si3 Harmonics + Transient + noise Multiple
Si4 Sag + Flicker + noise Multiple
Sis Swell + Flicker + noise Multiple
Si6 Sag +Transient + noise Multiple
Si7 Swell +Transient + noise Multiple
Sis Transient + Interruption + noise Multiple
Si9 Harmonics + Interruption + noise Multiple
Sao Sine + Harmonics+ noise Multiple
So1 Sine + Interruption+ noise Multiple
Sa Sine +Transients + Harmonics + noise Multiple

Gaussian window as a function of frequency (f) and time (t) is defined as:

1 -2
g(t,o) = =e 2 (3.2)
The ST can thus be defined as:
o _@=09%?
S@f) =T h(t) e 2 emrtdt (3.3)

43



Chapter 3

Sometimes for ease of analysis and to take advantage of the FFT algorithm
already available in programming languages, the S-Transform is presented as
operations on the Fourier spectrum H(f) of the time series h(f) as:

S(t,f) = JOOH(a + )G (a, e da ; f+0

2n2a?

S f) = fm H(a+ fle * e2™dq ; f+0

S@f) =2/ h(tydt; f =0 (3.4)

3.3.2 Brief theory of Cross Stockwell transform

The performance of ST (mentioned earlier section) can be further improved if
it can be used to find the degree of correlation between two-time series in
both time scale and time-frequency plane. Since ST localizes spectral
elements in time, the cross correlation of two spatially separated signals
should provide phase synchrony information. The proposed cross S-
Transform (XST) uses this property to perform cross spectral analysis on
time domain signals. The XST between two-time series A(f) and y(?) is
defined as:

XST(z,f) = STw(x, ) % {STy (z, )} (3.5)

Where,{ST), (z, f )}and{STy (o.f )} indicates the S-transform of signals ()

and y(7), respectively and * denotes the complex conjugate operation. The
phase of XST is given by:

arg(XST) = ¢n(z, ) — ¢, (T, f) (3.6)

Where, @ (7, f) and @, (z, ) are the respective phases of /(7) and y(r) with

respect to a reference frame. The XST operation yields a complex matrix, the
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magnitude of which is known as the cross Stockwell spectrum which gives
localization of different frequency components at different instants in a T-F
image plot. The steps to obtain the XST for a given time series h(t) and y(¢)
are given in the following pseudocode as:

Pseudocode of XST
Step 1: Find H(a), by applying FFT to h(t)

FFT
h(t) — H(a)

Step 2:
Find G(a, ), by applying FFT to g(t, o)

fre
g(t,0) = G(a,f)
Step 3: Shift H(a) to H(a + f)
Step 4: Multiply G (a, ) with the shifted H(a)
Step 5: Take the inverse FFT of Step 4 to obtain
STw(T, )
Step 6: Compute XST two functions h(t) and y(t)

by STy (t, f) x {ST, (z, )}

3.3.3 Convolutional Neural Network

Convolutional Neural Network (CNN) belongs to the family of deep neural
networks which has been extensively applied for object detection as well as
classification of images [26-27]. When compared against other different feed-
forward deep learning (DL) models such as artificial neural network (ANN),
CNN boasts the advantage of its end-to-end learning architecture which is
particularly suitable for automated feature extraction and -classification
purpose. Usually, the structure of a CNN consists of three parts: (i) input
layer (ii) hidden layers in the middle and finally an (iii) output layer. The
hidden network layers consist of several convolution layers, followed by
pooling layers, fully connected layers etc. Being sequentially embedded to
each other, these deep operating layers extract high-level abstract features
from the image inputs using the principle of regularized multi-layer
perceptions [27]. Brief description of the hidden layers of CNN is presented
below:
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1) Convolution Layer

Convolution layers are the basic building blocks of a CNN module which are
used to produce the initial high-dimensional feature maps from image inputs.
Generally, convolution blocks consist of fixed number of filters, which are
also known as kernel functions. The main concept behind the operation of a
convolution block is local receptive fields and the shared weights and biases
between its hidden units. In this way, instead of processing the entire image,
the convolution block recognizes and extracts significant feature information
from only a small, localized region of the image using the filters or the kernel
functions. Using forward propagation, these filters or the kernels are then
convolved transversely around the width and height of the entire input image
to obtain the high-dimensional feature data. Mathematically, the 2-D output
of the convolution operation on a signal of dimensions (a, b) is represented
as:

S*T)(s,t) = XmaS@b)T(s+a,t+b) (3.7

To help with the convolution procedure, a series of pixel values namely stride
(g) is incorporated to tune the movement of the kernel functions. In addition
to that, to maintain uniformity in detecting the same local features throughout
the whole image, the weights and biases of convolution blocks are also
shared between different deep operating layers. This process of sharing
information and connecting the sequential convolution blocks reduces the
number of hidden parameters utilized by the CNN module which in turn
reduces the training difficulty of the network. Another important parameter of
the convolution block is ‘zero padding’ (z) which regulates the size of the
input image at every level of the convolution operation. For any input image
having dimensions of P; x Q; x R;, where the width, height and number of
input channels are represented by P; Q; and R, respectively, the output
volume denoted by P, x O, x R, for using N, number of filters with each of
size ‘r x r’is represented as:

_ Pi-r+2z

P, .

+1 (3.8)
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Q=" 41339

Apart from this, several non-saturated activation functions such as hyperbolic
tangent functions (tanh), rectified linear unit (ReLU), sigmoid etc. are also
incorporated in the convolution layers to introduce no-linearity. Activation
functions are a significant part of the forward propagation design of the
hierarchical CNN structure, operation of which can be denoted as:

Where, Ajand Bjare the feature maps produced from the i™ convolution
operation, before and after introducing the non-linear activation function
denoted byx (.), respectively.

2) Pooling Layer

The pooling layers are merged in succession with the convolution layers in
the hierarchical structure of a CNN model. Pooling layers serve the purpose
of dimension reduction by applying non-linear down sampling on the
previously obtained high dimensional feature output from the convolution
layers and helps to avoid the issue of over-fitting as well. Usually, a series of
non-intersecting rectangular sub-regions are formed by the obtained feature
maps and from which, significant feature information is extracted with the
help of several pooling operators such as global pooling, average pooling,
maximum pooling etc. In this way, the spatial volume of the feature output is
reduced and at the same time, the computational time is also shortened by
reducing the number of network parameters. Mathematically, a pooling
operation can be represented as:

Myyz = pOOl(a,b)ESx_y(na,b,z) (3.11)

Where, m,,, , rtepresent the k™ feature map after the corresponding pool(.)
operation. Here, S, , denotes the pooling receptive region around the nodes at
location (x, y) and (n,, ;) denotes the nodes at location (a, b).
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3) Fully Connected Layer

Fully connected (FC) layers are placed at the end of the CNN modules which
serves the purpose of flattening the 2-dimensional feature outputs from the
previous convolution and pooling layers into 1-dimensional interpretable data
for the classification and regression tasks. Along with that, to contend with
the issue of overfitting in training of the CNN networks, dropout
regularization factor is often introduced after fully connected layers. The
dropout function helps to mitigate the issue of overfitting in training of the
CNN modules where the weight of half of the hidden layer nodes are dropped
randomly at each training step. In this way, the appearance of one neuron of a
particular hidden layer does not block the activity of another neuron of the
same hidden layer which alleviates the situation of two nodes of a same
hidden layer appearing at the same time and hence, improves the
generalization ability of the network. For classification tasks, the output layer
of a CNN network utilizes softmax activation for assigning class labels to the
feature attributes and predicting categories. In addition to that, to ensure
reliable classification performance, it is necessary to reduce cross entropy
losses, which indicates the differences between the actual and the predicted
model. The formula to determine the cross-entropy losses is given by:

Z(z,p) = — Xz log(p;) (3.12)

Here, p denotes the probability score from the output of the FC layer and z is
the predicted label which can assume values O or 1. Here back propagation
has been used to compute the cross-entropy losses. Also, using stochastic
gradient descent rule, the weights and biases of the previous operating layers
have been adjusted. In existing literature, several state-of-the-art CNN
architectures were reported for feature extraction and classification purpose
by employing different configuration of the hidden operating layers. In this
study, we explore four of such classical CNN architectures using the transfer
learning (TL) strategy to extract deep neural features. A brief overview of TL
strategy is given below.
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3.3.4 Transfer learning

Transfer learning (TL) signifies the process of streamlining information from
one field to another. In context of deep learning, TL depicts the application of
a finely tuned CNN architecture for feature extraction and classification
purpose, which was trained earlier on a different data archive. It should be
mentioned here that in practice, training a CNN architecture using TL
strategy is more expedient than training it from scratch. The pre-trained CNN
architecture consists of weights and biases, which characterize the features
learned from the previous datasets and which again in fact can be transferred
to different datasets [28]. Using TL, the last couple of hidden operating layers
in the CNN architecture namely fully connected layers and the classification
layers can be dissolved, and the rest of the CNN architecture can be trained
on different datasets. Hence, using TL technique, a pre-trained CNN model
can operate on a fresh classification task by fine-tuning its last couple hidden
operating layers. In this study, TL strategy is applied to train four pre-trained
CNN architectures namely AlexNet, VGGNet16, ResNet50 and GoogleNet
for the purpose of automated feature extraction. A brief description of the
employed pre-trained CNN models is given below, highlighting their
different configurable operating layers and parameters.

3.3.5 Pre-trained CNN models
1) AlexNet

The first CNN architecture used in this study is an efficient deep learning
framework namely AlexNet which has been the winner of ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC), 2012 [29]. The AlexNet
model was trained on the ILSVRC database and contains roughly 60 million
network parameters. The basic structure of AlexNet is shown in Fig. 3.2.
AlexNet consists of overall 8 network layers deep with 5 convolution blocks
where, the first two convolution layers make use of 96 and 256 number of
filters of sizes 11x11x3 and 48x5x5, respectively. Two max pooling layers,
each having filter sizes 3x3, are connected to these convolution layers. The
latter three convolution layers have 384, 384, and 256 numbers of filters
having sizes of 256x3x3, 192x3x3 and 192x3x3, respectively. Another max-
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pooling layer of filter size 3x3 is connected at the conjunction between the
last convolution layer and the succeeding two fully connected layers, both of
which contain 4096 number of neurons each. The AlexNet model
incorporates the ReLLU activation function in its convolution blocks and the
dropout regularization technique in the final classification layers.

Convolutional layer Fully-connected layer

(@
So| 227 g
g X gc
5| % 7
K :
i =

Fig. 3.2 Structure of AlexNet
2) VGGNet

VGGNet is a popular CNN architecture which was developed by the Oxford
Visual Geometry Group (VGG) [30]. The structure of VGGNet is shown in
Fig. 3.3. Like AlexNet model, VGGNet was also trained on the ILSVRC
database, which contains over 1.2 million images of 1000 different class
labels. This CNN algorithm has multiple deep variants ranging from 11 to 19
layers, out of which, we have utilized the 16 layers deep VGGNet16 model in
this work. Like AlexNet, the overall VGGNetl16 architecture also contains 5
convolution blocks with 3x3 convolution filters. The associated stride values
are kept as 1 with filling size of 1. To reduce the spatial volume of the feature
outputs, max-pooling layers of size 2x2 is used as handler in the VGGNet16
model with step length of 2. At the end of the last max-pooling layer, three
fully connected layers with 4096 number of neurons are connected to
integrate the deep features into the 1-D feature map. A softmax classification
layer is attached at the end of the three fully connected layers for the
classification purpose. The VGGNetl6 architecture uses around 138 million
network parameters in its deep hidden layers.

3) ResNet50
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Residual networks or widely popular as ResNet is another efficient deep
CNN architecture that has been proposed in [31]. The ResNet architecture
incorporates a novel ‘identity mapping’ strategy in its hidden operating layer.

