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Preface 

The present thesis entitled “Detection and Classification of Transient 

Disturbances in Power System using Advanced Signal Processing and 

Machine Learning Techniques” is submitted for the degree of Doctor of 

Philosophy (Engineering) at Faculty Council of Interdisciplinary Studies, 

Law and Management, Jadavpur University, Kolkata. The research work 

presented here was carried out under supervision of Prof. Ratan Mandal, 

School of Energy Studies, Jadavpur University and Dr. Soumya Chatterjee, 

Electrical Engineering Department, National Institute of Technology 

Durgapur, in between the period of December 2018 to April 2024. To the 

best of my knowledge, this work is original except where acknowledgement 

and references are made to previous work. Neither this nor any substantially 

similar thesis has been or has been submitted for any other degree, diploma 

or other qualification at any other University. 

The present work dealt with detection and classification of various transient 

events that occur in power systems. For this purpose, several advanced signal 

processing and machine learning models have been implemented. Transient 

disturbances are a major concern as they have far-reaching consequences. 

Moreover, they have severe impact on life of power equipment endangering 

their proper functionality. If appropriate detection schemes are not designed 

then these transients can cause insulation degradation, over-heating, 

malfunction of relays causing catastrophic failure. Considering the aforesaid 

fact, this present thesis work is aimed to develop accurate methods that can 

correctly identify and categorize transient events and that too in presence of 

noise of spurious data. The thesis is aimed to develop novel signal processing 

and machine learning models for accurate identification of impulsive and 

oscillatory transients, single and mixed power quality events, islanding and 

non-islanding events as well as faults in grid connected solar PV systems.  

Hopefully this work will help future researchers working in the area of power 

system transient detection to some extent.  The aims and objectives of this 

work are elaborated in Chapter 1 of the thesis. 
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Abstract 

Accurate detection of transient disturbances in power systems is key from the 

point of view of reliability and safety of power system operation. Transient 

overvoltage and overcurrent occurring in power systems jeopardize the life of 

power equipment significantly leading to their unwanted and premature 

failure. If not detected early, they may lead to malfunctioning of relays and 

circuit breakers which may result in partial or complete shutdown of power 

substations as well as distribution substations. Moreover, transients degrade 

the quality of power leading to power quality issues. Accurate and early 

detection of transient events can prevent catastrophic events and maintain the 

reliability of power transmission systems. Considering the foresaid fact, the 

present thesis is aimed at identification as well as segregation of different 

types of power system transients. For this purpose, advanced signal 

processing as well as machine learning including the newly developed state 

of the art deep learning techniques have been implemented for accurate 

detection and classification of various transient events. It has been observed 

that the methods presented in this thesis are capable of discerning transient 

events accurately achieving very high recognition accuracy even in presence 

of noisy or spurious data. Thus, the proposed methods can be implemented in 

real-life environments. A brief overview of the present thesis work is given 

below. 

 

In Chapter 2, the objective was to detect impulsive as well as oscillatory 

transients occurring in power systems. For this purpose, a method is proposed 

using non-stationary signal processing tools like discrete wavelet transform-

based multi-resolution analysis and Hilbert transform. Finally, SVM 

classifier has been used for classification of impulsive and oscillatory 

transients. 

In Chapter 3, a novel PQ detection framework employing cross-spectral 

analysis using Stockwell transform and deep learning based automated 

feature extraction is proposed. The proposed framework has been developed 

in such a way that it can detect single and multiple PQ events correctly even 

in noisy environmental conditions. The proposed framework has been 
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validated on simulated PQ signals as well as on real life PQ signals to 

validate the practicability of the proposed method.  

The aim of Chapter 4 is to propose a novel method for detection and 

classification of islanding and other transient disturbances (non-islanding 

events) in renewable energy grid connected systems. For this purpose, an 

autocorrelation-based feature extraction method is proposed. The features 

were extracted from negative sequence voltage signals. A deep learning 

algorithm has been designed to classify islanding and non-islanding events 

using extracted features from auto correlograms for classification of islanding 

and other disturbances.  

In Chapter 5, a method has been developed for accurate identification of 

faults in grid connected solar PV systems based on current data obtained 

from real-life grid connected solar PV system. A novel extended Park’s 

vector modulus-based fault detection algorithm has been developed and 

smoothed pseudo-Wigner-Ville distribution-based time frequency analysis of 

different faults and fault free current data has been analyzed in time- 

frequency frame. In addition, unsupervised machine learning has been 

developed for accurate identification of faults in grid connected solar PV 

systems.  

Finally, Chapter 6, concludes the thesis by presenting a summarized 

overview based on findings of the present work and provides some idea 

regarding the possible future extensions of the proposed research work. 
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 Synopsis 

The present thesis work deals with detection and classification of various transient events that 

occur in power systems. For this purpose, several advanced signal processing and machine 

learning models have been implemented. Transient disturbances are a major concern as they 

have far-reaching consequences. Moreover, they have severe impact on the life of power 

equipment endangering their proper functionality. If appropriate detection schemes are not 

designed then these transients can cause insulation degradation, over-heating, malfunction of 

relays causing catastrophic failure. Considering the aforesaid fact, this present thesis work is 

aimed to develop accurate methods that can correctly identify and categorize transient events 

and that too in presence of noise of spurious data. The thesis is aimed to develop novel signal 

processing and machine learning models for accurate identification of impulsive and 

oscillatory transients, single and mixed power quality events, islanding and non-islanding 

events as well as faults in grid connected solar PV systems.  Hopefully this work will help 

future researchers working in the area of power system transient detection to some extent.  

The aims and objectives of this work are elaborated briefly. 

(i) Development of a novel for accurate detection of impulsive and oscillatory 

transients occurring in power systems. In the present thesis work an efficient 

method for accurate classification of impulsive and oscillatory transients is 

developed. 

(ii) In real life power systems, different types of transient disturbances can happen 

which results in poor power quality (PQ).  The PQ disturbances can be broadly 

classified as single as well as multiple PQ disturbances. So accurate detection and 

classification of PQ disturbances is essential from the point of view of safety of 

operators as well prevention of malfunction of power apparatus. Detection of 

single as well as multiple PQ events is a challenging task in a noisy environment. 

Hence, in this work, a method has been developed to accurately classify single 

and multiple PQ events in noisy background.  

(iii) In grid connected renewable energy sources, detection of islanding and non-

islanding is a major issue that still needs to be addressed carefully. Appropriate 

signal processing and feature extraction methods need to be developed for 

accurate detection of islanding as well as non-islanding events. In the present 

thesis work a novel method has been proposed to distinguish between islanding 

and non-islanding events. 

(iv) Accurate detection of faults in grid connected solar PV systems is also a 

challenging issue. Proper methodologies for accurate fault detection are still 

lacking and there is still a dearth of accurate fault detection models. In the present 

thesis work, an accurate fault detection model in grid connected solar PV systems 

is developed. 



 

 Abstract 

Accurate detection of transient disturbances in power systems is key from the point of view 

of reliability and safety of power system operation. Transient overvoltage and overcurrent 

occurring in power systems jeopardize the life of power equipment significantly leading to 

their unwanted and premature failure. If not detected early, they may lead to malfunctioning 

of relays and circuit breakers which may result in partial or complete shutdown of power 

substations as well as distribution substations. Moreover, transients degrade the quality of 

power leading to power quality issues. Accurate and early detection of transient events can 

prevent catastrophic events and maintain the reliability of power transmission systems. 

Considering the foresaid fact, the present thesis is aimed at identification as well as 

segregation of different types of power system transients. For this purpose, advanced signal 

processing as well as machine learning including the newly developed state of the art deep 

learning techniques have been implemented for accurate detection and classification of 

various transient events. It has been observed that the methods presented in this thesis are 

capable of discerning transient events accurately achieving very high recognition accuracy 

even in presence of noisy or spurious data. Thus, the proposed methods can be implemented 

in real-life environments. A brief overview of the present thesis work is given below. 

 

In Chapter 2, the objective was to detect impulsive as well as oscillatory transients occurring 

in power systems. For this purpose, a method is proposed using non-stationary signal 

processing tools like discrete wavelet transform-based multi-resolution analysis and Hilbert 

transform. Finally, SVM classifier has been used for classification of impulsive and 

oscillatory transients. 

In Chapter 3, a novel PQ detection framework employing cross-spectral analysis using 

Stockwell transform and deep learning based automated feature extraction is proposed. The 

proposed framework has been developed in such a way that it can detect single and multiple 

PQ events correctly even in noisy environmental conditions. The proposed framework has 

been validated on simulated PQ signals as well as on real life PQ signals to validate the 

practicability of the proposed method.  

The aim of Chapter 4 is to propose a novel method for detection and classification of 

islanding and other transient disturbances (non-islanding events) in renewable energy grid 

connected systems. For this purpose, an autocorrelation-based feature extraction method is 

proposed. The features were extracted from negative sequence voltage signals. A deep 

learning algorithm has been designed to classify islanding and non-islanding events using 

extracted features from auto correlograms for classification of islanding and other 

disturbances.  

In Chapter 5, a method has been developed for accurate identification of faults in grid 

connected solar PV systems based on current data obtained from real-life grid connected 



solar PV system. A novel extended Park’s vector modulus-based fault detection algorithm 

has been developed and smoothed pseudo-Wigner-Ville distribution-based time frequency 

analysis of different faults and fault free current data has been analyzed in time- frequency 

frame. In addition, unsupervised machine learning has been developed for accurate 

identification of faults in grid connected solar PV systems.  

Finally, Chapter 6, concludes the thesis by presenting a summarized overview based on 

findings of the present work and provides some idea regarding the possible future extensions 

of the proposed research work. 
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Chapter 1 

Introduction 

1.1 Introduction 

Transients in power transmission and distribution systems originate from 

various sources, exerting detrimental impacts on system equipment and its 

overall reliability. Although transients are typically short-lived occurrences, 

in the context of electrical systems, they have significant implications. These 

momentary surges of energy affect power, data, and communication lines, 

disrupting the functionality of vital amenities. Characterized by intense 

voltage and current spikes and substantial current flow lasting anywhere from 

microseconds to milliseconds, transients drive the system from stability to a 

temporary disruption, and then return it to its stable state. The eventual return 

to a stable state is known as the steady-state operating mode. According to 

the traditional definition, a transient event refers to an abrupt alteration in the 

system state, triggering a momentary surge of energy for a limited duration 

[1]. Transients in power systems can be mainly classified as voltage and 

current transients. Detection of transients is extremely important as they can 

lead to serious consequences due to overvoltage and overcurrent which can 

cause critical failure of power system equipment. Although many of the 

electrical transients have relatively minor magnitudes, they still pose a 

serious threat to the performance of circuits and protective devices [2]. These 

transients cause overheating of circuit components and semiconductor 

devices, leading to malfunctions and failures. Additionally, a significant 

proportion These electrical transients carry enough energy to potentially 

compromise the insulation of power system equipment. Adverse transient 

conditions can inflict significant damage on the power system, protective 

equipment, and switchgear. The maloperation of relays and circuit breakers 

can cause serious threat to the protection system. The effects on devices 

differ depending on their specific characteristics and their position within the 

power system. As a result, power system engineers must continuously 

develop strategies to mitigate transient magnitudes and control their effects 
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on operational equipment. Development of suitable transient detection 

methods can render reliable operation of power system components thereby 

preventing unwanted failure of power supply. Thus, in the context of power 

system reliability, detection and categorization of transient events is an 

important problem to address. 

1.2 Sources of transient disturbances in power systems 

Transient disturbances in power transmission and distribution systems stem 

from two main sources: internal and external factors. Internally, the intricate 

network of electrical components and devices, both within and outside the 

system, plays a crucial role in generating transient events. 

 

1.2.1 Internal Sources 

 

Components such as transformers and motors, known for their inductive 

properties, can instigate voltage transients when their magnetic fields 

collapse during current flow disruptions [3]. The impact of these transients 

depends on factors like the system's location, source size, time intervals, and 

rise time, as well as their effects on neighboring equipment and the electrical 

configuration. Various internal sources of transient voltages include internal 

capacitor switching, current interruptions in motors, and switching of power 

electronics devices involving silicon-controlled rectifiers (SCRs) or thyristors 

are among the factors contributing to internal transients [4]. Additionally, 

internal transients can result from electrostatic discharge, arc welding, 

photocopiers, faulty wiring, circuit breaker malfunctions, contact and relay 

closures, as well as load start-ups or disconnects [5]. While these internal 

sources can cause transients, they usually do not lead to significant voltage 

surges. Research indicates that internal sources seldom raise the system 

voltage to twice the normal level. Moreover, internal sources of transient 

voltages, originating from the everyday operation of devices such as low 

voltage motors, welding stations, electrical furnaces, ovens, and induction 

heaters within the facility, can also affect nearby equipment. These internal 

transients, though less widely recognized, can still exert a substantial 

influence on the overall stability of the electrical system. 
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1.2.2 External Sources 

 

Transient voltages, originating from both external and internal sources, can 

substantially affect the seamless operation of an electrical facility. External 

factors such as lightning strikes, capacitor bank switching, line cable 

transitions, transformer operations, and current-limiting fuse actions, can 

create transient voltages that propagate through the facility's electrical 

system. These transients can lead to disruptions in the normal functioning of 

equipment and machinery, potentially causing damage and downtime. 

 

Lightning, as one of the most prominent external sources of transients, can 

induce transient voltages into nearby conductors when it strikes in the 

vicinity of power lines. While direct lightning strikes are infrequent, the 

induced electric fields during a discharge can generate substantial induced 

transients, even without physical contact with the power lines. Apart from 

lightning, various normal utility operations, like the switching of loads, 

disconnect, and capacitor banks, can introduce transients into the power lines 

[6]. Loose connections in the distribution system, often caused by adverse 

weather conditions such as high winds, can result in power lines colliding or 

arcing, producing further transients that can disrupt the smooth operation of 

electrical systems. It is essential to mention that shared transformers can also 

contribute to transient activities. Given that multiple users are connected at 

the secondary side of the transformer, any transient activity generated within 

the shared system can impact the electrical main, affecting the overall 

functioning of the facility. One prominent trigger for the formation of 

transients is the occurrence of lightning, although their impact typically 

manifests indirectly by affecting the power line. This influence generates 

induced transients by coupling with the power system. Routine utility tasks, 

such as switching facility loads, toggling on-off disconnects on energized 

lines, operating capacitor banks, and tap-changing transformers, represent 

another significant external factor contributing to transient generation [7]. 

 

Natural calamities and other environmental factors can lead to the 

development of transients by causing poor connections within power 

distribution networks. Energization of power transformers can contribute 
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transient over voltages [8]. The underlying reason behind transformer 

transients lies in the collapse of the magnetic field upon energization, leading 

to transient generation. Arcing arises from malfunctions in the operation of 

breakers and contractors, often occurring when voltage fluctuations occur 

abruptly, resulting in disruptive electrical arcs.  In addition to the above, 

faults in electrical systems can lead to momentary voltage sag and voltage 

swelling. Faults in electrical systems can be broadly categorized into four 

types: (i) Line to ground fault (LG) (ii) Line to line fault (LL) (iii) Line to 

line and ground fault (LLLG) (iv) Open circuit fault [9]. All these faults 

cause substantial increase in overvoltage and overcurrent that may lead to 

mal operation of protective devices. Understanding, managing and 

diagnosing these various sources of transient voltages and currents are crucial 

for maintaining the stability and efficiency of the electrical transmission and 

distribution network. 

1.3 Categorization of transients in power systems 

According to the definition outlined in the IEEE 1150-90-2019 standard, 

Transients can be classified into two main types: impulsive and oscillatory 

[10]. An impulsive transient is characterized by a sudden, non-power 

frequency alteration in voltage or current with a unidirectional polarity, such 

as lightning strikes and electrostatic discharges. The impulsive transients are 

known as fast front over voltages. In terms of response, impulsive transients 

typically rise within 0.1 ms and endure for about 1 ms. Conversely, 

oscillatory transients can exhibit a frequency surge of up to 5 kHz [11]. 

Analytically, these transients are calculated for benchmarking and 

troubleshooting purposes, aiding in the understanding and management of 

transient events within the electrical system. Conversely, oscillatory 

transients feature a sudden, non-power frequency shift in voltage or current 

with a bidirectional polarity, like capacitor bank energization or cable 

switching etc. for a longer duration unlike switching transients [11]. The 

oscillatory transients are slow front over voltages characterized by transient 

periods of oscillation that, although brief in comparison to the standard power 

frequency, can exert significant stress on the various components and 
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electrical equipment comprising the system. These two transients are mainly 

witching transients as they are characterized by high frequency components.   

 

Besides, there are two other types of transients such as electromagnetic and 

electromechanical transients, though closely linked, exhibit some nuanced 

differences. Electromagnetic transients primarily revolve around fluctuations 

in voltages and currents, often triggered by the actuation of circuit breakers, 

malfunctions in power electronic or electronic equipment, faults, or lightning 

strikes [3]. On the other hand, electromechanical transients arise from 

imbalances between power generation and consumption, resulting in a shift 

in the generator's speed relative to its normal rotation. This typically occurs 

due to disturbances in the system, such as the sudden outage of a neighboring 

transmission line. Unlike electromagnetic transients, which occur rapidly, 

electromechanical transients manifest over a more extended period due to the 

inertia of the two generator shafts. Understanding the intricate nature of these 

transients is pivotal, particularly in instances where the transient waveform 

arises from multiple simultaneous switching actions, resulting in the 

convergence of transients. Moreover, phenomena like current chopping, 

which occurs when a circuit breaker's current reaches zero before the natural 

zero crossing, and restrike, which can happen during the de-energization of a 

capacitor by a gradually moving switch, underscore the complexity and 

multifaceted nature of these transient events [5]. 

 

In addition, any type of power quality disturbances like harmonics, voltage 

sags, voltage swell, sudden interruption, voltage flicker etc. may also come 

under the umbrella of power system transients [12]. These power quality 

disturbances are transient events which are not strictly oscillatory or 

impulsive transients. Recently, with the integration of renewable energy 

sources to grid, islanding events also characterize a typical transient event 

which is difficult to detect. Thus, categorization of transients is difficult in 

the true sense as different types of power system disturbances can occur 

whose amplitude, frequency content may vary from pure sinusoid. 

 

The consequences of these afore-mentioned transients can be far-reaching, 

leading to a range of issues such as over-voltages, which can trigger 
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flashovers or insulation breakdown, and over-currents that may result in 

power equipment damage due to electromagnetic forces and excessive heat 

generation. Sources of power system transients are diverse and encompass 

lightning strikes on power system elements or the ground, as well as 

switching activities occurring in network components and end-user 

equipment. In the next section, the detrimental effects of power system 

transients are discussed in detail. 