27X 27X 96 13X 13 X 256
-9
Input image S5X55X96 27X 27X 256 |
227X227X3 6X 6X256 13X 13X 384
ﬁ .
5 g
13X 13X 256 13X 13X 384

Fig. 3.3 Structure of VGGNet16

The problem of vanishing gradient is solved with the help of this identity
mapping technique by providing an alternative shortcut path for the gradient
to pass through. In addition, the identity mapping also helps the ResNet
model to skip or bypass one or more than that weighted hidden layers if the
current layers are not necessary as shown in Fig. 3.4. These skip connections
aid in avoiding the possible issue of overfitting in extracting feature
information from input data. It should be mentioned here that in this study,
we have implemented the ResNet architecture which is 50 layers deep i.e.
ResNet50 since it yielded the best performance among other ResNet models.

4) GoogleNet

GoogleNet is a widely used CNN model, which was the winner of ILSVRC,
2014 [32]. GoogleNet was trained on the ILSVRC database, which contains
over 1.2 million images of 1000 different class labels. This CNN architecture
implements an ‘inception unit’ that permits real-time processing of input data
across different convolutional layers, which helps in increasing the depth of
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Fig. 3.4Structure of a residual module

the architecture while eluding computation complexity. The inception units
contain 2 convolutional layers, 4 convolution layers for dimension reduction
and 1 max-pooling layer. GoogleNet consists of 9 such inception modules, 2
convolution layers, 1 average-pooling as well as 4 max-pooling layers and 1
classification layer with softmax activation. Interestingly, a global average-
pooling layer is positioned at the bottom of the GoogleNet architecture in
place of a fully connected layer to reduce the error rate. It implements ReLU
activation units in the convolution layers and the dropout regularization
strategy to escape overfitting in the classification layer. In this study, in order
to extract deep neural features, the softmax classification layer was dissolved
and the corresponding high dimensional feature vector was obtained as an
output from the average-pooling layer. The structure of an inception module
is shown in Fig. 3.5.

3.3.6 Machine Learning classifiers

In the present chapter, three well-known machine learning classifiers have
been employed for classification of PQ signals using deep features extracted

52



Power Quality Recognition in Noisy Environment Employing Deep Feature Extraction from
Cross Stockwell Spectrum Time-Frequency Images

Filter
concatenation

3x3 505
1 = 1 convelution convolutions convolutions

Previous
Layer

Fig. 3.5 Structure of an inception module

from pre-trained CNN models. The theoretical details of the employed ML
classifiers are discussed below in brief.

1) Random Forest

Random forest (RF) is a well-known machine-learning algorithm, which
consists of a group of standard decision tree classifiers. RF utilizes a novel
bootstrap-bagging strategy to allocate training inputs for each of the decision
tree classifiers. The number of the training inputs dispersed at the nodes of
each tree classifier corresponds to square root times of the initial feature size
[33]. Also, the RF classifier boasts the advantage of being robust against
noise by random splitting of the training inputs between the nodes of three
classifiers. The output of the RF classifier is decided by aggregating the
decisions of all the tree classifiers, using a majority voting method. It is also
to be mentioned here that in order to optimize the performance of the RF
classifier, setting the number of decision tree classifiers is an important task.
Therefore, to optimize the classification performance, the number of decision
trees varied within a range of 50 to 150 and noticed that using 80 decision
trees; the best classification results were obtained.
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2) Support vector machines

Along with RF, another machine-learning algorithm, namely support vector
machines (SVM) has been implemented in this work. Detailed description
about the SVM classifier is reported in past studies [34]. SVM incorporates
an optimum separating hyper-plane (OSH) to fit the input training data and
the class margins between data inputs of different data labels is enhanced
using the theory of structural risk minimization (SRM) [34]. Non-linear
SVMs are used to map the training datasets from input space to higher
dimensional feature space using kernel functions. In this work, we have used
different kernel functions to determine the appropriate kernel function
delivering highest classification accuracy. To determine the optimal width of
the RBF kernel, the regularization parameter has been varied from 1 to 200 in
steps of 0.1.

3) k-nearest neighbor (kNN)

In addition to RF and SVM, another well-known machine-learning classifier
namely k-nearest neighbor (kNN) has been used in this study for
classification of PQ signals. The kNN classifier is widely used in solving
different classification problems since it is relatively simple to implement and
robust towards ambiguous data samples. Based upon the recurrent class
labels inside a certain dimensional cluster of training samples, kNN
categorizes data labels based on majority voting technique [35]. Hence,
selection of the two hyper-parameters of kNN is important to optimize the
classification performance. The first one being distance parameter, which
defines the class labels and the latter, is the selection of the k-value, which
determines the dimension of the clusters being formed with training samples.

3.4 Results and Discussions
3.4.1 Analysis of PQ signals using XST
In this contribution, the PQ signals were initially transformed into time-

frequency (T-F) domain using XST. For computation of cross spectrum, a
sample PQ signal from each class is chosen as the reference. The cross
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spectrum of the rest of the PQ signals for each class is done with their
respective chosen reference signal. The single PQ signal (S¢, SNR=15dB)
and corresponding time-frequency image obtained using ST and XST is
depicted in Fig. 3.6 (a-c). In addition, a multiple PQ signal (S,,, SNR=15dB)
and its corresponding T-F image obtained using XST and conventional ST is
shown in Fig. 3.7 (a-c). It is evident from Fig. 3.6 (a-c) and Fig. 3.7 (a-c), that
the resolution of images obtained using XST is better than the conventional
ST i.e. the T-F images obtained using XST are less noisy compared to ST. As
a consequence, different PQ signals can be clearly distinguished based in T-F
plane using XST whereas, it is difficult to distinguish between single and
multiple PQ signals from the conventional ST spectrum when the SNR is
low. This is evident from Fig 3.6 (c) and Fig. 3.7 (c), where the T-F images
for both single and multiple PQ signals look almost alike although they both
represent different PQ signals. This inadvertently will lead to
misclassification and poor detection accuracy. Thus, it is evident from the
above analysis that XST proposed in this study is robust against noise which
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Fig. 3.6 Time domain PQ signal (a) S¢ and corresponding T-F images
obtained using (b) XST (c) ST for SNR=15dB
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Fig. 3.7 Time domain PQ signal (a) Sy, and corresponding T-F images
obtained using (b) XST (c) ST for SNR=15 dB

can be used to classify PQ signals accurately compared to ST especially in a
noisy environment. Also, it is evident from Fig. 3.6 (b) and Fig. 3.7 (b) that
the T-F images of different PQ signals are different from each other. Thus, T-
F images can be fed to deep neural networks for automated feature extraction.

3.4.2 Performance metrics

The T-F images obtained using XST were fed as inputs to four classical CNN
architectures, from which deep features were extracted. It is to be mentioned
here that in order to reduce the computational burden of the machine-learning
classifiers in the subsequent classification stage, the extracted deep features
were ranked according to their discriminative capability and only the top
feature values having superior discriminative powers were selected in this
study. For this purpose, we have used one-way analysis of variance
(ANOVA) test to observe their respective discriminative powers. The
ANOVA test essentially yields a probability density value, i.e., frequently

56



Power Quality Recognition in Noisy Environment Employing Deep Feature Extraction from
Cross Stockwell Spectrum Time-Frequency Images

labeled as the ‘p-value’, which signifies the probability of occurrence of any
feature value between different classes of PQ signals. The discriminative
capability of the features values is derived from the magnitude of the p-
values. The lower magnitude of p-value corresponds to greater class
separation of any feature value between different classes since p-values
having lower magnitude indicates towards lower probability of the null
hypothesis being rejected in the ANOVA test and vice-versa. Therefore, we
have selected the p-values as a metric of distinguishability in this study. For
measuring the discriminative powers of the extracted deep features, p-value
having a threshold of 10™'° was selected in this work. In addition to the
ANOVA analysis, the false discovery rate (FDR) correction test was also
carried out to rule out the false positive cases in the following classification
stage. Like the ANOVA analysis, a threshold value of 10 was again set for
the FDR correction test. Finally, after performing the ANOVA analysis and
FDR test, the top 50 highly correlated and statistically significant deep
features from each deep learning network were selected as inputs to the
machine-learning classifiers for classification of PQ signals. In this work,
classification performance of the proposed method is assessed in terms of the
following statistical parameters namely Accuracy, Recall and Specificity.
These statistical parameters are calculated using the confusion matrix
obtained for PQ classification using (3.13) -(3.15) as:

Accuracy(%) = (%) x 100 (3.13)
TP

Re c all(%) = (TP+FN) x 100 (3.14)

Specificity(%) = (——) x 100 (3.15)

In the abovementioned equations, the terms TP and TN correspond to the
correctly classified scenarios for the respective classification problem,
respectively. Similarly, FP and FN denote the corresponding falsely
classified cases, respectively. It is important to mention here that in this work
we have incorporated a 5-fold cross validation scheme to avoid the possible
pitfall of overfitting in the classification stage. Through this scheme, the

57



Chapter 3

feature inputs to the machine-learning classifiers were partitioned into the
ratios of 4:1, where 4 parts of the feature data were used to train the
classifiers and the single remaining part was used for validation purpose. In
this way, out of 500 signals, machine learning classifiers were trained using
the deep features extracted from 400 PQ signals, and the remaining 100
signals used to evaluate the performance. Apart from this, to ensure reliable
classification performance, 10 consecutive iterations have been performed
and finally mean along with standard deviation values have been computed,
based on which the performance parameters have been reported in this work.

3.4.3 CNN training

Here, we have used the transfer learning (TL) method to train the CNN
models for classification of PQ disturbances. TL symbolizes the transfer of
knowledge from one field of interest to another. In reality, training a CNN
network and updating the weights and biases network from scratch is lengthy
task and at the same time the overfitting problem may degrade the training
performance especially when the training data is limited. To overcome this
problem, TL offers a unique solution through which, a CNN architecture
which has been previously trained on a different but large dataset can be fine-
tuned and hence can be used for a different classification problem. In a
nutshell, TL allows transfer of feature mapping and embedding information
of any previous source model (MS) to a new target model (MT) can be
transferred by only fine-tuning the parameters of the previously trained
network. It is seen that for any image classification task, the initial few
convolution layers can extract common image features such as edges and
curves, while the deeper layers are capable of mapping the abstract feature
representations more effectively. Therefore, when TL is used for any
classification task, the common practice is to tune the deeper layers so that
they learn from the new dataset while the information obtained from the
shallow layers can be transferred. Considering the abovementioned facts, TL
strategy has been adopted in this study to extract deep features from XST
images of PQ signals. It is to be mentioned here that to feed the PQ
disturbance T-F images to the pre-trained CNN networks, the images were
resized to the dimensions of 227x227x3 for the AlexNet model and
224x224x3 for the VGGNetl6, ResNet50 and GoogleNet models,
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respectively. In this study, for modification of CN models, we have used
Keras library (Python) with TensorFlow running at the backend. In this work,
a single fully connected layer has been retained for all the CNN models, and
the number of output neurons has been set to eighteen, since the present work
is an 18-class classification problem. Following the FC layer, a dropout unit
is placed in series with softmax layer. The dropout rate is set to 0.5. The
cross-entropy loss function is integrated inside the dropout layer. In addition
to cross entropy function, this study also includes a momentum update factor
of 90%. This aids in better converging of the network by taking inputs
directly from the gradient of the loss function. In this study, the number of
training epochs of the network has been regulated through an early stopping
approach. Through this approach, the training procedure of the network is
stopped if validation loss doesn’t get reduced by 10 for 10 consecutive
epochs. Here, the epoch weights showing minimum validation loss have been
considered for evaluation. In the training phase of the CNN, a mini-batch size
of 250 was chosen. The initial learning rate was set at 10~. Moreover, after
every single training batch, the learning rate was reduced by a factor of 107,
Adam optimizer was utilized to scale the learning rate for each network
weight. The complete classification framework was carried out using a
workstation having Intel core i7, 2.2 GHz processor, with 16GB RAM and
NVidia GTX 1650 graphic card.