1.4 Detrimental effect of transients 

Transient-induced equipment damage can manifest in various forms, 

including dielectric breakdown, electric flashover, fracture, and thermal 

overloads caused by surpassing specific dV/dt and dI/dt limits. Additionally, 

transients can render dielectric materials electrically conductive, especially 

when exposed to high magnitudes of stress. For instance, the physical 

separation of two conductive mediums at different voltage potentials can 

cause air, serving as a dielectric, to become conductive resulting in dielectric 

breakdown. Dielectric breakdown, often identified as electric flashover or arc 

flash, is associated with the exceeding of electrical stresses. These stresses 

can convert into mechanical energy, causing fractures in component materials 

at both microscopic and macroscopic scales. Additionally, transients produce 

thermal energy, which can degrade the insulation material [12]. On a 

molecular level, the speed of voltage and current fluctuations induced by 

transients plays a crucial role in determining the effects these stresses impose 

on the materials and components. 

 

The impact of transients is primarily felt through disruptions to the accurate 

functioning of electronic equipment, leading to decreased efficiency and 

shortened device lifespans. Integrated circuits (ICs) are particularly 

susceptible, often experiencing burnouts because of the transient-induced 

voltage and current stress. Transients also trigger excessive heating in 

motors, affecting their overall performance. They interfere with device 

timing, causing functional disruptions and generating noise, while also 

hastening the deterioration of installations. 
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In technical terms, transients lead to increased hysteresis loss, resulting in 

higher current injections for the same output, thereby straining the motor 

further. Additionally, transients can severely compromise the performance of 

lightning protection systems, causing a decrease in operational capacity and 

even complete failure [12]. Visible darkening of the anode's ring, induced by 

transients, signals a decline in system effectiveness. Controlling transient 

phenomena is crucial for extending the lifespan of these vulnerable devices. 

 

The distribution system is critically affected, as evidenced by the degradation 

of contact areas in breakers and switches. This deterioration causes faulty 

breaker behavior, leading to circuit interruptions under false pretenses [13]. 

Voltage transients can impact electrical equipment in four primary ways: 

intermittent interruption, chronic degradation, latent failure, and catastrophic 

failure. Intermittent interruption occurs when transients are injected into data 

or control networks, leading to data loss or corruption and the malfunctioning 

of loads or devices. Chronic degradation occurs when repeated transients 

gradually compromise the integrity and reliability of exposed components, 

ultimately rendering them inoperable. 

 

Latent failures resemble chronic degradation but stem from significant 

transient events that damage components without fully impairing their 

function. Over time, these components become inoperable due to the stresses 

of normal operation. Catastrophic failures are more immediately identifiable, 

as the affected component or device stops functioning properly almost 

instantly. Such events often exceed the component's rated threshold, resulting 

in permanent open circuits or short circuits. 

 

Devices such as microprocessors and programmable logic controllers (PLCs) 

are particularly susceptible to damage caused by voltage transients, 

potentially reducing their reliability and operational lifespan. The shrinking 

scale of device components due to technological advancements further 

exacerbates their susceptibility to damage from transients. Consequently, 

transient voltages can disrupt normal operations, leading to erratic behavior 

and reduced product quality. In industrial settings, interruptions in continuous 
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manufacturing processes can result in significant revenue losses due to 

production downtime. 

 

1.5. Effect of transients on power quality (PQ) issues 

 

The significance of power quality in power systems cannot be overstated, as 

subpar electricity not only poses hazards but also proves uneconomical for 

both utilities and consumers. Consequently, a concerted emphasis on 

enhancing the quality of power supplied to loads is imperative. Scrutinizing 

the root causes of poor power quality, diverse measuring parameters, 

established power quality standards, and an array of techniques to bolster 

power quality represents a crucial starting point. Essentially, power quality 

reflects the power grid's efficacy in delivering power proficiently to 

consumers and the capability of equipment to efficiently consume the 

supplied power [14]. Technically, it involves the assessment, refinement, and 

examination of sinusoidal waves at specified frequency and voltage levels. 

The financial and operational aspects of the power system are heavily 

influenced by power quality, necessitating a certainty that the power 

consumed by the system adheres to desired standards. Modern consumers 

exhibit heightened awareness regarding power quality, prompting numerous 

governments to amend policies and compel heightened sensitivity to any 

fluctuations in power quality. Manufacturers, utilities, and consumers all 

share a vested interest in power quality, contributing to the escalating 

concerns in this domain. Power system transients stand out as a primary 

catalyst for degradation of power quality [15].  Poor power quality can have 

detrimental effects on both the utility and consumer ends [15]. Some of the 

primary consequences within the power system resulting room subpar power 

quality include: 

 

1. Harmonics contribute to waveform distortion, potentially subjecting 

equipment to elevated wave form peaks, which in turn can inflict 

damage. Excessive voltage levels can also force equipment into a 

saturation state, introducing further disruptions.  
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2. Harmonics induce over-voltages that cause significant damage to the 

insulation endangering the life of high voltage apparatus like power 

transformers, cables etc. 

 

3. Equipment longevity is compromised due to factors like overheating 

and noise, leading to reduced lifespan. The suboptimal power 

quality substantially diminishes system efficiency and performance. 

 

4. Power outages or interruptions can result in the loss or corruption of 

critical data, leading to significant losses. 

 

5. The costs associated with power systems substantially escalate when 

power quality is lacking. 

 

6. In the event of power failures, consumers can encounter a multitude 

of issues due to power unavailability, which also impacts utility 

expenses. 

 

7. Consumer loads suffer from detrimental effects and potential 

damage stemming from power quality concerns. 

 

8. In certain cases, the power system may need to be oversized to cope 

with the additional stress imposed by poor power quality, inevitably 

leading to elevated installation costs. 

 

Thus, considering the detrimental effect of transients on PQ, it is necessary to 

develop methods that can efficiently detect different type of PQ events 

accurately so that the reliability of power transmission and malfunctioning of 

power equipment can be prevented.  

 

1.6. Transients in grid connected renewable energy sources 

Over the past decade, electrical power systems have evolved from 

conventional energy systems to advanced next-generation smart grid systems. 

Conventional power systems primarily depend on a few centralized, large-
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scale power generation sources, predominantly hydropower or fossil fuel-

based systems. These systems utilize a vast transmission network to 

distribute power to consumers through a distribution system. However, the 

emergence of smart grids and smart energy systems has increasingly captured 

the attention of researchers. Unlike their conventional counterparts, smart 

grids facilitate two-way power and information flow, transforming them into 

active grids. This transformation is attributed to the integration and 

contribution of various distributed and renewable energy resources. The 

bidirectional flow of power and communication not only enhances the 

reliability, security, and efficiency of power systems but also positions the 

smart grid as the future of power distribution. Its benefits include improved 

energy efficiency, cost-effectiveness, reduced emissions, lowered costs, and 

enhanced utility. A pivotal aspect enabling the smart grid's multifaceted 

operations compared to conventional systems is the plethora of 

interconnected devices capable of exchanging commands and information to 

execute energy-related tasks efficiently [16]. This shift from conventional to 

smart grids has ushered in a myriad of distributed generation (DG) systems, 

encompassing photovoltaic (PV), wind energy, and electric vehicles (EV) 

[17]. Essentially, the smart grid amalgamates processes, technologies, and 

distributed renewable generation systems, augmenting the intelligence and 

efficiency of the conventional power grid.  

However, the integration of diverse DGs introduces several challenges. These 

encompass load forecasting, fault and failure analysis, demand-side 

management, non-intrusive load monitoring (NILM) [7], cybersecurity, 

electricity theft detection, and islanding detection [among others. The 

increasing prevalence of intermittent and DG systems, coupled with 

technological advancements, necessitates the development of more accurate 

and reliable solutions for these challenges. Switching of renewable energy 

sources to grid results in transients which are often difficult to discern from 

naturally occurring transients like capacitor switching load switching etc. 

[17]. Islanding is one such phenomenon where the renewable energy source 

gets disconnected from the main grid and operates in a standalone mode if 

there is some disturbance in the main grid. Detection of islanding is a key 

challenge in distributed generation system. Failure to detect islanding events 

results in maloperation of relays and circuit breakers resulting in unwanted 
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tripping of transmission lines. So, detection of islanding and non-islanding 

events in grid connected renewable energy sources is a key challenge. 

In addition to the above, grid connected renewable energy sources need lots 

of power electronics components for grid integration. Power electronic 

converters and inverters are the main components which are used to integrate 

renewable energy sources to the grid. Switching of these power electronic 

components often results in transients which are difficult to identify. In 

addition, faults in converters also lead to mal operation of power electronic 

components which may lead to unwanted islanding, tripping and catastrophic 

failure. Early and accurate detection of faults in grid connected renewable 

energy sources is thus a major challenge and suitable methods need to be 

developed so that accurate measures can be taken, and pre-mature failure can 

be minimized. 

In existing literature several methods have been proposed for detection and 

classification of transients in power systems in presence or absence of 

renewable energy sources with or without grid connected mode. In the next 

section, a brief overview of different signal processing and machine learning 

methods available for voltage and current signal analysis is presented. 
 