3.4.4 Results of PQ classification

The classification performance of the proposed PQ detection framework is
presented in this section. The obtained classification Accuracy, Recall and
Specificity (obtained by taking mean of individual parameters from the
confusion matrices) along with their standard deviation values are reported in
Table 3.2 for respectively. From the classification results reported in Table
3.2, it can be observed that very high mean classification accuracies have
been obtained for all the machine-learning classifiers which indicate that the
proposed PQ detection scheme is highly efficient. From Table 3.2, it can also
be observed that for all four deep networks, RF classifier delivered the
highest classification performance for all four networks followed by the
SVMand kNN classifiers. Among four deep neural networks, features
extracted from ResNet50 deep learning delivered the best performance
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Table 3.2 Classification performance of different classifiers

Deep Classifier Accuracy Recall Specificity
Learning (mean * (mean * (mean %
Network std) std) std)

(%) (%) (%)
AlexNet RF 98.45+0.25 | 98.29+0.17 | 98.54 £0.16
SVM-RBF | 97.29 +0.18 | 98.67 £0.08 | 98.91 £0.13
(c=1.24)
kNN (k=5) | 96.52+0.22 | 97.89 £0.15 | 98.17 £0.10
VGGNetl6 RF 98.10+0.31 | 97.34£0.17 | 96.25+0.28
SVM- 97.79 +£0.10 | 98.04 £0.38 | 97.20 £0.53
Linear
kNN (k=3) | 97.02+0.24 | 9524 £1.15 | 96.57 £0.50
ResNet50 RF 99.72 +0.16 100 £ 0.0 99.70 £ 0.12
SVM-RBF | 98.79 +£0.25 | 97.40+1.04 | 97.45+0.71
(6 =4.8)
kNN (k=7) | 98.02+0.12 | 96.21 £0.65 | 98.37 £0.51
GoogleNet RF 98.65+0.24 | 97.50+£0.14 | 98.28 £0.28
SVM 98.10 £ 0.16 | 98.47 £0.58 | 97.42+0.73
(polynomial
index=3)
kNN (k=5) | 97.82+0.82 | 96.59 £ 1.20 | 97.27 1.04

among all three CNN models. The very
obtained in this work validate the efficacy

high classification accuracies
of the proposed PQ detection
model. It is to be mentioned here that the parameters of kNN and SVM
yielding highest classification accuracies are indicated in parenthesis in Table
3.2. Moreover, the obtained standard deviation values are also observed to

very small in magnitude which signifies that the proposed classification
model has performed robustly. Therefore, it can be inferred that the
performance of the proposed PQ disturbance detection model is overall
satisfactory and hence, can be potentially implemented to develop an efficient

PQ detection framework. For better visualization of the

interclass

classification accuracies, the confusion matrix showing the performance of
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RF classifier achieved using deep features extracted from ResNet50 model is
shown in appendix in Table A.2.

3.4.5 Comparison with different number of folds

In this section, further investigation has been carried out to detect the
variation in classification performances by varying different folds (train-test
ratio). Fig. 3.8 shows the variation in classification performances in terms of
accuracy obtained by varying different number of folds. From Fig. 3.8, it can
be observed that by increasing the number of folds, average accuracy can be
increased for all classifiers, by performing multiple iterations. The best
accuracy is achieved for 5-fold cross validation. In Fig. 3.8, classification
performance of machine learning classifiers using deep features extracted
from only ResNet50 are presented since it delivered better performance than
other deep neural networks. So, the performance parameters reported in
Table 3.2 are reported based on 5-fold cross validation.
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Fig. 3.8 Variation of classification accuracy with no of folds
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3.4.6 Effect of noise on classification performance

To validate the efficiency of the proposed PQ detection model, white
Gaussian noise with different signal-to-noise ratios (SNR) ranging from 0-30
dB is mixed with the PQ signals. The variation of classification accuracy
with SNR for RF classifier using features extracted from ResNetS0 is shown
in Fig. 3.9. From Fig. 3.9, slight degradation in the performance of is noticed
with the decrease in SNR. Also, no significant improvement in accuracy is
observed after SNR=30dB. However, it can also be observed even when the
SNR value is as low as 0 dB, 95.4% detection accuracy is achieved for RF
classifier. This is because the application of XST has resulted in better
resolution of T-F images even in the presence of noise. In other words,
application of cross spectrum has improved the noise robustness
significantly. Therefore, it can be said that the proposed PQ disturbance
detection scheme performs robustly in the presence of noise.
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3.4.7 Effect of frequency variation on classification performance

The frequency of power grid can fluctuate over a limited range which can
influence the PQ detection accuracy. To observe the effect of frequency on
PQ classification, the fundamental frequency of the simulated PQ events
varied from 48Hz-52Hz in steps of 0.5 Hz. For each case, the T-F images
were obtained using XST and were fed to four deep networks for feature
extraction and subsequent feature selection. Finally, the classification of T-F
images was done using three machine learning classifiers. The variation in
classification accuracies with frequency for three classifiers obtained using
deep features extracted from “ResNet50 is shown in Fig. 3.10. It is imperative
from Fig.3. 10 that the performance of different machine learning classifiers
is almost consistent with the variation in frequency with very little
fluctuations observed in performance parameters. Thus, it can be said that the
performance of the proposed system is immune to the change in grid
frequency fluctuations.
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Fig. 3.10Variation of classification accuracy with the change in frequency
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3.4.8 Classification performance using other time-frequency methods

In Table3.3, the performance of the proposed XST based T-F analysis is
compared with some state-of-the-art T-F methods like short time Fourier
transform (STFT), continuous wavelet transform (CWT), and generalized
Stockwell transform (ST). Using three well-known T-F analysis methods, the
input PQ signals were converted to RGB images. For computing STFT,
Hamming window with 75% overlap has been used. For computing CWT,
Morlet wavelet function has been used. The RGB spectrogram images were
subsequently fed to four pre-trained deep networks for feature extraction and
subsequent classification. Here also, only performance of ResNet50 with RF
classifier is shown, since it has delivered better results compared to other
models. It can be observed from Table 3.3 that the performance of XST is
better than the existing T-F methods. This improvement is due to the
increased resolution of XST images in the T-F frame obtained due to cross
spectrum analysis, which has resulted in better accuracy of PQ signals
compared to existing T-F methods.

Table 3.3 Classification performance using other T-F methods

T-F Accuracy Recall Specificity
analysis (mean = std) (mean = std) (mean = std)
(%) (%) (%)
STFT 95.23 £0.75 94.01 £0.27 95.25 +£0.36
CWT 96.51 £0.51 96.32 +0.13 95.69 +0.29
ST 97.25 +£0.37 98.05 +0.32 96.40 +0.14
XST 99.56 +0.07 98.49 +0.34 98.26 +0.31

3.4.9 Computational Cost

The overall computation time of the proposed PQ signal detection framework
is discussed in this section. The computation of XST of 18 PQ signals and
subsequent deep feature extraction using AlexNet, VGGNet16, ResNet50 and
GoogleNet required 542 seconds, 798 seconds, 640 seconds, and 700seconds,
respectively. Classification of PQ signals using RF, SVM and kNNrequired
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65.1 seconds, 57.8 seconds and 54.3 seconds, respectively. Although the
classification time required for RF classifier is marginally higher than the
SVM and kNN yet it delivered better results than the other two. The entire
feature extraction and classification of PQ signals was done using MATLAB
R2020a environment, Intel core i5 system, 2.5 GHz processor, with 8 GB
RAM.

3.4.10 Validation on Real-life PQ signals

In this section, additional experiments have been carried out on real-life PQ
signals to verify the practicability of the proposed method. For this purpose,
real-life PQ signals were procured from several available online databases
[36-38]. Fig. 3.11 shows a real-life sag PQ signal no 2911 [38] and its
corresponding T-F image obtained using XST. Here also, it is observed that
for a real-life PQ signal, the T-F image plot obtained using XST is less noisy
than that of ST. In this context, it is to be mentioned here that for deep feature
extraction from real-life PQ signals, ResNet50 is used since it delivered best
performance among 4 deep networks. The performance of different machine
learning classifiers in classifying real life PQ signals using features extracted
from ResNet50 model is reported in Table 3.4. The parameters of machine
learning classifiers are tuned using the methods as mentioned earlier. It can
be observed from Table 3.4 that the performance of different machine
algorithms in classifying real life PQ signals are reasonably satisfactory. The
overall classification accuracy of 96.45% has been achieved which further
indicates the practicability of the proposed PQ classification model.

3.4.11 Comparative study with existing literature

In Table 3.5, the performance of the proposed PQ detection framework is
compared with the existing methods. It can be observed from the comparative
study that the proposed framework returned comparable and even better
performance than some of the existing state of the art methods. It can be
observed from the comparative study that the proposed framework returned
comparable and even better performance than some of the existing state-of-
the-art methods. It can be observed from the comparative study that the
proposed framework returned comparable and even better performance than
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Fig. 3.11T-F image of (a) real life PQ signal obtained using (b) XST (c) ST

Table 3.4 Classification performance on real-life PQ signals

Classifier Accuracy Recall Specificity
(mean = std) (mean = std) (mean =+ std)
(%) (%) (%)
RF 96.45 + 1.04 97.20 £ 0.83 95.10+ 1.29
SVM-RBF 95.24 + 1.40 96.42 + 1.30 94.25 + 1.80
(0 =2.6)
kNN (k=5) 94.05 + 1.05 95.50 £ 1.02 93.40 £ 2.04

most of the existing methods. Thus, the proposed method has definite edge
over the existing methods in classification of synthetic as well as real PQ
events. Moreover, compared to ST based methods [39-40], our proposed
method is also more robust against noise.
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Table 3.5 Comparison with existing methods

Number of Accurac
Reference PQ classes Method (%) y
[9] 14 TQWT + SVM 97.29
[39] 11 ST+ Probabilistic Neural 97.40
Network (PNN)
[40] 12 ST+ Fuzzy expert system 99.20
[4] 11 Cross correlation + RST 97.10
[41] 10 EWT+ CNN 97.41
[7] 22 XWT+ SVM 99.09
[42] 13 Rule-based ST+DT 99.37
[43] 9 Undecimated wavelet 99.5
transform (UWT) + CNN
[17] 13 MST+RF 99.61
[44] 9 Wigner Value Distribution + 99.67
CNN
[45] 16 Multiresolution ST + DT 99.69
This work | 22 (synthetic) 99.72
This work 5 XST+ResNet50+RF 96.45
(Real-Life)

3.5 Conclusions

In the present chapter, cross Stockwell transform aided deep learning
framework for automated detection of PQ signals is proposed. The 1D PQ
signals were transformed into 2D time-frequency images using XST. Four
deep neural networks were trained for automated feature extraction from the
T-F images of the transformed PQ signals. Finally, using ANOVA test and
FDR correction, highly discriminative and statistically significant features
were fed as inputs to three standard machine learning classifiers for PQ signal
classification. In addition, tests have been carried out on real-life PQ data for
practical verification. Investigations revealed that the proposed framework
can classify PQ signals with very high accuracy. Among three deep neural
networks, features extracted from ResNet50 model delivered best
performance with RF classifier. Moreover, extensive analysis has been
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carried out by varying different attributes of PQ signals which indicated that
the performance of the proposed ResNet50 aided RF classifier is reasonably
satisfactory for all cases. Finally, the proposed method has also been
validated on real-life PQ signals for practical validation. It has been observed
that the proposed model is capable of classifying the real-life PQ signals
accurately even when the noise level is very low. Comparison with existing
methods indicates that the performance of the proposed method is
comparable and even better. Thus, it can be concluded the proposed
framework can be used for accurate classification of PQ events in a noisy
environment where conventional ST fails. Also, the proposed method is
relatively simpler with no complex optimization involved. In future, the
proposed model will be implemented in hardware using FPGA or low-cost
micro-controller module for real-life PQ diagnosis.
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Autocorrelation Aided Islanding Detection
Using Bi-directional Long Short Type
Memory Network

4.1 Introduction

In recent times due to the increase of load demands there is an unguent need
for finding alternate sources of power generation that can match these load
demands. This is done by using distributed generation (DG) system where
conventional power generation sources are connected with alternate ones like
solar, wind, fuel cell, etc. Despite the clear advantages, some serious
problems arise due to various transient phenomena while connecting or
disconnecting the DG sources with the utility grid. Among the different
transient phenomenon, islanding detection is a major issue. Islanding is the
condition where a part of the system gets isolated from the rest and the loads
in this part are thus fed from the power generating unit connected to this
isolated branch [1]. Appropriate detection of islanding is desirable because
various operational problems related to power quality, safety hazard, voltage
and frequency instability and damage to the system equipment etc. arise due
to islanding. Thus, accurate detection of islanding is an important problem to
address [2].