1.7. Overview of signal processing and machine learning 

methods 

 

Evaluating transient detection and protection in power systems presents a 

considerable challenge due to the swift reactions and complex infrastructure 

inherent in these systems. This task is pivotal for operational considerations 

and is crucial in monitoring stability status and constraints [1]. Nonetheless, 

conventional power systems, characterized by their low sampling frequencies 

for measurement devices, make the monitoring of power system transients 

nearly unfeasible. The emergence of wide-area measurement systems 

(WAMS) and advanced measurement tools, notably phasor measurement 

units (PMUs), has furnished the necessary infrastructure for real-time 

transient security assessment. Local measurement devices may not always 

cover predefined areas and can experience temporary or permanent failures. 



Chapter 1 

 

12  

 

Consequently, designing a comprehensive model has become essential. In 

existing literature, various signal processing and machine learning methods 

are available for analyzing power system transients. Signal processing 

methods involve analyzing measured voltage and current signals in both time 

and frequency domains to ascertain stable or unstable conditions.  The 

available signal processing methods for analysis of voltage and current 

signals in power systems can be broadly classified into three types: 

 

1.7.1 Types of signal processing algorithms 

Signal processing algorithms allow analysis of voltage and current signals in 

three domains namely: 

1. Time domain analysis 

 

2. Frequency domain analysis 

 

3. Time frequency domain analysis 

 

1.Time domain analysis 

In time domain analysis, the voltage and the current signals are analyzed 

using different time domain signal analysis methods like cross-correlation, 

autocorrelation, derivative based method etc. [18]. These methods do not 

allow any frequency information present in a signal. The features can be 

extracted from the time domain analysis of the signals itself without losing 

the temporal information. 

 

2. Frequency domain analysis: 

In frequency domain analysis, the voltage and current signals are usually 

converted from time domain to frequency domain to observe the frequency 

components present in a signal. Popular signal processing methods for 

converting a signal from time domain to frequency domain include discrete 

and fast Fourier transform [19], power spectral density estimate etc. [19]. 
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Frequency domain analysis gives only spectral information present in a 

signal, but the temporal information is lost.  

3. Time-frequency domain analysis 

In time-frequency domain analysis, the time domain voltage signals are 

converted from time domain to time-frequency domain. To elucidate further, 

the time-frequency analysis provides time as well as frequency information 

of a signal at the same time. Thus, unlike frequency domain, where the 

frequency information of a signal is lost, time-frequency analysis provides 

joint time and frequency information at the same time. Some of the popular 

time-frequency analysis methods like short time Fourier transform (STFT) 

[20], continuous wavelet transform (CWT) [20], Stockwell transform [20] 

etc. Time frequency domain method is mainly used to analyze non-stationary 

signals. 

 

Many analytical techniques demand significant computational resources, 

relying on intricate physical models and predefined thresholds. In contrast, 

data-driven methods leverage historical data for decision-making and are 

suitable for real-time monitoring. These data-driven approaches generally 

categorize into three types: shallow, deep, and hybrid methods. Currently, 

power systems are undergoing rapid transformation towards more active, 

flexible, and intelligent smart grids. This evolution introduces challenges 

across various domains, including the integration of distributed renewable 

energy sources, cybersecurity, demand-side management, and decision-

making in system planning and operation. The successful implementation of 

advanced functionalities in the smart grid largely hinges on the robustness of 

its information and communication infrastructure. Additionally, effectively 

managing the vast amounts of data generated from multiple sources, such as 

smart meters, phasor measurement units, and various sensors, is crucial. In 

recent years, there has been a growing interest and trend in leveraging 

machine learning-based techniques to address the myriad challenges faced by 

smart grids. Machine learning is expected to be a major driving force in 

future smart electric power systems.  In the next section, brief overview of 

different machine learning algorithms is given. 

 

1.7.2 Types of Machine Learning algorithms 
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Machine learning encompasses four distinct categories of techniques, namely 

[21]: 

 

1. Supervised Learning 

 

2. Unsupervised Learning 

 

3. Semi-Supervised Learning 

 

4. Reinforcement Learning  

 

1. Supervised learning: 

In supervised machine learning, machines are trained using labeled datasets, 

using this information to predict future outcomes. This training process is 

based on guidance and supervision, hence the name 'supervised.' The labeled 

dataset serves as a roadmap for machines, as specific input values are 

associated with corresponding output values. Subsequently, test datasets are 

provided post-training to validate the accuracy of predictions. The primary 

objective of supervised learning techniques is to establish relationships 

between input and output variables. Supervised machine learning can be 

classified into two distinct problem types [21]: 

• Classification: Classification algorithms are employed when the 

output variable assumes a binary or multiclass in nature. These algorithms 

categorize responses into distinct classes such as 'Available' or 'Unavailable,' 

'Yes' or 'No,' 'Pink' or 'Blue,' based on the labeled datasets provided during 

training. This method is extensively used in tasks like spam detection. 

 

• Regression: Unlike classification, regression algorithms address 

problems where a linear relationship exists between input and output 

variables. Regression techniques are employed to make predictions in 

scenarios like weather forecasting and market conditions. 

 

2. Unsupervised Learning 
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Unlike supervised learning, unsupervised learning operates without guidance 

or supervision. It uses unlabeled and unclassified datasets for machine 

training, allowing machines to make autonomous predictions without human 

intervention. This approach is often employed to categorize or group 

unorganized data based on their inherent characteristics, similarities, and 

differences. Machines excel in uncovering hidden patterns and trends within 

the input data. Unsupervised learning can be again broadly classified into two 

types: 

 

• Clustering: Machines segment data based on inherent features, 

similarities, and differences. They identify clusters within complex data to 

facilitate object classification. This method is commonly used to understand 

customer segments and purchasing behaviors across diverse geographical 

contexts. 

 

• Association: Machines detect relationships and connections among 

variables within extensive datasets. This approach is particularly popular in 

domains like web usage mining and plagiarism detection in doctoral research. 

3. Semi-Supervised Learning 

This approach combines the strengths of both supervised and unsupervised 

learning techniques, using a mix of labeled and unlabeled datasets for 

training. It leverages all available data, making it cost-effective. Initially, 

similar data is grouped using an unsupervised learning algorithm, aiding in 

labeling unlabeled data [21]. 

 

4. Reinforcement Learning 

 

Reinforcement learning operates without labeled data, relying on experiences 

and a trial-and-error approach based on feedback. AI explores data, learns 

from previous experiences, and enhances its performance. 

• Positive Reinforcement Learning 

• Negative Reinforcement Learning 
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Shallow-architecture methods, such as artificial neural networks (ANNs), 

decision trees (DT) [22], random forests, kernel regression, Lasso regression, 

probabilistic neural networks (PNN) [22], support vector machines (SVMs) 

[22], ball vector machines (BVM), extreme learning machines (ELM), and 

ensemble learning (EL) [22], are established tools in power system security 

assessment. However, these shallow architectures may struggle to precisely 

capture the nuances and characteristics of transient behavior, often lacking 

generality due to their constrained hypothesis space. 

 

Deep learning, an emerging subset of machine learning, has demonstrated 

success in various engineering applications in recent years, adept at capturing 

intricate, nonlinear, and highly variable features [23]. In the area of power 

systems, deep learning has been deployed for tasks including residential load 

forecasting, induction machine condition monitoring, wind turbine 

surveillance, controller design for renewable energy systems, power quality 

evaluation, and power transformer protection, among others [23]. 

Nonetheless, the application of deep learning in transient security assessment 

remains a relatively uncharted territory. For instance, a contingency-based 

security assessment is framed as a CNN-based classification problem with 

two classes. In another approach, a deep autoencoder is integrated with the 

Vine Copulas model to bolster transient security evaluation and discern stable 

from unstable conditions with heightened accuracy. The intrinsic capability 

of deep networks for automatic feature extraction markedly enhances 

performance. 
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1.8 Limitations of the existing signal processing and machine 

learning methods for transient detection 

Although numerous signal processing and machine learning algorithms have 

been implemented for detection and classification of different power system 

transients, yet from the practical point of view of transient detection in power 

systems existing methods have certain limitations. The potential drawbacks 

of the existing methods are mentioned below. 

1. In the context of detection of transient disturbances, there is need to 

develop an accurate method for analysis of both impulsive and 

oscillatory transients. Also, selection of suitable features and 

machine learning algorithms is a major challenge for accurate 

detection of impulsive and oscillatory transients.  

2. For reliable detection and classification of power quality (PQ) 

disturbances, detection in noisy environment is a challenging issue. 

In general, analysis of PQ signals in joint in time-frequency plane is 

done using traditional signal processing algorithms. However, 

performance of most of the available methods will fail miserably 

under low signal to noise ratio condition. Another important issue is 

the feature extraction. Manual feature extraction always imposes the 

risk of selection of redundant features that may peril and degrade the 

performance of the classifier. Hence, automated feature extraction 

from time-frequency analysis of PQ signals in noisy environments is 

an important problem to address. 

3. In grid connected renewable energy sources, detection of islanding 

and non-islanding is a major issue that still needs to be addressed 

carefully. Appropriate signal processing and feature extraction 

methods need to be developed for accurate detection of islanding as 

well as non-islanding events. Additionally, design of suitable deep 

learning models for classification of islanding events also needs to 

be looked at meticulously for accurate segregation of non-islanding 

events from the islanding ones. 
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4. In addition to islanding, detection of faults in grid connected 

systems is also a challenging issue. Proper methodologies for 

accurate fault detection are still lacking and there is still a dearth of 

deep learning models for unsupervised fault detection in grid 

connected renewable energy systems. Unlike supervision 

classification models where the machine learning models work on a 

pre-labelled dataset, in unsupervised learning the models are not 

pre-labeled. Unsupervised machine learning models are becoming 

very popular owing to their ability to work satisfactorily on 

unlabeled data. Hence, there is need to develop unsupervised 

machine learning tools for accurate classification of faults in grid 

connected renewable energy systems. 