Existing methods for islanding detection include active and passive methods.
In active methods, small disturbances are injected into the system and
islanding detection is performed by examining the change in output
parameters. Some popular active islanding detection methods include active
frequency drift (AFD), automatic phase shift (APS), and slip mode frequency
shift (SMS) etc. [3-4]. However, with increase in reactive load these methods
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show higher non-detection zone (NDZ) [5]. In passive methods, a threshold
value of parameters is selected and based on the choice of threshold value,
islanding is detected. However, the choice of suitable threshold is a challenge
that may often lead to misinterpretation of islanding events [6]. In [7-8], rate
of change of frequency (ROCOF) has been recommended as an index for
detection of islanding events. However, it has been reported in [5] that in the
case of real and reactive power mismatch, ROCOF leads to NDZ. Hence, to
minimize NDZ, advanced signal processing techniques have been applied for
accurate detection of islanding events.

In existing literature, many signal processing techniques combined with
machine learning tools have been implemented. Application of wavelet
packet transform and extreme machine learning for islanding detection has
been reported in [9]. In [10], Hilbert-Huang transform with extreme learning
machine has been used for islanding detection. In [11], wavelet transform has
been used to distinguish between islanding and non-islanding conditions.
Application of Stockwell (S)-transform with modular probabilistic neural
network (PNN) and support vector machines (SVM) have been reported in
[12] to detect and classify islanding. Application of wavelet transform and S-
transform for islanding detection has been reported in [13]. In [5], use of
signal processing techniques like hyperbolic S-transform, time-time (T-T)
transform and mathematical morphology (MM) methods with SVM have
been reported for islanding detection. Application of empirical mode
decomposition and random forest classifier for islanding detection has been
reported in [14]. Advanced signal decomposition technique for detection of
islanding has been reported in [15]. Recently, application deep learning for
islanding detection has been reported in existing literature [16-17].
Application of convolutional neural network (CNN) and continuous wavelet
transform for islanding detection has been reported in [17].

In this paper, a novel technique using autocorrelation-based feature extraction
technique has been proposed for detection of islanding condition. It is to be
mentioned here that autocorrelation used in this work has definite advantages
over other signal processing techniques. In the first case, autocorrelation
operation is computationally simple compared to other signal processing
techniques [18]. Moreover, unlike the wavelet transform, the performance
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does not depend on the type of mother wavelet used. In comparison with
EMD, autocorrelation is free from the problem of mode-mixing and end-

- ) Pa Y I ~
Acquisition of three | Computation of | Autocorrelation of
phase voltage |:>- negative sequence |:> negative sequence
signalsatPCC | | valtage signals ) L voltage signals
y L ” -

U

: : : ; - . Feature extraction .
Classification using <:| from voltage
BHLSTM classifier autn-:orreluggmms

pS A b A

Fig. 4.1 Flow chart of proposed framework.

effect problems. Another distinct advantage of autocorrelation is that it is
robust against random and uncorrelated noise present in any signal [19]. This
implies that if two similar signals are contaminated with random uncorrelated
noise, then the effect of that noise will not be reflected in the auto-
correlogram as the correlation coefficient value for random uncorrelated
noise is very small [20]. Considering the advantages as stated above,
application of autocorrelation-based feature extraction has been reported in
many existing literature [21-22]. In this study, we investigate the feasibility
of using autocorrelation-based feature extraction for classification of
islanding event in power systems.

In the present contribution, islanding as well as several real-life power system
transient conditions, namely three phase faults, tripping of other DGs etc.
have been simulated on a grid connected DG system. Initially, three phase
voltage signals form the point of common coupling are recorded from which
negative sequence voltage signals corresponding to different transient events
is computed. The computed negative sequence voltage from the point of
common coupling is autocorrelated for feature extraction purpose. The
extracted features were fed to a Bi-LSTM classifier for classification of
islanding and other transient events. It was observed that the proposed
framework employing autocorrelation-based feature extraction and Bi-LSTM
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classifier is capable of detecting islanding as well as non-islanding events
accurately. A brief flowchart of the proposed method is given in Fig. 4.1.

4.2 System under study

Transformerz  DG1(wind
turbinel]
PCCBus 25KV /575v )

:@ ) CB2
Grid Transformerl CB1
120Kv/25Kv —
ine
aTMvA - [mine |

Transformer3
25kV/575kV

DG2(wind
turbine2)

Fig. 4.2 Simulated power system model

The system under study is shown in Fig.4.2. Here a generalised DG model
have been simulated having 2 DGs (wind turbines) which are connected to
the grid via a point of common coupling (PCC). Each DG unit have been
placed at a distance of 30 km from the PCC in a pi-section. The parameter
details of the generator, transformer, distributed lines and the load is
mentioned below:

. Generator: Type-swing, frequency (f) = 60Hz, Vrys=120 kV and
phase=0 (deg.)

. Distributed Generators (DGs): 2 wind farms consisting of 6 wind
turbines are connected to a 25 kV distribution system feeding a 120 kV gird
through a 30 km, 25 kV feeder.

. Transformer 1: Nominal power=47 MVA, f=60 Hz, Voltage

rating:] ZOkV/ZSkV, Vl(RMS):ZOkV, Rl(pu)=008/30, Ll(pu)=0.08,
Vz(RMS)ZZOkV, Rz(pu)=008/30, Lz(pu)=0.08, Rm(pu)ZSOO, Lm(pu):500
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. Transformer 2,3: Nominal power=6x1.7SMVA, f=60Hz, Voltage
rating 2251(\]/575\], Vl(RMS)=25 kV, Rl(pu)=0025/30, Ll(pu)=0.025,
V2(RMS)=575V3 RZ(pu)=0'025/30’ L2(pu)=0-0259 Rm(pu)=500, Lm (pu)zlnfinity.

. Distribution lines: 2 pi-section 30 km lines, f=60 Hz, R;=0.1153
Q/km, Ry=0.413 Ohms/km, L;=1.05 mH/km, Ly=3.32 mH/km, C;=11.33
nF/km, Cy=5.01 nF/km

The islanding event is simulated by tripping the main circuit breaker CB1
with loads L; = 2MW, L, =2MW, 30 MV Ar, respectively. At this condition,
voltage readings are taken from the point of common coupling (PCC). In
addition to islanding, other transient conditions like tripping of other DG’s,
three phase fault etc. have been simulated to distinguish between islanding
and other transient phenomenon. The circuit breakers were tripped according
to the various simulated conditions, by varying switching times. In addition,
voltage signals under normal operating conditions were also recorded. The
simulation of different transient events is performed via. MATLAB
Simulink.

4.3 Methodology

4.3.1 Negative sequence computation

Negative sequence component of voltage and current is one of the primary
indicators of any transients in a system [5]. So, in this paper the negative
sequence voltage components have been computed on the three phase voltage
signals acquired from the PCC. The mathematical expression for computation
of negative sequence component from three phase voltage signals is
described below:

v, = %(Va + AV, + AV.) 4.1

Where, V,, V, and V, represents the three phase voltage signals received at
the PCC and V, is the negative sequence voltage and A=12£120° is the
complex operator. Using the above formulae, the three phase voltage signals
recorded at the PCC have been converted to negative sequence voltage.
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4.3.2 Autocorrelation sequence computation feature extraction

The sole objective of the present work is to detect the islanding and transient
disturbances in a grid connected DG system. For this purpose, suitable signal
processing tool has been applied on the computed negative sequence voltage
components for categorization of each type of transients [5]. In the present
chapter, autocorrelation has been used to analyze the negative sequence
voltage waveforms. In digital signal processing, autocorrelation is a measure
of the similarity between two alike signals. In the other words, it is the
measure of self-similarity of a signal. Autocorrelation of a discrete signal x(n)
is calculated using the following formula:

N-m-1
& _{Zn=0 " XnimXn mz=0
Sxx(m) = {Sxx(—m) m<0 (42)

In (4.2), “xx’ is the autocorrelation sequence (also known as autocorrelogram)
and the index ‘m’ indicates the lag or the time shift parameter. For a given
discrete sequence with N number of sample points, autocorrelation operation
gives (2N-1) sample points.

4.3.3 Feature extraction

Feature extraction is an important part in any classification task. Extracting
meaningful features can boost the performance of the classifier. In this paper,
we have extracted 36 features from the negative sequence voltage
autocorrelograms. The extracted features from autocorrelation sequences are
given in In Table 4.1. It is to be mentioned here that these extracted features
(EF) are a combination of different statistical, Hjorth as well as non-linear
features. Detailed mathematical expression of these extracted features is
provided in [19]. These 36 features are fed as inputs to a Bi-LSTM classifier
for classification of islanding and non-islanding events.

4.3.4 Bi-directional-long short term memory network

Bidirectional-long short term memory network (Bi-LSTM) is a deep neural
network used for time series prediction as well as for classification. Bi-LSTM
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is proposed as an extension of long short term memory network (LSTM),
which tackles the problem of vanishing gradient suffered by the Recurrent
Neural Networks (RNNs). Fig. 4.3 shows a basic RNN which looks
somewhat like this from the high level. Detailed information about the RNN

Table 4.1 Extracted features

EF;: Maximum value

EF,o: Margin factor

EF,: Index of the maximum
value

EF,y: Form factor

EF;: Equivalent width

EF,,: Clearance factor

EF,: Centroid

EF,,: Kurtosis factor

EFs: Absolute centroid

EF,3: Waveform index

EFs: Root mean square width

EF.4: Peak index

EF;: Mean

EF,s: Skewness index

EF;: Standard deviation

EF,6:1* Quartile

EF,: Skewness

EF,;: 3" Quartile

EF,o: Kurtosis

EF,5: Waveform length

EF] 1+ Median

EF,9: Wilson amplitude

EF;,: RM.S value

EF;,: Sample Sign integral

EF3: Square root of amplitude

EF;,: Hjorth feature mobility

EF,,: Peak to peak value

EF;,:Hjorth feature
complexlity

EF,;5: Variance

EF3;: Shannon Entropy

EF4: Crest factor

EF3,: Renyi Entropy

EF,;: Shape factor

EF;s: ApproximateEntorpy

EF5: Impulse factor

EF;¢: Sample Entropy

can be found out in [23]. The Bi-LSTM uses two independent RNNs instead
of a single RNN. The basic working principle behind such a network is that
the input sequence in its normal order is fed to the first network while the
sequence is reversed when fed to the second layer. This reversal of input
sequence helps the model learn not only from the previous states but also
from next states simultaneously. Fig. 4.4 shows the architecture of a
bidirectional RNN (BRNN). As it’s evident from Fig. 4.3 and Fig. 4.4 that
the only difference between RNN and BRNN is that in BRNNSs, there is an
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additional independent RNN to enable the model to learn from not only the
past but also the future. Otherwise, the basic working principle remains the
same. The vanishing gradient problem of RNN exists here too. So, to deal
with the aforesaid issue, again LSTMs come to the rescue. The structure of
Bi-LSTM is shown in Fig. 4.5. From Fig. 4.5, it can be seen that in Bi-

I O O
- AI—MI—»IA%
. ®

¢ b b d

Fig. 4.3 Simplified structure of RNN.