Thus, based on the limitations of the existing methods as stated above, the 

present thesis is aimed to fill some of the research gaps. The aims and scope 

of the present thesis are enumerated below. 

1.9 Scope and objective of the thesis 

The main objective of the present thesis is to develop advanced signal 

processing and machine learning algorithms for transient detection and 

classification in power systems. In this context, the present thesis is divided 

into the following chapters which are explained below. 

 

In Chapter 2, a method for accurate detection of impulsive and oscillatory 

transients occurring in power systems is proposed using non-stationary signal 

processing tools like discrete wavelet transform-based multi-resolution 

analysis and Hilbert transform. As stated earlier, impulsive and oscillatory 

transients are one of the most frequently occurring power system 

disturbances. So, accurate detection of these two transient disturbances is a 

challenging task. Moreover, these two transient disturbances are short-time 

disturbances which are either manifested as sudden voltage spikes or 

oscillation for finite duration. These voltage waveforms are predominantly 

non-stationary in nature. So, non-stationary signal analysis is needed for 

proper analysis of power system transient disturbances. In addition to signal 

analysis, proper feature extraction is necessary for accurate classification of 
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impulsive and oscillatory transients. So, in Chapter 2, a new method to detect 

impulsive and oscillatory transients in power systems is proposed by 

applying discrete wavelet transform-based envelope analysis and supervised 

machine learning algorithms.  

In Chapter 2, it has been observed that application of discrete wavelet 

transform based multiresolution analysis and envelope analysis using Hilbert 

transform has delivered accurate results for detection and classification of 

oscillatory and impulsive transients. However, only lightning and switching 

transients were considered in the earlier chapter. In real life power systems, 

several other types of transient disturbances can happen which results in poor 

power quality (PQ) issues.  The PQ disturbances can be broadly classified as 

single as well as multiple PQ disturbances. So accurate detection and 

classification of PQ disturbances is essential from the point of view of safety 

of operators as well prevention of malfunction of power apparatus. 

Considering the aforementioned facts, in Chapter 3, a novel PQ detection 

framework employing cross-spectral analysis using Stockwell transform and 

deep learning based automated feature extraction is proposed. The proposed 

framework has been developed in such a way that it can detect single and 

multiple PQ events correctly even in noisy environmental conditions. The 

proposed framework has been validated on simulated PQ signals as well as 

on real life PQ signals to validate the practicability of the proposed method. 

In Chapter 3, a novel framework for detection and classification of PQ 

disturbances in noisy environment employing cross spectral analysis and 

deep learning is proposed. However, in the previous chapter, generalized and 

commonly occurring PQ disturbances in power systems are considered where 

the effect of transient disturbances occurring due to renewable energy 

systems connected to grid are not considered. When renewable energy 

sources are connected to grid, detection of islanding and other transient 

disturbances becomes a challenging issue. Considering the above facts, in 

Chapter 4, a novel method employing autocorrelation-based feature 

extraction method is proposed for detection of islanding and other transient 

disturbances in renewable energy grid connected systems. A deep learning 

algorithm has been designed to classify islanding and non-islanding events 
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using extracted features from auto correlograms for classification of islanding 

and other disturbances.  

In Chapter 4, only detection of islanding and non-islanding events using 

autocorrelation-based feature extraction and deep learning has been proposed. 

However, in addition to islanding, detection of faults in grid connected solar 

PV systems is a challenging issue and if not detected properly may lead to 

severe maloperation. Hence, in Chapter 5, a method has been developed for 

accurate identification of faults in grid connected solar PV systems based on 

current data obtained from real-life grid connected solar PV system. A novel 

extended Park’s vector modulus-based fault detection algorithm has been 

developed and smoothed pseudo-Wigner-Ville distribution-based time 

frequency analysis of different faults and fault free current data has been 

analyzed in time- frequency frame. Finally, an unsupervised machine 

learning has been developed for accurate identification of faults in grid 

connected solar PV systems.  

In Chapter 6, deals with the summary and conclusions of the present thesis 

work. In addition to conclusions, the scope of the future work has been 

discussed in chapter 6. 

In Appendix, some additional results like mathematical formulae of PQ 

events and confusion matrix of PQ classification are shown. 

1.10 Originality of the thesis 

 

To the best of author’s knowledge, the original contributions of the thesis are 

as follows: 

 

1 Development of a novel discrete wavelet transform based 

multiresolution analysis and envelope extraction method using 

Hilbert transform for accurate detection of impulsive and oscillatory 

transients in power systems. 

2 Application of cross Stockwell transform and deep feature 

extraction employing convolutional neural network for detection and 
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classification of single and multiple PQ events in noisy 

environment. 

3 Development of a novel islanding detection method for grid 

connected renewable energy sources employing autocorrelation and 

bi-directional long-short term memory classifier. 

4 Application of smoothed-pseudo-Wigner-Ville distribution-based 

time-frequency analysis and autoencoder based unsupervised fault 

classification model for grid connected solar PV systems. 
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Chapter 2 

A Novel Technique Employing Discrete 

Wavelet Transform-Based Envelope Analysis 

for Detection of Power System Transients 

2.1 Introduction 

The term ‘transient’ in power systems can be thought of a phenomenon 

leading to a sudden alteration in voltage and current waveforms persisting for 

a very small duration [1]. Occurrence of power system transients are very 

frequent in power transmission and distribution networks. Although 

persisting for a very short duration, power system transients can endanger the 

life of power equipment by imposing severe electrical and thermal stress on 

power equipment. In the long run, a complete failure of the power equipment 

may take place leading to a catastrophic failure of the entire power system 

network. Therefore, detection of power system transients has been a major 

focal point of research for the past few years. In this context, researchers all 

over the world have implemented several advanced signal processing and 

machine learning techniques which have been able to detect and classify 

different transient phenomenon occurring in power systems with reasonable 

efficacy.   

Since power system transients represent highly nonstationary behavior 

application of wavelet transform for automated detection of transient 

disturbances have been reported in many existing literatures. Detection and 

classification of different transient phenomena occurring in power 
transformers using combined wavelet transform and neural network have 

been reported in [2]. Automated detection and classification of power system 

transients implementing wavelet transform and feed forward artificial neural 

network has been reported in [3]. Power system transient analysis based on 

using scalograms and wavelet multi resolution analysis have been reported in 

[4]. Features based on dual tree complex wavelet transform (DTCWT) and 
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artificial neural network for detection of power system transients have been 

reported in [5]. In [6], a sparse representation classifier based on DTCWT 

based features has been successfully implemented for recognition of different 

power system transients. It is therefore evident from the existing literatures 

that, wavelet transform is a very popular feature extraction tool that have 

been widely used to analyze different types of power system transients. 

Hence, in the present work, a novel technique based on envelope analysis of 

discrete wavelet transform (DWT) coefficients has been proposed to detect 

different type of power system transients. DWT based envelope analysis has 

been recently proposed as a novel feature extraction technique from non-

stationary signals. Application of DWT based envelope analysis have been 

reported in biomedical engineering for detection of epilepsy in [7] and in 

mechanical engineering also for condition monitoring in rolling element 

bearings [8]. In this paper, it has been used for the first time in the area of 

power systems to detect different transient disturbances.  

2.2 Theoretical background 

2.2.1 Discrete wavelet transform 

Discrete wavelet transform (DWT) is an efficient technique to analyze any 

nonstationary time series. DWT based multiresolution analysis (MRA) offers 

localization both in joint time and frequency frame. DWT based MRA offers 

good frequency resolution for the low frequency components of a signal and 

good time resolution for the high frequency components of a signal. 

Moreover, DWT has low computational complexity and easy to implement. 

The mathematical details of DWT can be found out in many available 

literatures [2-3] and hence are not discussed in greater details in this paper.  

Mathematically, DWT of any signal f(t) can be expressed as: 

                        𝐷𝑊𝑇(𝑝, 𝑞) = ∫ 𝑓(𝑡) 1√|2𝑝| 𝜓 (𝑡−2𝑝𝑞2𝑝 )∞−∞ 𝑑𝑡                              (2.1) 

where 𝜓is the mother wavelet and 2
p
 and 2

pq
 are the translation and dilation 

parameters, respectively. One of the major issues associated with DWT based 

analysis is the choice of the mother wavelet. In the present work 
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‘Daubechies-4’ mother wavelet is used to decompose the power system 

transient signals, since, it has been reported in existing literatures that 

‘Daubechies’ wavelet can detect high frequency short time disturbances [9]. 

2.2.2 Hilbert transform 

For envelope detection of any nonlinear & nonstationary signal, Hilbert 

Transform is a very efficient and popular method. Mathematically, Hilbert 

transform of a signal f(t) is given by: 

                               𝑓𝐻(𝑡) = 𝑓(𝑡) × 1𝜋𝜏 = ∫ 𝑓(𝜏)𝑡−𝜏𝛼−𝛼 𝑑𝜏 

where fH(t) is the Hilbert transform of f(t). The envelope spectrum E(t) 

corresponding to each frequency sub bands are calculated by the following 

equation: 

                                              𝐸(𝑡) = |𝑓𝐻(𝑡)|                                                     (2.3) 

In the present work, instead of using envelope spectrum from the signals 

directly, the envelope of the detail coefficients of different frequency sub 

bands have been extracted for the purpose of detection of power system 

transients. The proposed methodology is therefore a modification over the 

existing method [10] which directly uses envelope extraction from the signal 

itself. 

2.3 Methodology 

2.3.1 Synthetic signal generation 

In the present study, two common power system transient signals have been 

generated in MATLAB 2016 (a) environment using numerical models as per 

IEEE Standard-1159 [11]. The sampling frequency of the signals are kept at 

10 kHz. Further, it is reported in [12], that the simulated power system 

transient signals generated using numerical models closely resemble real time 

transient disturbances that take place in power system networks. Fig. 2.1(a) 



A Novel Technique Employing Discrete Wavelet Transform-Based Envelope Analysis for 

Detection of Power System Transients  

28 

 

and Fig. 2.1(b) show the typical oscillatory and impulsive power system 

transient signals used in the present work. 

 
(a) 

 
(b) 

Fig, 2.1 Typical nature of (a) oscillatory voltage transient and (b) Impulsive 

voltage transient signal 

2.3.2 Feature extraction  from DWT Envelope 

The power system transient signals are at first decomposed using DWT into 

different frequency sub bands. Since most of the transient phenomenon are 
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high frequency short time disturbances, hence, the first four detail 

coefficients D1-D4 have been chosen in this work since high frequency 

information of a signal are mostly retained within the first few detail 

coefficients. Table 2.1 shows the respective frequency sub bands for the first 

4 level of wavelet decomposition. 

Table 2.1 Extracted features 

Level of Decomposition Range of Frequency 

D1 5kHz-2.5kHz 

D2 2.5kHz-1.25kHz 

D3 1.25kHz-625Hz 

D4 625Hz-312.5Hz 

After extraction of different frequency sub bands using DWT based MRA, 

HT is applied on each of the first four decomposed sub bands and using 

equation (3), the envelope spectrum corresponding to each sub band have 

been obtained. Fig.2.2 shows the first four detail coefficients D1-D4 obtained 

for oscillatory transient signal after wavelet decomposition and the 

corresponding envelope of each frequency sub bands are shown in Fig.2.3. 

The choice of features is very important in any classification problem. The 

selection of suitable features can be done by either hit and trial method or on 

prior experience. Similar types of features has been found to yield reasonably 

high degree of classification accuracy in existing literatures [6-7]. Hence, 

from the envelope spectrum corresponding to each sub band following 

statistical features have been extracted in the present work for the 

classification of power system transients.  

F1=Standard deviation of the envelope for each sub band 

F2=Mean of the envelope for each sub band 

F3=Energy of the envelope for each sub band 

F4=Maximum value of the envelope for each sub band 

2.3.3 ANOVA test of the extracted features 

After extracting the selected features from the DWT envelope spectrum of 

both type of transient signals, a statistical null hypothesis test known as 

analysis of variance (ANOVA) test is done to analyze the discriminative 
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probability of the selected features. Based on the output of the ANOVA test, 

which yields a ‘p’ 

 

Fig.2.2 First four detail coefficients  of the oscillatory voltage transient signal 

D1-D4. 

 

Fig.2.3Envelope of the First four detail coefficients of the oscillatory voltage 

transient signal E1-E4. 

value, the discriminative capability of the features can be assessed. A lower 

‘p’ value is an indicator of very high discriminative capability [13]. Table 2.2 
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and Table 2.3 show the variation of the extracted features from the envelope 

spectrum along with respective ‘p’ values computed for each feature 

corresponding to each sub band for oscillatory and impulsive transients, 

respectively. It can be observed from the results presented in Table 2.2 and 

Table 2.3, that the extracted features from the envelope spectrum of each sub  

Table 2.2 Variation of extracted features (mean ± standard deviation) with 

‘p’ values for oscillatory transient 

Envelope 

corresponding 

to each Sub-

band 

Standard 

Deviation 
Mean Energy Max 

‘p’ 
values 

E1 0.005 

(±0.0006) 

0.0008 

(±0.0001) 

0.024 

(±0.002) 

0.119 

(±0.00003) 

4.33×10
-

17
 

E2 0.0087 

(±0.0009) 

0.002 

(±0.0009) 

0.014 

(±0.003) 

0.073 

(±0.005) 

5.69×10
-

13
 

E3 0.024 

(±0.007) 

0.006 

(±0.002) 

0.144 

(±0.062) 

0.162 

(±0.021) 

5.80×10
-

11
 

E4 0.029 

(±0.009) 

0.009 

(±0.002) 

0.215 

(±0.129) 

0.197 

(±0.055) 

4.49×10
-

11
 

Table 2.3 Variation of extracted features (mean ± standard deviation) with 

‘p’ values for impulsive transient 

Envelope 

corresponding 

to each Sub-

band 

Standard 

Deviation 
Mean Energy Max 

‘p’ 
values 

E1 0.035 

(±0.005) 

0.004 

(±0.0008) 

1.143 

(±0.338) 

0.849 

(±0.112) 

2.43×10
-

14
 

E2 0.031 

(±0.013) 

0.003 

(±0.001) 

0.769 

(±0.693) 

0.598 

(±0.288) 

7.95×10
-

17
 

E3 0.029 

(±0.016) 

0.004 

(±0.002) 

0.603 

(±0.713) 

0.452 

(±0.278) 

3.48×10
-

15
 

E4 0.023 

(±0.009) 

0.006 

(±0.002) 

0.218 

(±0.181) 

0.244 

(±0.117) 

8.65×10
-

18
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band for both types of transient signals are significantly different from each 

other. Besides, from the results of the ANOVA test, it is evident that the 

selected features have a significant discrimination capability between two 

classes with ‘p’ value < 0.0001, and henceforth can be used as inputs to the 

classifier for the classification of power system transients. 

2.3.4 Support vector machines 

Support Vector machines is a very popular machine learning algorithm which 

has been implemented by researchers in various fields for solving 

classification problems. SVM is proposed to solve a binary classification 

problem using the principle of structural risk minimization. Details of SVM 

can be found in [14]. Here, a brief description of the classifier is given below.  

 

An SVM aims to classify sample points belonging to two different classes by 

finding an optimum hyperplane which maximizes the margin i.e. separation 

between the data points with the nearest data points better known as support 

vectors. Nonlinear SVMs can map the training samples to a high dimensional 

feature space with the help of several mapping functions known as kernel 

functions. There are several kernel functions present in an SVM like linear, 

polynomial, RBF etc. In the present work, initially, the performance is 

evaluated using all kernel functions of SVM, and it has been observed that 

RBF kernel yields better performance compared to other kernel functions, 

based on which the classification accuracies are reported in this work. 

Moreover, since the present problem is a simple binary classification 

problem, hence, SVM has been used in the present work. 

2.3.5 Performance analysis 

The performance of the proposed method based on extracted features from 

the envelope spectrum from each frequency sub bands and employing SVM 

classifier have been analyzed in this section. Since, four statistical features 

are extracted from the first four frequency sub bands, hence the size of the 

input feature vector is 16  150.The performance of the present work is being 

assessed in terms of the following statistical testing parameters which are 

given in equations (2.4) -(2.6). In the following equations, the true positives, 

true negatives, false positives and false negatives are computed from the 
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confusion matrix for the classification of power system transient signals. In 

the present study 150 signals belonging to either class of transients i.e. 

oscillatory or  

Table 2.4 Performance analysis using all features for different training 

testing ratio 

Training 

data 

(%) 

Testing 

data  

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

70 30 100 100 100 

60 40 100 100 100 

50 50 99.1 100 98.8 

40 60 98.5 98.7 97.8 

impulsive transients have been generated. Out of 150 signals, at first 40% of 

the signals are selected randomly to be used for training and the rest of 60% 

for testing purpose. Next the training and the testing ratio has been varied and 

the performance of the classifier has been evaluated for each case. The 

performance of the SVM classifier for classification of different power 

system transients has been reported in Table 2.3. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 × 100  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 × 100




𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 × 100




From the results presented in Table 2.4, it can be observed that the  

classification accuracy of 100% is obtained when the ratio of training data to 

the testing data is 70:30. Besides classification accuracy, 100% sensitivity 

and specificity is also obtained in classification of different type of transient 

signals.Further, it can be observed from Table 2.4, the classification accuracy 

is found to decrease with the decrease in training to testing data ratio. The 

maximum reported classification accuracy is 98.5% when the training to 

testing data ratio is 40:60. However, the classification accuracy achieved in 

the present work using statistical features derived from DWT based envelope 
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and SVM classifier is reasonably high, even when the training to testing data 

ratio is less than 1, which further indicates that the efficacy of the proposed 

method.  

2.3.6 Effect of noise 

The performance of the SVM classifier in presence of background noise has 

been estimated in this section. In real life power systems, signals often get 

corrupted with noise and interference from the mains. The detection system 

should therefore be robust against noise. To emulate background noise, white 

Gaussian noise of different signal to noise ratios starting from 35 dB to 5dB 

have been mixed with different transient signals. Table 2.5 report the 

performance of SVM classifier in presence of different noise levels. It can be 

observed from Table 2.5, that the maximum classification accuracy of 100 % 

is obtained when the SNR is 35dB. The performance of SVM classifier is 

found to degrade with the increase in noise level yielding a maximum 

classification accuracy of 94.5%, in presence of background noise as low as 5 

dB, which clearly indicates the robustness of the proposed method. 