Outputs G‘D
Activation

Backwarilg—| 2
Layer LLS" M
——
Forward I LSTM
Layer

Inputs Xr.g

Fig. 4.5 Structure of Bi-LSTM.
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LSTM, the single layered repeating module of an RNN is replaced by a four
layered repeating layer, but twice here, one for the forward RNN and the
other for the backward RNN. An important thing to note is that the output
sequence is calculated by subjecting the RNN layers to an activation
function. So, Bidirectional LSTMs are an extension of traditional LSTMs.
Application of Bi-LSTM as a classifier has been reported in many recent
works [24-25]. In this work we investigate the feasibility of using Bi-LSTM
as a classifier for classification of islanding and other transient events using
features extracted from negative sequence voltage autocorrelograms.

4.4 Results and Discussions

4.4.1 Autocorrelation of negative sequence voltage signals

Fig.4.6 (a-d) shows the time variation of negative sequence voltage signals
obtained under normal operating condition, islanding condition, three phase
fault and tripping of other DG, respectively. The corresponding
autocorrelation sequences for the above 4 events are also shown in Fig. 4.7(a)
through Fig. 4.7(d), respectively. From Fig. 4.7 (a-d) it can be observed that
the negative sequence voltage autocorrelograms of different transient events
are distinctly different from each other. So, it is possible to distinguish
different transient events by extracting suitable features from the
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Fig. 4.6 Normalized negative sequence voltage of different transient events

autocorrelation sequences. In this study, 36 features as mentioned in Table
4.1 are extracted from the autocorrelation sequences of negative voltage
sequence components for classification of islanding and non-islanding
events. The training of Bi-LSTM classifier as well as the performance of the
proposed model using the extracted features is discussed in the next section.
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4.4.2 Training of Bi-LSTM

The Bi-LSTM proposed in this work has a hierarchical structure that consists
of an initial input layer for sequence input. This is followed by one Bi-LSTM
layer, one dropout layer and four fully connected layers. Finally, a
classification layer with softmax as the activation function is placed at the
output. The number of neurons fed to the input layer is 36. In the case of Bi-
LSTM, the hidden units are selected as 100 with 50% dropout rate. The
classification layer at the output is responsible for predicting the respective
classes as determined by the probabilistic scores obtained from the Bi-LSTM
layer. For the purpose of training, the initial learning rate was kept at 0.001
and for scaling the learning rate corresponding to each weight, Adam
optimizer was selected and Cross-entropy was chosen as the loss function.
The number of iterations were set to 2000 with the size of mini-batch size
kept at 20 and for training the Bi-LSTM, number of epochs was set at 80.
The training of the Bi-LSTM classifier is shown in Fig. 4.8. The entire
training was performed on a personal computer with machine configuration
as follows: Processor: Intel i5 (9th Gen), RAM: 8 GB RAM, Graphics Card:
NVIDIA GTX in MATLAB 2020 (a) environment.

4.4.3 Evaluation of Bi-LSTM

In this section, the classification performance of the Bi-LSTM classifier is
evaluated. In the present work, a total of 1000 negative sequence voltage
signals (250 per class) were obtained. These signals were obtained by varying
the parameters like varying in active and reactive power, time of occurrence
etc. After autocorrelation operation, 250 autocorrelograms were obtained for
each class. Now as mentioned earlier, since 36 features were extracted from
each autocorrelograms, size of the input feature matrix is 250 x36. These
features were split in the ratio of 80:20 for training and testing the classifier
performance. In this work, two types of (one binary and one multiclass)
classification problems are presented. The description of different types of
classification problems is given in Table 4.2. The purpose of the binary
classification (C-I) is to distinguish only between islanding and non-islanding
events including the normal operation. The multiclass classification can
distinguish each type of event separately and can send the decision to the
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relay to take necessary action. The performance of Bi-LSTM classifier has
been evaluated in terms of the following indices namely accuracy, sensitivity
and specificity, respectively. The mathematical expression of the above
indices are given by (4.3)— (4.5):

TP+TN

Accuracy(%) = TR 100 (4.3)
e _ TP
Sensitivity (%) = e % 100 4.4)
e _ TN
Specificity(%) = e 100 4.5)

The parameters true positive (7P), true negative (TN), false positive (FP) and
false negative (FN) were computed from the confusion matrices of C-I and
C-II, respectively. The performance of the Bi-LSTM classifier is shown in
Table 4.3. It can be seen from Table 4.3that Bi-LSTM has delivered very
high accuracy for both C-I and C-II, respectively. The performance of C-I is
marginally better than C-II. Nevertheless, for both C-I and C-II, the
performance of Bi-LSTM is almost consistent with some minor deviation
indicating satisfactory performance of the proposed model.

Table 4.2 Classification Problem

Classification Description Type of
problem
C-1 Islanding vs. Non-islanding Binary
Events
C-lII Normal operation vs. Multiclass
Islanding vs Three phase
fault vs. Tripping of other
DGs

Table 4.3 Performance of Bi-LSTM classifier

Classification | Accuracy | Sensitivity | Specificity
(%) (%) (%)
C-1 99.0 100.0 98.45
C-II 98.50 99.20 97.75
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4.4.4 Comparison with standard machine learning algorithms

In this section, the performance of the proposed model is compared with
some existing benchmark machine learning algorithms namely, support
vector machines, k-Nearest Neighbour (kNN) and random forest (RF)
classifiers. Detailed description of these classifiers can be found out in [26-
28]. For SVM, kernel functions were varied and it was observed that RBF
kernel has delivered best results. To determine the optimum kernel width, the
regularization parameter is varied in steps of 0.1 from 1-200. For kNN, the

Table 4.4 Classification performance using other ML classifiers

Classification Classifier Accuracy | Sensitivity | Sensitivity
and (%) (%) (%)
Parameters
C-1 SVM-RBF 97.50 96.20 95.48
o=1.2
kNN 97.25 98.56 97.30
k=3,
Euclidean
RF 98.45 99.27 97.85
Proposed Bi- 99.0 100 98.45
LSTM
C-1I SVM-RBF 96.21 97.20 96.75
o=1.2
kNN 97.10 98.65 96.52
k=5,
Euclidean
RF 97.65 98.56 98.14
Proposed Bi- 98.50 99.20 97.75
LSTM

performance is evaluated by varying the distance parameter as well as the
value of k. In the case of RF classifier, the optimal number of decision tress is
kept at 50. The performance of different classifiers in islanding detection is
reported in Table 4.4. It can be observed that for both C-I and C-II, the Bi-
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LSTM classifier proposed in this study delivered best results compared to
other classifiers. From Table 4.4, it can also be seen that the performance of
RF is better than both SVM and kNN. It is interesting to note that all the
classifiers have delivered reasonably accurate results which indicate the
robustness of the proposed autocorrelation-based feature extraction model.

4.4.5 Performance analysis in presence of noise

The performance of the proposed model is also analyzed in the presence of
noise. For this purpose, white Gaussian noise with different signal to noise
ratios (SNR) are mixed with the voltage signals. The classification accuracy

100
HC-l mC-ll 99.01
929 98.51 98.5
9% 97.45 97.36
X 96.84
> 97 96.54
o
=3
S 9% 95.46
<
95
94
93
10 20 30 40
SNR (dB)

Fig. 4.9 Variation of accuracy with noise level (SNR)

of the proposed Bi-LSTM model is plotted against different signal to noise
ratios (SNR) in Fig. 4.9 for both C-I and C-II, respectively. It can be
observed that the classification accuracy showed not much deviation even
when the SNR is as low as 10 dB. This is observed to be true for both CPs.
This is because since autocorrelation-based signal analysis and feature
extraction technique is robust against noise, hence the classification accuracy
is almost unperturbed in presence of noise. Thus, the performance of the
proposed model is robust against noise.
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4.5 Conclusions

In this paper, a novel technique for classification of islanding and non-
islanding events in a grid connected DG system is proposed. For this purpose,
islanding and several other transient events (faults, DG trip etc.) were
simulated and three phase voltage signals corresponding to each transient
events have been recorded from which respective negative sequence voltage
signals have extracted. Then autocorrelation is applied on the acquired
negative sequence voltage signals. From the respective autocorrelograms, 36
fault features were obtained. The features were fed to Bi-LSTM classifier for
classification of islanding and non-islanding events. In this study, one binary
and one multiclass classification problem has been addressed. It has been
observed that for both the cases, the performance of the proposed model is
satisfactory. Further investigations have revealed that in comparison with the
standard machine learning classifier, the performance of the proposed Bi-
LSTM model is better. Besides, it has been observed that the performance of
the proposed autocorrelation aided machine learning model is immune to
noise. Thus, it can be concluded that the proposed autocorrelation aided Bi-
LSTM-based islanding detection method can be used for accurate detection
of islanding and non-islanding events in distributed generation system.
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Chapter 5

Time-Frequency Image Representation
Aided Deep Feature Extraction-Based Grid
Connected Solar PV Fault Classification
Framework

5.1 Introduction

Solar photovoltaic (PV) systems are one the most popular and reliable
sources of renewable energy that can cater to the ever-increasing demand of
increasing demand of non-conventional energy sources all over the world.
The solar PV systems can generate electricity with zero carbon-di oxide
emission, thereby can reduce the detrimental effects of climate change [1].
Hence, large scale solar PV systems are being installed all over the world.
Solar PV system can operate in either standalone mode or in grid connected
mode. Operation of grid connected solar PV system is more challenging and
requires proper monitoring to ensure the reliability of power system network.
In the event of faults occurring in grid connected PV system, the power
system operation gets critically affected resulting in substantial financial
losses. Different types of faults can occur in a grid connected PV system [2-
4]. If not detected early, these faults severely limit the operation of solar PV
system. For small scale solar panels, detection and isolation of faults is
generally done by skilled technicians. However, the above method is
dependent on human intervention and is error prone especially for large solar
panel connected to grid. Therefore, it is necessary to develop an accurate and
fast fault detection methodology for maintaining safe and continuous
operation of grid connected solar PV systems.
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Commonly occurring faults in solar panels include hotspots, cracks,
delamination, and discoloration, malfunctioning of bypass diode, internal
short circuit etc. [3]. In existing literature several techniques have been
proposed by the researchers for fault detection of solar PV systems.
Application of imaging techniques like infrared imaging [5] for condition
monitoring of solar panels have been reported in [5-6]. Although imaging
techniques can be useful for remote condition monitoring of solar panels, the
method fails to give reliable results during low-light conditions. Condition
monitoring of PV modules using current voltage (I-V) characteristics [7]
have been reported in existing literature [7-9]. Recently, advanced signal
processing techniques as well as modern machine learning tools for fault
detection and classification in solar panels. In [10], fault detection in solar
photovoltaic array using fast Fourier transform (FFT) and total harmonic
distortion (THD) has been reported. Since the current waveforms during
faulty condition are significantly deviant from stationary behavior, analysis in
time-frequency domain has been reported in existing literature.