Table 2.5 Variation of classification accuracy with SNR (dB) 

SNR 

(dB) 

Classification Accuracy 

(%) 

35 100 

25 98.4 

15 96.2 

5 94.5 

2.4 Conclusions 

In the present work, a novel method based on DWT based envelope analysis 

has been proposed for automated detection and classification of power 

system transients. Signals representing two very common and frequently 

occurring power system transients namely oscillatory transient and impulsive 

transient are at first decomposed using DWT into set of different frequency 

sub bands. Then, by applying HT on the first four decomposed sub bands, the 

envelope spectrum corresponding to each subbands is obtained by taking the 

absolute value of the analytic frequency sub bands. From the envelope 
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spectrum, four set of distinct statistical features have been obtained. The 

statistical analysis of the extracted features has been done using one way 

ANOVA to test the discriminative probability of the selected features 

between different classes. It has been observed that 100% accuracy is 

obtained in classifying different transient disturbances using the proposed set 

of statistical features and SVM classifier. Besides, the performance of the 

proposed method is found to be reasonably satisfactory, when evaluated in 

the presence of different background noise levels. Hence, it can be inferred 

that that the proposed method of DWT-based envelope analysis for detection 

of power system transients can be implemented in real life power 

transmission and distribution systems for monitoring of various transient 

disturbances. 
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Chapter 3 

Power Quality Recognition in Noisy 

Environment Employing Deep Feature 

Extraction from Cross Stockwell Spectrum 

Time-Frequency Images 

3.1 Introduction 

Electric power utilities all over the world are concerned with the quality of 

electric power since it plays a vital role in maintaining the reliability of 

transmission and distribution networks [1]. In this context, monitoring of 

power quality (PQ) at regular intervals is important so that the voltage 

waveforms do not deviate significantly from pure sinusoid. However, due to 

operations such as capacitor switching, faults, lighting strike, non-linear load 

switching etc. the voltage waveforms get seriously distorted [2]. Recently, 

with the integration of renewable energy sources into the grid using power 

electronic devices, voltage waveforms most often tend to become non-

sinusoidal in nature [3]. These high frequency and distorted waveforms may 

endanger the life of costly power equipment thereby hindering the smooth 

operation of power system network. Thus, accurate and fast detection of 

power quality is important so that appropriate preventive measures can be 

taken to prevent pre-mature failure of the power equipment. 

In this context, researchers have proposed several signal processing and 

machine learning algorithms for automated detection of PQ signals. 

Detection and classification of PQ signals using fluctuations of amplitude and 

decision tree (DT) algorithm has been reported in [4]. Since most of the PQ 

signals are nonstationary in nature, many signal processing techniques have 

been proposed for analysis of PQ signal in joint time-frequency (T-F) plane 
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[5]. Application of discrete wavelet transform (DWT) and wavelet networks 

for classification of PQ signals have been reported in [6]. Detection and 

classification of PQ signals using curvelet transform and optimized extreme 

learning machine has been reported in [7].  Classification of PQ signals using 

wavelet packet transform and multiclass support vector machines have been 

reported in [8].  Application of tunable Q-factor wavelet transform and dual 

multiclass SVM for classification of PQ signals have been reported in [9]. In 

[10], empirical wavelet transform has been used to classify single and 

multiple PQ disturbances. In [11], an adaptive window-based fast generalized 

S-transform has been proposed for analysis of simulated as well as real-time 

PQ events. Application of hybrid model employing Stockwell transform (ST) 

and dynamics for classification of PQ events have been reported in [12]. In 

[13], classification of PQ signals using S-transform and modular neural 

network has been reported. Application of Stockwell transform (ST) and 

hidden Markov model for classification of PQ events have been reported in 

[14]. Thus, it is imperative that ST is a popular signal processing technique 

mainly used for analysis of PQ signals in joint time-frequency (T-F) plane. 

The ST spectrogram i.e. T-F plot indicates the variation in instantaneous 

frequency of a non-stationary signal which can be used to discriminate 

various types of PQ signals.  

Compared to continuous wavelet transform (CWT), ST offers certain 

advantages. ST is proposed as a phase corrected version of CWT. Thus, ST 

can preserve instantaneous phase characteristics of the signal [15]. Moreover, 

the performance of ST does not depend on the selection of the mother 

wavelet [16]. Considering the aforesaid advantages, various versions of ST 

like, modified Stockwell transform (MST) [17], hyperbolic Stockwell (HST) 

[18], fast ST (FST) [19], discrete orthogonal ST (DOST) [20] etc. have been 

successfully implemented for analysis and feature extraction from PQ 

signals. Although different versions of ST have been successfully 

implemented for PQ signal analysis, yet one limitation of the ST based T-F 

analysis is that the spectrogram images obtained using ST becomes noisy 

especially when SNR of the input signal is low. This makes it extremely 

difficult to discern between single and multiple power quality signals based 

on the information obtained from conventional ST spectrogram. One way to 

improve the noisy spectrum is to optimize the Gaussian window parameters 
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of ST [15]. However, the aforesaid technique is computationally complex, 

and the performance depends on the type of optimization algorithm used. 

Considering the aforesaid issue, in this work, we propose cross Stockwell 

transform (XST)-a much simpler modification of ST which can improve the 

anti-noise performance of ST significantly. 

In this chapter, XST is used to analyze single and multiple PQ signals. A 

distinct advantage of cross spectrum analysis is that it can eliminate the effect 

of random and uncorrelated noise present in any two cross-correlated signals 

i.e. if two signals are contaminated with random uncorrelated noise, then the 

effect of that noise will not be reflected in the cross-correlogram as cross 

correlation coefficient value for random uncorrelated noise is very small [21]. 

This eliminates the need of additional denoising of PQ signals in the data-

pre-processing stage. Also, real life noisy PQ signals with low SNR can be 

accurately distinguished. Moreover, as reported in [22], cross spectrum 

analysis points to those regions in the T-F plane where two signals have 

highest common power in T-F plane [23]. Thus, XST has better noise 

rejection capability in T-F plane compared to ST. Considering the advantages 

of cross-spectrum analysis, XST is proposed in this work for analysis of PQ 

signals in T-F plane. 

In this chapter, single as well as multiple PQ signals representing various 

transient events are generated using standard mathematical models as 

described in [24]. After generation of PQ signals, they were transformed into 

T-F frame using XST. The T-F images represent RGB color images of the 

transformed PQ signals. Next, instead of manual feature extraction from the 

T-F images, deep learning was employed for automated feature extraction 

from T-F images. The advantage of deep learning-based feature extraction is 

that it is fully automated compared to manual feature extraction method 

which is unsophisticated and tedious. In this study, convolutional neural 

network (CNN)-a state of the art deep learning model is used for automated 

deep feature extraction from T-F images of PQ signals obtained using XST. 

The outline of the proposed PQ detection model is shown in Fig. 3.1.  

To the best of the authors’ knowledge, following are the original 

contributions of the present chapter: 
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Fig. 3.1 Illustration of the flowchart of the proposed method 

(i) Cross Stockwell transform (XST) based novel time-frequency (T-F) 

analysis of PQ signals is proposed in this work. The cross spectrum is done to 

improve the noise robustness of T-F images so that classification of single as 

well as multiple PQ signals can be done accurately in presence of noise. 

(ii) Four benchmark deep neural network architectures have been 

trained for extraction of deep features from cross spectrum images. To reduce 

training time, a transfer learning strategy has been employed here. The 

extracted deep features were further subjected to feature selection using one-

way analysis of variance (ANOVA) and false discovery rate (FDR) 

correction. 

(iii) Three machine-learning classifiers have been used to classify the PQ 

signals based on extracted deep features. Extensive studies have been carried 

out by varying noise-level, fundamental frequency, train-test ratio etc. and by 

comparing with other T-F methods.  

(iv) Finally, the method has been validated on real-life PQ data to verify 

the practicability of the proposed method. 
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3.2 Generation of synthetic PQ signals 

In this chapter, synthetic PQ signals were generated using the formulae 

prescribed in IEEE std. 1159-2009. Detailed description of PQ signals is 

given in Table 3.1. The mathematical formulae used to generate the signals 

are reported in Appendix in Table A.1 [7, 24]. The synthetic PQ signals were 

generated using MATLAB 2020 a. Total 22 classes of PQ signals were 

generated and for each class of PQ signal, 500 signals were generated. To 

emulate real-life PQ signals, white Gaussian noise of varying SNR from 10 

dB to 30 dB. The generated PQ signals are described in Table 3.1. It is to be 

mentioned here that the generated PQ signals consist of both single as well as 

multiple PQ events since occurrence of both are very common in power 

system network. In addition to synthetic signals, several real-life PQ signals 

were also procured, and the proposed methodology has also been validated 

on real-life PQ signals to validate the practicability of the proposed PQ 

detection scheme.  