In [11] feature extraction using wavelet transform multi-resolution analysis
has been proposed for classification of faults in solar panels. In [12] wavelet
packet transform has been applied for DC arc fault detection in solar PV
systems. However, the main limitation of wavelet transform-based signal
analysis technique is that it is not signal adaptive in nature as the shape of the
mother wavelet remains fixed throughout the length of the signal.
Application of several signal decomposition techniques has been used to
diagnose faults in solar PV systems [13-14]. In [13], empirical mode
decomposition (EMD) has been used for fault detection in solar PV systems.
But the main limitation of EMD is that it suffers from mode mixing and end
effect problems. Application of dispersion entropy and variational mode
decomposition (VMD) for detection of faults in grid connected PV system
has been reported in [14], However, one limitation of VMD is that iterative
extraction of intrinsic mode functions (IMFs) is tedious and computationally
expensive. In [15], recurrence plot has been implemented for detection of DC
series fault in solar PV systems. Application of machine learning algorithms
like support vector machines (SVM) [16], artificial neural network [17], k
nearest neighbour [18] decision tree (DT), random forest (RF), extra trees
(EXT), extreme gradient boosting machine (XGBoost) and light gradient
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boosting machine (LightGBM) [19], principal component analysis (PCA)
[20] etc. for fault classification in solar PV system has been reported in many
existing literatures. Although satisfactory accuracy has been achieved in
classifying faults in solar PV systems, from practical point of view existing
methods have certain limitations.

In the first case, most of the existing methods rely upon manual feature
extraction for classification of faults in solar PV systems. In any
classification problem, feature extraction is an important part as the
performance of the machine learning features can be extracted either
manually with prior knowledge or automatically without prior knowledge.
Manual feature selection always imposes the risk of selecting redundant
features which may directly influence the classification results. Considering
the above-said facts, this study proposes a deep feature extraction-based
framework for accurate fault detection in solar PV systems. The advantage of
deep learning algorithms is that it can select features automatically from a
given input image and at the same time can improve classification accuracy
by selecting only the relevant features and by discarding the redundant ones.
Moreover, deep learning can be easily implemented in low-cost
microcontroller or raspberry-pi. Considering the advantages as stated above,
in this work, a stacked sparse autoencoder model is used to extract deep
features from the time-frequency images of current data. SSA is a deep
learning architecture which is widely used for automatic feature extraction
purposes. Application of SSA-based feature extraction has been reported in
various existing literature [21-22]. The main benefit of using SSA-based
feature extraction technique is that the feature extraction method is fully
automated without any need for manual intervention. Moreover, SSA is an
unsupervised deep machine learning approach i.e., they don’t need any
labeled data for training [21]. In other words, SSA can train and self-learn
without pre-defined class labelling which can be used for real-time PV array
fault diagnosis even if prior information about the type of fault data is not
present. Thus, SSA has definite advantages over supervised machine learning
algorithms. Taking these benefits into account, SSA is utilized in this work to
extract meaningful features from the time-frequency representation (TFR) of
current signals to construct an accurate and reliable solar PV fault detection
system. In this study, three phase current signals of healthy as well as three
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different fault scenarios were from the point of common coupling (PCC). The
acquired three phase current data were initially converted to direct (d-axis)
and quadrature (g-axis) using extended Park’s vector approach. The extended

gliiis N\ e e \
Acquisition of three Conversion from abc Time-frequency sSA based d
phase current tod-qusing extended [~  Analysis using e 55; ::D

signals Ia, Ib and Ic Park’s vector approach SPWVD EStnEExtaceion
J \. - U J
Y [ e )

Machine learning Feature Selection

Classification <: o using ANOVA and

classifiers
FDR
J \ \

Fig.5.1 Flow chart of the proposed fault detection method

Park’s vector approach has been successfully implemented for identification
of faults in induction motors [23,26]. However, the aforesaid approach is not
explored in power system for detection of faults. Considering the aforesaid
fact, Park’s vector approach has been used in this work. The novelty of the
proposed work is that this is the first study where extended Park’s vector
approach has been used to analyze the three phase fault currents in grid
connected solar PV systems. Using extended Park’s vector approach, the
obtained daxis and gaxis currents in time—domain was transformed to time-
frequency images using smoothed pseudo-Wigner-Ville distribution
(SPWVD). A distinct advantage of using SPWVD over other time-frequency
methods for e.g., continuous wavelet transform (CWT) is that the former
does not depend on the nature of the choice of mother wavelet [24].
Moreover, unlike short time Fourier transform, the time- frequency analysis
does not depend on the overlap and the type of window. Also, SPWVD is
free from the mode-mixing and end-effect problems as suffered by EMD.
Therefore, SPWVD is used in this work to analyze the current data in time-
frequency (T-F) frame. A flowchart of the proposed fault detection
framework is portrayed in Fig. 5.1. The main contributions of the present
work are as follows:

(i) A novel technique using extended Park’s vector approach is proposed for
fault detection of grid connected solar PV systems. The transformed current
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components (I, and I,) obtained from Park’s vector were analyzed in time-
frequency domain using smoothed pseudo-Wigner-Ville distribution
(SPWVD).

(i) A stacked sparse autoencoder (SSA)-based deep learning framework is
proposed for automated feature extraction from TF images of current data.

(iii) Using analysis of variance (ANOVA) and false discovery rate (FDR)
correction, most discriminative deep features were selected.

(iv) Classification of faults is done using selected deep features and four
popular machine learning algorithms.

5.2 Acquisition of Fault data

In the present work, three phase current signals have been obtained a real-life
grid connected solar PV experimental dataset to develop the fault
classification model. The experimental setup consisted of a grid connected
solar PV system operated under maximum power point tracking (MPPT) and
limited power point tracking (LPPT) mode. The detailed description of the
experimental set-up can be found in [25]. The schematic of the grid
connected PV system is given in Fig. 5.2(a). The actual photograph of the
experimental set-up is shown in Fig. 5.2(b). The fault dataset has a total of 16
data files with each file containing information about each type of event.
These files were labelled as 0-7, with 0 being fault free and 1-7 representing
different faults simulated under both MMPT and LPPT mode of operation.
The different types of fault cases investigated include PV array mismatch,
faults in inverters, anomalous grid operation, faults in feedback sensors and
faults in MPPT controller with varying severity etc. It is to be mentioned here
that in the present work, PV array mismatch caused due to 10% to 20%
nonhomogeneous partial shading is used. Since PV array mismatches are
challenging to detect in real-life due to the large variability in sensor data at
the DC-side, therefore it is selected to verify the efficacy of the proposed
method. The percentage of PV array mismatch has been determined using the
method mentioned in [26]. In addition, each file contains information about
the following parameters: (i) sampling time (~10us) (i) I,: current
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measurement from PV array (iii) V,,: voltage measurement from PV array
(iv) V4 measurement of DC voltage (v) measurement of three phase currents
(1, Iandl,) (vi), Measurement of three phase voltages V,, V;, and V, (vii)

Inverder
L R
MW

environment
- TES
Programmable Chroms
solar array emulator

(b)

Fig.5.2 Schematic of (a) Experimental set-up (b) Actual photograph [25]

magnitude of current I, (viii) frequency of current (ix) magnitude of voltage
Vase (X) frequency of voltage V;. In this work, the three phase current data (/,,
I, and I.) has been used for classification of faults in grid connected PV
system. Also, in this study, out of 16, 4 data files, (three files representing
different types of faults and one fault-free condition) have been used to
develop the fault classification model for grid connected PV system operating
under MPPT mode. The different class labels with their detailed description
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used in this work are given in Table 5.1. The time variation of single cycle
(0.02 s) three phase current signals for different classes (mentioned in Table
5.1) are shown in Fig. 5.3(a-d), respectively. It can be seen from the time

Table 5.1 Fault classes and their description

Amplitude(A)

-0.5

Class Type of Fault Description
Label
Co No fault Healthy condition
C, Feedback Sensor fault One phase sensor fault 20%
G, PV array mismatch 10 to 20% non-homogeneous partial
shading
Cs Boost converter +20% in time constant parameter of
controller fault PI controller in MPPT controller of
the boost converter
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Fig. 5.3 Single cycle fault current signals for (a) Cy (b) C;(c) C; and (d) C;

variation of single cycle three phase current waveforms shown in Fig. 5.3(a-
d), it is difficult to discriminate between no-fault and fault current waveforms
as the current waveforms look almost alike. Hence, extended Park’s vector
approach is applied on current waveforms to transform the current data to d
axis and g axis, respectively.

5.3 Methodology

5.3.1 Extended Park’s Vector approach

The extended Park’s vector approach is a popular method of mapping three
phase voltage or current signals into direct (d) and quadrature (q) axis. The
mapping allows visualization of three-phase quantities into d and gaxis. The
mathematical formulae that relate d-axis (/;) and g-axis (I,) current
components with three phase quantities (/,, I, and 1) is given by [27]:

2 1 1
Id_fgla—%lb—v—glc (5.1)
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1 1

q zd_ilb_\/_flc (52)

Using the above formulae, single cycle three phase current signals (/,, I, and
1) shown in Fig. 5.3(a-d) acquired from PCC were converted to d-axis and g-
axis components, respectively. The time variation of /; and I, components for
no fault as well as for different types of fault classes are shown in Fig. 5.4(a-
d) and Fig. 5.5 (a-d), respectively. It is evident from Fig. 5.4 (a-d) and Fig.5.5
(a-d), that significant differences in d-axis and g-axis currents are observed
for both no-fault as well as for different fault classes. Such variations were
absent if only three phase current signals were considered as
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Fig. 5.5 Quadrature (¢g)-axis current signals (/,) for (a) Cy (b) C(c) C, and (d)
(&

shown in Fig. 5.3(a-d). Thus, it is evident that segregation of three phase
current signals into d-axis and g-axis components can aid in better
discrimination of faults. Additionally, it is evident from Fig, 5.4(a-d) and Fig.
5(a-d) that both d-axis and g-axis currents are non-stationary in nature.
Hence, analysis in joint T-F plane will deliver fruitful results. Considering
the aforesaid fact, in this study, smoothed Wigner-Ville distribution
(SPWVD) is employed in this work. Brief mathematical details of SPWVD
are given in the next subsection.

5.3.2 Smoothed pseudo-Wigner-Ville distribution

As mentioned earlier, I; and I, current data shown in Fig. 5.4 and Fig. 5.5,
reveals that the signals of healthy as well as different fault classes are having
non-stationary characteristics. Due to such non-stationary behaviour of
current data, analysis in joint T-F plane can be suitable to investigate the non-
linear dynamics of current signals to diagnose faults in PV systems. In
existing literature, several methods like, Wigner-Ville distribution (WVD)
[28] and smoothed pseudo-Wigner-Ville distribution” (SPWVD) [29-30] etc.
are available to analyze EEG time-series in joint time-frequency plane.
According to [29], resolution in TF image plot obtained from STFT, CWT
and WVD is poor due to cross-terms of both time and frequency. In this
study, this problem is overcome by using smoothed pseudo-Wigner-Ville
distribution (SPWVD) which yields excellent time-frequency resolution due
to introduction of cross-term reducing windows in time and frequency
domain simultaneously. Additionally, the type and length of the “cross-term
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reducing window” can be selected independently. Due to these advantages,
SPWVD is more suitable to bring out hidden features from the time-
frequency images of current data compared to traditional time-frequency
analysis like short time Fourier transform (STFT), continuous wavelet
transform (CWT), etc. The mathematical formulation of the smoothed
pseudo-Wigner-Ville distribution of any current signal 1(t) can be represented
as [29]:

oo T % T o} ’ ' AV ’
sPwvD(e,f) = [ u (3w (=2) [7 v =)t (¢ + D)1 (v -
3) dt'e= 127t dy (5.3)
2
In the above equation, u(f) denotes a window that reduces cross-terms in time

domain whereas v(f) signifies a window that reduces cross-terms in frequency
domain. It is worthwhile to mention that v(f) can be selected independently.
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Fig. 5.6Time-frequency representation of d-axis current signals obtained
using SPWVD for class (a) Cy (b) C; (¢) C, and (d) C;

Time-frequency analysis of I, and I, current signals yields complex time-
frequency (T-F) matrices. The T-F images were obtained by taking the
magnitude of the respective T-F matrices. The T-F plots of d-axis and g-axis
current signals (Ig) and (I,) for fault free as well as faulty signals analyzed
using SPWVD have been shown in Fig. 5.6 (a-d), and 5.7 (a-d), respectively.
In Fig. 5.6 and Fig. 5.7,y-axis denotes the frequency and x-axis denotes the
time (data points). It is worth mentioning here that image plot of the
magnitude of the T-F matrices i.e., time-frequency representation (TFR) plots
can be used as inputs to the deep learning network for automated feature
extraction [30].
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Fig. 5.7Time-frequency representation of d-axis current signal obtained using
SPWYVD for class (a) Cy (b) C; (¢) C, and (d) C;

5.3.3 Stacked sparse auto encoder

Feature extraction is an important part of any classification. Feature
extraction is an important part of any classification task. Manual selection of
features is unsophisticated and unreliable. Also, it may lead to
misclassification because of the selection of insignificant and redundant
features. In this work, a deep learning framework known as stacked sparse
autoencoder (SSA) based automated feature extraction and reduction process
has been proposed to obtain significant features from the time-frequency (T-
F) matrix of different current signals obtained after applying SPWVD. Brief
theoretical background of SSA is given below.

An autoencoder is an unsupervised machine learning algorithm consisting of
two fundamental parts of an autoencoder and a decoder. A SSA model
consists of two sparse autoencoder, connected in cascade. The encoder part of
the first model extracts deep features from the input data and the encoder part
of the second model eliminates the redundant features, extracted by first
model, and reduces the dimension of the feature set [31]. In Fig. 5.8, a
schematic diagram of stacked autoencoder architecture is shown. The
encoder part encodes the input data x in terms of meaningful features F' and
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the decoder reconstructs the input data as outputx’in terms of approximation
of x from the encoded features by using (5.4) and (5.5) as:

F =h(Wx + B) (5.4)
x'=g(W'F +B") (5.5)

Here, h and g are the activation functions of the hidden layers of encoder and
decoder respectively and W, W', B and B’ are the weight matrices and bias
vectors of encoder and decoder, respectively. In SSA, several parameters
control and prevent the learning and model overfitting. For example, sparsity
regularizer of an autoencoder model enforces a constraint on the sparsity of
the output from the hidden layers. This regularizer is a function of the
average output activation value of a hidden neuron, p;defined as:

Pi= =X Fi(x) (5.6)
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Fig. 5.8 Structure of stacked sparse autoencoder

Where, i, n, and j indicates the i neuron, total number of training data and jth
training sample respectively. The sparsity of the autoencoder model, parsiy
has been determined by using Kullback-Leibler divergence theorem which is
given by:
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1

fsparsity = ?:1 p lOg(ﬁ%) + (1 - p) lOg( 1

) 5.7

-p
-Pi
Two parameters ‘sparsity regularization’ and ‘sparsity proportion’ control the
impact of sparsity regularizer and the average activation value. Different
regularization techniques are present to control the overfitting of the
autoencoder model during the training process [31]. Here, L, regularization
method is utilized to train the model. The L, regularized weight matrices is
given by:

1
Eweignes = 324 X DE(w)? (5.8)

The cost function used by the algorithm for approximation of input data as
the output is expressed as:

1 o
C== rI\lI=1 Zgzl(xkn - xkn)z + 0 % Eweightsd X gsparsity (5.9

N
In (5.9), the first term denotes the mean squared error between input and
output for k™ neuron, 6 and ¢ are the L, regularization coefficient and sparsity
regularization coefficient of the autoencoder model. The term &4y is the
sparsity regularizer which is determined by Kullback-Leibler divergence this
present work. In this contribution, sparsity regularization parameters, sparsity
proportion, L, weight regularization parameter and maximum training epochs
are set as 4, 0.05, 0.001 and 100 respectively. To obtain the encoded features
at the end of the training process, a decoder layer has been removed from the
model at the final training iteration.

5.3.4 Machine learning classifiers

In this present chapter, the extracted deep features are classified using
random forest (RF), multiclass support vector machines (SVM), k-nearest
neighbour (kNN) and naive Bayesian (NB) classifiers. Since, theory of these
aforementioned machine learning classifiers is well known, hence detailed
mathematical description is not reported here. However, details of RF, SVM,
kNN and NB classifiers can be found out in [32-34].
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5.4 Results and Discussions

5.4.1 Performance analysis of Stacked sparse auto encoder (SSA)

The T-F images of I, and I, signals for four classes obtained using SPWVD
had initial dimensions of 415 x 526 x 3. The T-F images were then converted
to grayscale and were further resized into 224 x 224, before being served as
inputs to the stacked sparse autoencoder model for deep feature extraction.
The SSA performance in feature reconstruction form the input images by
training the hidden layers is shown in Fig. 5.9. It can be seen from Fig. 5.9
that the best training performance is obtained when epoch value reaches 100.
So, 100 epochs were used in this work to train the autoencoder model. In this
present contribution, the number of hidden layers for the first autoencoder
model has been set to 50, from where 50 highly correlated deep features have
been obtained initially. The feature set was given as input to the second
autoencoder model whose number of hidden layers have been set to 25 and
from the output terminal of the encoder layer, a feature set comprising 25
deep features have been obtained.

25 T T T T

Training

- @ ‘Validation

Loss

0 20 40 60 80 100
Number of epochs

Fig. 5.9 Training of sparse autoencoder
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The statistical significance of these features was examined utilizing analysis
of variance (ANOVA test) were found to be statistically significant with p-
value less than 0.001. Finally, using the 25 extracted deep features,
classification of faults was done for both fan and drive end signals. In this
paper, 5-fold cross validation with train-test ratio of 80%-20% has been used
to evaluate the classifiers performance. Classification performance has been
observed in terms of four statistical parameters, which are Accuracy,
Sensitivity, Specificity and Precision. The mathematical expressions
corresponding to these measuring indices (expressed in percentage) are given
by (5.10) -(5.13):

TP+TN

Accuracy(ACC) = TP < 100 (5.10)
e _ TP
Sensitivity(SEN) = e < 100 (5.11)
Specificity(SPE) = TNT:’FP X 100 (5.12)
Precision(PRC) = % X 100 (5.13)

Where TP, TN, FP and FN symbolize true positive, true negative, false
positive and false negative respectively. Table 5.2 and Table 5.3 show
different classifiers” performances evaluated in terms of the aforesaid
measuring indices for both I, and I, current signals respectively. It is to be
mentioned here that in Table 5.2 and Table 5.3, the optimal number of trees
for the RF classifier were selected as 50 and 60, respectively. In the case of
SVM, grid search algorithm was used to determine the regularization
parameter by varying from 1-500 in steps of 0.1. The optimum kernel width
in Table 5.2 and Table 5.3 was set at 2.4 and 3.6, respectively. For kNN,
Euclidean distance has been used with the optimum value of k set at k=3 and
k=5, for Table 5.2 and Table 5.3, respectively. From Tables 5.2 and 5.3, it
can be observed that most of the classifiers delivered reasonably high
accuracy, sensitivity, specificity, and precision for both I; and I, current
signals. However, the performance of different classifiers is found to be
slightly better for the /; compared to I, signals. Among different classifiers,
kNN returned highest classification accuracies than the other classifiers. The
performance of NB classifier is found to be inferior for both the cases.
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Nevertheless, the performance of different classifiers is satisfactory for both
I, and I, signals. In addition, the standard deviation values indicated in
parenthesis are reasonably low for the kNN classifier indicating that the
proposed model is robust.

Table 5.2 Classification performance of quadrature axis (/,) current data

Classifier ACC (%) SEN (%) SPE (%) PRC (%)
RF 93.88+4.1 | 94.22+3.7 | 92.7244.2 | 92.61£7.0
SVM 91.40+54 | 89.89+9.1 | 92.16+£6.6 | 86.14+9.8
kNN 98.79+1.0 | 96.00+2.4 | 95.38+3.6 | 96.80+1.2
NB 89.96£2.4 | 95.50+£1.2 | 92.11+£1.7 | 88.17+2.3

Table 5.3 Classification performance of quadrature axis (/,) current data

Classifier | ACC (%) SEN (%) SPE (%) PRC (%)
RF 92.56+3.8 | 93.10+£3.5 | 91.45+4.0 | 92.10+6.5
SVM 90.25+4.5 | 87.49+8.1 | 91.20+£5.8 | 87.2449.1
kNN 97.56+1.8 | 95.20+2.5 | 94.80+3.8 | 94.05+1.8
NB 88.86+£2.5 | 94.45+1.3 | 91.05+£2.8 | 87.15+4.1

5.4.2 Statistical test of different classifiers

In Fig 5.10, statistical analysis using one-way analysis of variance (ANOVA)
test and post-hoc Tukey Kramer test has been reported. This is done to get
better insight into the classification performances of different machine
learning classifiers employed in this study. Using the ANOVA test, an
overall significance with p < 0.05 has been obtained. From the post-hoc
analysis signals, both RF and kNN deliver higher statistical significances
with NB. Also, between RF and SVM, lower statistical significance is
observed for both 7, and I, current signals. Nevertheless, the performance of
classifiers for both datasets is observed to be reasonably satisfactory,
indicating the robust performance of the proposed model.
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Fig 5.11. Variation in classification accuracies with varying number of folds
5.4.3 Comparison by varying number of folds

The classification performance of the proposed model is further verified by
implementing different number of folds in the cross-validation process. It is
to be mentioned here in this section, classification accuracy only kNN
classifier is being reported since it delivered best performance compared to
the other classifiers as reported in Table 5.2 and Table 5.3. The variation in
the obtained classification accuracies with different number of folds ranging
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from 2-7 is presented in Fig. 5.11, for both I, and I, fault signals respectively.
From Fig. 5.11, it can be seen that initially, the classification accuracies
increase with increase in number of folds. The increasing trend in the
obtained classification accuracies plateaus after 5 folds and thereafter, no
significant rise is observed. Considering this observation, a 5-fold cross-
validation technique has been adopted in this study for classification of PV
array faults.

5.4.4 Comparison using different methods.

In this section, the performance of proposed SPWVD aided TFR-based fault
classification framework and kNN classifier is compared with some existing
methods like short time Fourier transform (STFT). Wigner-Ville distribution
(WVD) as well as Hilbert transform (HT). The accuracy of fault
classification obtained using different classifiers is shown in Table 5.4. For
each of the above-mentioned methods, the deep features were extracted using
SAE for both /; and I, transformed current data. It can be observed that
among different methods, SPWVD delivered better performance than the
other T-F methods which indicates the superiority of the proposed SPWVD
method. This observation was found to be true for both I; and I, current
signals. Also, compared to WVD, SPWVD returned better performance. This
is because, application of SPWVD reduces cross-terms in time domain which
is reflected in the TF representation. Hence, SPWVD based T-F
representation can be considered as a superior time-frequency image
representation method for classification of grid connected solar PV systems.
In addition, the overall computation time (which includes signal to image
conversion using SPWVD, deep feature extraction using SAE and

Table 5.4 Comparison using different methods

Method | Classifier I I C.Iomput.atlonal
time (minutes)
STFT 93.45+£3.3 | 92.76+4.0 14.56
WVD NN 95.46£2.1 | 94.50+3.2 11.52
HT 96.14£1.4 | 95.35+2.6 12.50
SPWVD 98.79+1.0 | 97.56+2.1 10.45
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classification using kNN) indicated in Table 5.4 indicates that the proposed
SPWVD method takes minimum time compared to other methods. The
computational time is calculated using a system with 32GB RAM, Intel core
i5 64-bit processor and central processing unit (CPU) clocked at 3.6 GHz
with one NVIDIA graphics processing unit (GPU) and using MATLAB 2020
a environment.

5.4.5 Comparison with other T-F methods

In Table 5.5, performance of the proposed fault detection scheme is
compared with some of the existing methods which have been reported
earlier using the same dataset. In Table 5.5, the comparative study was
carried out considering only those literatures where similar dataset has been
used for fault classification in grid connected PV systems. It can be noticed
from Table 5.5 that the proposed fault detection scheme has performed better
compared to the existing literature. In addition, it should also be noticed that
most of the existing studies were carried out using conventional machine
learning methods, which is dependent on manual mode of feature extraction.
In this study, the fault classification performance has been reported using
deep feature extraction from current signals which signify the superiority of
the proposed bearing fault detection scheme.

Table 5.5 Comparison with existing literature

Reference Method ACC (%)
[2] Adaptive Neuro-Fuzzy interface 954
System
[35] PCA + kNN 97.9
[36] PCA+ kNN 97.36
[36] PCA+RF 97.78
This study SPWVD + SSA-based deep
(1y) features + machine-learning 98.79
classifiers
This study SPWVD + SSA-based deep
Iy features + machine-learning 97.56
classifiers
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5.5 Conclusions

In the present chapter, a novel framework using SPWVD based time-
frequency analysis and SSA based deep feature extraction is proposed for
automated detection of faults using single cycle fault current signature
analysis. The proposed method is validated on fault current data obtained
from real life grid connected PV system. Instead of considering the three
phase current waveforms, the proposed method makes use of extended Park’s
vector approach to convert the single cycle three phase current signals to d-
axis and g-axis components to improve the fault detection accuracy. The
obtained I3 and I, currents in time domain were transformed into time-
frequency plane using SPWVD. It has been observed that the time-frequency
images of healthy as well as faulty current data showed distinct differences
among each other. The RGB time-frequency images were converted to
grayscale and were subjected to deep feature extraction using SSA. Then,
ANOVA test followed by FDR correction were used for selection of
meaningful deep features. The selected relevant deep features were then fed
to four benchmark machine learning classifiers for classification of current
signals. It has been observed that among different classifiers, kNN delivered
better classification performance compared to other machine learning
classifiers. Comparative study with existing studies revealed that the
performance of the proposed method is comparable and even better. Thus, it
can be concluded that the proposed method can be implemented to develop
an efficient fault detection system for grid connected solar PV systems. In the
present work, only three fault cases have been investigated. In future, more
fault scenarios will be investigated to develop a robust fault classification
model. In addition, the proposed deep learning aided fault classification
method will be validated in hardware using low-cost microcontroller or
FPGA module.
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Chapter 6
Conclusions and Future Work

6.1 Conclusions

In the present thesis, several advanced signal processing and machine
learning techniques have been proposed for detection and classification of
transient disturbances in power systems. The outcomes of the present thesis
work are briefly summarized as follows:

In chapter 2, multi-resolution analysis of two very frequently occurring
power system transients namely oscillatory and impulsive transients are done
using discrete wavelet transform (DWT). Next, the envelope spectrum of the
first four detail coefficients is obtained using Hilbert transform and several
features are extracted from the selected envelope spectrums of both class of
transient signals. Using ANOVA test, statistical analysis of the extracted
features has been done to investigate the discrimination capability of the
selected features which are finally used as inputs to a support vector
machines (SVM) classifier for classification of power system transients. It
has been observed that based on DWT envelope analysis and employing
SVM classifier 100% classification accuracy is obtained in detection of
different types of power system transients. Using the proposed method, it is
possible to detect and classify switching transients occurring in power
systems with very high accuracy. However, in this chapter, only switching
transients are considered. In real-life power systems, apart from switching
transients, power quality disturbances (PQ) are a common problem and
detection of PQ disturbance is a challenging issue. In the next chapter, this
problem is addressed and a method for accurate detection of PQ disturbances
is proposed.
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In chapter 3, automated and accurate detection of single as well as power
quality (PQ) events is important from the point of view of safety as well as
maintaining the reliability of the power transmission and distribution
network. However, detection of multiple PQ events in a noisy environment is
a challenging task. Another important issue is the choice of meaningful
features that can directly influence the accuracy of PQ detection. Considering
these two aforesaid facts, this paper presents a novel framework for
automated classification of PQ signals in a noisy environment employing
cross Stockwell Transform (XST). The XST proposed in this paper has better
noise suppression capability compared to conventional Stockwell Transform.
Here, XST was used to convert 1D PQ signals to 2D time—frequency (T-F)
images. To improve the accuracy of PQ detection, an automated feature
extraction method employing deep learning is implemented in this work. The
noise free T-F images obtained using XST were fed as inputs to several pre-
trained convolutional neural networks (CNNs) for deep feature extraction.
Transfer learning technique was implemented to reduce the computational
cost. The extracted deep features were further undergone selection using one-
way analysis of variance test followed by false discovery rate correction. The
statistically significant deep features were subsequently fed to three
benchmark machine learning classifiers for classification of PQ signals. In
addition, tests were also carried out on real-life PQ signals to verify the
practicability of the proposed framework. Investigations revealed that the
proposed method returned mean accuracy of 99.72% and 96.45% for
classification of simulated and real-life PQ signals, respectively. Although
the proposed method is capable of detecting PQ disturbances with very high
accuracy, in this chapter, the detection of islanding events in presence of grid
connected renewable energy sources is not considered. Islanding detection in
grid connected systems is a major issue and considering this fact in the next
chapter a method for islanding detection is proposed.

In chapter 4, an autocorrelation aided deep learning framework for islanding
detection in grid connected distributed generation (DG) system is proposed.
For this purpose, islanding along with other transient events were simulated
on a grid connected power system network with DG penetration. Each case's
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negative sequence voltage signals obtained at the point of common
connection were used to determine the sequence components of the
autocorrelation function. From the autocorrelation sequences representing
each type of transient event, 36 features were extracted. The obtained feature
vectors were fed as inputs to a bi-directional long-short type memory
network (Bi-LSTM) classifier for classification of islanding and other events.
It has been examined that the suggested methodology has resulted in 99.01%
accuracy in discriminating islanding from non-islanding events. Besides, for
the multiclass classification, a mean accuracy of 98.50% is obtained.
Comparative studies with machine learning classifiers indicated that the
result of the suggested methodology is better. The proposed model can be
used for accurate prediction and classification of islanding and other transient
events in power system network. Although the method proposed in this
chapter can detect islanding and non-islanding events accurately, detection of
faults in grid connected renewable energy systems is a challenging issue.
Considering the aforesaid fact, in the next chapter, a novel method for
detection and classification of faults in grid connected solar PV systems is
proposed.

In chapter 5, a smoothed pseudo-Wigner-Ville distribution (SPWVD) and
stacked sparse autoencoder (SSA) based automated feature extraction
technique is proposed for accurate detection of faults in grid connected solar
PV systems. To this end, three phase current data of normal as well as
different fault scenarios obtained from point of common coupling (PCC)
were converted into direct (d) and quadrature (g) axis using extended Park’s
vector approach. Then, the obtained d-axis (/) and g-axis (Iy) currents were
converted to 2D time-frequency images using SPWVD. The converted time-
frequency spectrum of the normal as well as faulty current data were used as
inputs to the proposed SSA model for deep feature extraction. After
extraction of deep features using SSA, analysis of variance (ANOVA) test
and false discovery rate (FDR) correction was employed to select the most
discriminative features. The feature selection was followed by classification
using machine learning classifiers. It has been observed that the proposed
technique achieved mean fault recognition accuracy of 98.79% and 97.56%
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for d-axis and g-axis currents respectively, respectively. The present
approach can be used for accurate diagnosis of faults in grid connected solar
PV systems.

Thus, it can be concluded that in the present thesis work several new
techniques for detection and classification of transient events in power
systems is proposed. Prospective extensions of the proposed thesis as future
work are discussed in the following subsection.

6.2 Future Works

The proposed methodologies in this thesis are aimed at the development of
efficient detection and classification frameworks for transient detection in
power systems. The methods proposed in this thesis can be extended in future
in different directions, some of which are mentioned below.

1. In the present thesis work, manual feature extraction method has
been implemented for classification of switching transients. In
future, deep learning methods could be implemented for detection
and classification of switching transients in power systems.
Moreover, in future, hardware set-up will be fabricated for
generation of switching events in laboratory and classification of
switching transients will be done using signals captured from
hardware for detection of transient events.

2. For PQ transient event detection, cross time-frequency analysis
employing cross Stockwell transform (XST) and automated feature
extraction framework employing benchmark deep learning models
have been proposed. In future, other cross spectrum analysis
methods like transform like cross hyperbolic Stockwell transform
(XHST), cross Hilbert transform etc. could be implemented for
analysis of PQ signals in time-frequency frame. Moreover, apart
from using benchmark deep learning models, a customized deep
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learning model could be designed for more accurate detection of PQ
signals.

3. In the context of islanding detection, autocorrelation-based feature
extraction method has been used in grid connected renewable energy
systems. In future, deep feature extraction using deep learning
models could be implemented to improve the islanding detection
scheme. Also, in future the proposed islanding detection model
could be implemented in hardware in loop to validate the
practicability of the proposed method.

4. For automated fault classification method in grid connected solar PV
systems, a method employing smoothed-pseudo-Wigner Ville
distribution method is proposed. In future, other time-frequency
analysis methods could be explored for improved fault classification
in grid connected PV systems. Moreover, only three faults and one
fault-free case have been considered here. In future, additional fault
cases will be investigated to improve the resiliency of the proposed
fault detection scheme.
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A.1 Mathematical Model of PQ disturbances

In Table A.1 the mathematical model of PQ disturbances is given. In Table
A.2, the confusion matrix for PQ disturbances classification is shown.

Table A.1: Mathematical model of PQ disturbances

PQ signals Numerical model Parameters
/= fundamental frequency
Flicker Ve = [1+ Asin(2nft + 8;)] sin( 2xft + 6) fr < 10Hz,A <0.03
@ =phase angle
fi=frequency of £ order hammonic,
Harmonics Vy = sin(2nft +6) + [Z ai sin(2nfi.t + 6;)] a=magnitude of i order harmonic,
k=1
nsnotch depth function
o V. = oscillation function
J Vy =sin( 278+ 8)+[n =V, x £, xF, = 2
Notch y =sin( 2+ 8) + [0y 2 V. = [ < V] o= polarity mask function
¥, =notch function
Vg = [1- m[ul(l — e™%%) 4y, (m, sin( wt,)e” ") —u,(1 U1, u; = unit step fianctions
—eF )} sin(2nft + 6) o=sag decay rate
Sag _ 3 - = sag recovery rate
¢ Vg = [1 = m{u, (1 — e *'1)}] sin(2nft + 6) #oms ey
V.o =[1—m(u —;)]sin( 29+ 6) v= transient settling time
] _ . 0= 6 <360°
Swell Vow = [1+m(uy —up)] sin( 2nft + 6) Li<m<18
Voo = sin(2mft + 0) + [wy X m X sin(2nf,st;)e’t]
- 2 =4
Oscillatory Vos = sin(2mft +8) + [u; Xxm x e'1] j;.smskHz
Trmnsen, Vos = uysin(2nft + ) y= transient settling time
+ [uy X m X sin( 2mf,.t;)e’™]
= No = hoise level (%)
Noise V., = sin(2nft +8) + X wG (t Puio
ne (2m)) )+ [Pro Q) WG (t) = white Gaussian noise
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A.2 Confusion Matrix of PQ classification
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