 

3.3 Methodology 

3.3.1 Brief theory of Stockwell transform 

Stockwell Transform (ST) was proposed by R.G. Stockwell [25] to study 

non-stationary geophysical signals. Stockwell introduced ST as the “phase 

corrected” adaptation of the Continuous Wavelet Transform (CWT) that 

retains the absolute phase information of the signal. In general, the ST can be 

seen as a fusion of Gabor transform and CWT. It uses a Gaussian frequency 

localization window whose width varies in proportion to frequency, thus 

providing a time-frequency representation with frequency dependent 

resolution. The basic definition of ST of a signal h(t) is given by [25]:  

 

                             𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)𝑔(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡∞−∞                            (3.1) 

 

where 𝜏 and 𝑓 denote the time instant of spectral localization and Fourier 

frequency, respectively and 𝑔(𝑡) is the Gaussian window function. The 
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Table 3.1: Generated PQ signals 

Signal 

identifier 

PQ signal type Type of PQ 

signals 

S1 Sine + noise Single 

S2 Harmonics + noise Single 

S3 Sag + noise Single 

S4 Swell + noise Single 

S5 Flicker + noise Single 

S6 Transient + noise Single 

S7 Interruption + noise Single 

S8 Notch + noise Single 

S9 Harmonics + Sag + noise Multiple 

S10 Harmonics + Swell + noise Multiple 

S11 Harmonics + Flicker + noise Multiple 

S12 Harmonics + Interruption + noise Multiple 

S13 Harmonics + Transient + noise Multiple 

S14 Sag + Flicker + noise Multiple 

S15 Swell + Flicker + noise Multiple 

S16 Sag +Transient + noise Multiple 

S17 Swell +Transient + noise Multiple 

S18 Transient + Interruption + noise Multiple 

S19 Harmonics + Interruption + noise Multiple 

S20 Sine + Harmonics+ noise Multiple 

S21 Sine + Interruption+ noise Multiple 

S22 Sine +Transients + Harmonics + noise Multiple 

 

Gaussian window as a function of frequency (𝑓) and time (𝑡) is defined as: 

                                             𝑔(𝑡, 𝜎) = |𝑓|√2𝜋 𝑒−𝑡2𝑓22                                             (3.2) 

The ST can thus be defined as: 

                                 𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡) |𝑓|√2𝜋 𝑒−(𝜏−𝑡)2𝑓22 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡∞−∞                  (3.3) 
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Sometimes for ease of analysis and to take advantage of the FFT algorithm 

already available in programming languages, the S-Transform is presented as 

operations on the Fourier spectrum H(f) of the time series h(t) as: 

 𝑆(𝜏, 𝑓) = ∫ 𝐻(𝛼 + 𝑓)𝐺(𝛼, 𝑓)𝑒𝑖2𝜋𝛼𝜏𝑑𝛼∞
−∞   ;  𝑓 ≠ 0 

 𝑆(𝜏, 𝑓) = ∫ 𝐻(𝛼 + 𝑓)𝑒−2𝜋2𝛼2𝑓2 𝑒𝑖2𝜋𝛼𝜏𝑑𝛼∞
−∞   ;  𝑓 ≠ 0 

 

                                    𝑆(𝜏, 𝑓) = 1𝑇 ∫ ℎ(𝑡)𝑑𝑡 ;  𝑓 = 0                                   ∞−∞ (3.4) 

 

3.3.2 Brief theory of Cross Stockwell transform 

The performance of ST (mentioned earlier section) can be further improved if 

it can be used to find the degree of correlation between two-time series in 

both time scale and time-frequency plane. Since ST localizes spectral 

elements in time, the cross correlation of two spatially separated signals 

should provide phase synchrony information. The proposed cross S-

Transform (XST) uses this property to perform cross spectral analysis on 

time domain signals. The XST between two-time series h(t) and y(t) is 

defined as: 

 

                                𝑋𝑆𝑇(𝜏, 𝑓) = 𝑆𝑇ℎ(𝜏, 𝑓) × {𝑆𝑇𝑦(𝜏, 𝑓)}∗                        (3.5) 

 

Where,{𝑆𝑇ℎ(𝜏, 𝑓)}and{𝑆𝑇𝑦(𝜏, 𝑓)} indicates the S-transform of signals h(t) 

and y(t), respectively and * denotes the complex conjugate operation. The 

phase of XST is given by: 

 

                                       𝑎𝑟𝑔(𝑋𝑆𝑇) = 𝜑ℎ(𝜏, 𝑓) − 𝜑𝑦(𝜏, 𝑓)                       (3.6) 

 

Where, 𝜑ℎ(𝜏, 𝑓) 𝑎𝑛𝑑 𝜑𝑦(𝜏, 𝑓) are the respective phases of h(t) and y(t) with 

respect to a reference frame. The XST operation yields a complex matrix, the 
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magnitude of which is known as the cross Stockwell spectrum which gives 

localization of different frequency components at different instants in a T-F 

image plot. The steps to obtain the XST for a given time series ℎ(𝑡) and y(t) 

are given in the following pseudocode as: 

 

Pseudocode of XST 

Step 1: Find 𝐻(𝛼), 𝑏𝑦 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝐹𝐹𝑇 𝑡𝑜 ℎ(𝑡) ℎ(𝑡) 𝐹𝐹𝑇→  𝐻(𝛼) 
Step 2:  

Find 𝐺(𝛼, 𝑓), 𝑏𝑦 𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝐹𝐹𝑇 𝑡𝑜 𝑔(𝑡, 𝜎)  𝑔(𝑡, 𝜎) 𝑓𝑓𝑡→ 𝐺(𝛼, 𝑓) 
Step 3: Shift 𝐻(𝛼) to 𝐻(𝛼 + 𝑓) 
Step 4: Multiply 𝐺(𝛼, 𝑓) with the shifted 𝐻(𝛼) 
Step 5: Take the inverse FFT of Step 4 to obtain 𝑆𝑇ℎ(𝜏, 𝑓) 
Step 6: Compute XST two functions h(t) and y(t) 

by 𝑆𝑇ℎ(𝜏, 𝑓) × {𝑆𝑇𝑦(𝜏, 𝑓)}∗ 
3.3.3 Convolutional Neural Network 

Convolutional Neural Network (CNN) belongs to the family of deep neural 

networks which has been extensively applied for object detection as well as 

classification of images [26-27]. When compared against other different feed-

forward deep learning (DL) models such as artificial neural network (ANN), 

CNN boasts the advantage of its end-to-end learning architecture which is 

particularly suitable for automated feature extraction and classification 

purpose. Usually, the structure of a CNN consists of three parts: (i) input 

layer (ii) hidden layers in the middle and finally an (iii) output layer. The 

hidden network layers consist of several convolution layers, followed by 

pooling layers, fully connected layers etc. Being sequentially embedded to 

each other, these deep operating layers extract high-level abstract features 

from the image inputs using the principle of regularized multi-layer 

perceptions [27]. Brief description of the hidden layers of CNN is presented 

below: 
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1) Convolution Layer 

Convolution layers are the basic building blocks of a CNN module which are 

used to produce the initial high-dimensional feature maps from image inputs. 

Generally, convolution blocks consist of fixed number of filters, which are 

also known as kernel functions. The main concept behind the operation of a 

convolution block is local receptive fields and the shared weights and biases 

between its hidden units. In this way, instead of processing the entire image, 

the convolution block recognizes and extracts significant feature information 

from only a small, localized region of the image using the filters or the kernel 

functions. Using forward propagation, these filters or the kernels are then 

convolved transversely around the width and height of the entire input image 

to obtain the high-dimensional feature data. Mathematically, the 2-D output 

of the convolution operation on a signal of dimensions (a, b) is represented 

as:    

                      (𝑆 ∗ 𝑇)(𝑠, 𝑡) = ∑ 𝑆(𝑎, 𝑏)𝑚,𝑛 𝑇(𝑠 + 𝑎, 𝑡 + 𝑏)                           (3.7) 

To help with the convolution procedure, a series of pixel values namely stride 

(q) is incorporated to tune the movement of the kernel functions. In addition 

to that, to maintain uniformity in detecting the same local features throughout 

the whole image, the weights and biases of convolution blocks are also 

shared between different deep operating layers. This process of sharing 

information and connecting the sequential convolution blocks reduces the 

number of hidden parameters utilized by the CNN module which in turn 

reduces the training difficulty of the network. Another important parameter of 

the convolution block is ‘zero padding’ (z) which regulates the size of the 

input image at every level of the convolution operation. For any input image 

having dimensions of Pi × Qi × Ri, where the width, height and number of 

input channels are represented by Pi, Qi and Ri, respectively, the output 

volume denoted by Po × Qo × Ro for using No number of filters with each of 

size ‘r × r’ is represented as: 

                                                 𝑃𝑜 = 𝑃𝑖−𝑟+2𝑧𝑞 + 1                                              (3.8) 
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𝑄𝑜 = 𝑄𝑖−𝑟+2𝑧𝑞 + 1 (3.9)   

Apart from this, several non-saturated activation functions such as hyperbolic 

tangent functions (tanh), rectified linear unit (ReLU), sigmoid etc. are also 

incorporated in the convolution layers to introduce no-linearity. Activation 

functions are a significant part of the forward propagation design of the 

hierarchical CNN structure, operation of which can be denoted as: 

                                                   𝐵𝑖 = 𝑥(𝐴𝑖)                                             (3.10) 

Where, Aiand Biare the feature maps produced from the i
th

 convolution 

operation, before and after introducing the non-linear activation function 

denoted byx (.), respectively. 

2) Pooling Layer 

The pooling layers are merged in succession with the convolution layers in 

the hierarchical structure of a CNN model. Pooling layers serve the purpose 

of dimension reduction by applying non-linear down sampling on the 

previously obtained high dimensional feature output from the convolution 

layers and helps to avoid the issue of over-fitting as well. Usually, a series of 

non-intersecting rectangular sub-regions are formed by the obtained feature 

maps and from which, significant feature information is extracted with the 

help of several pooling operators such as global pooling, average pooling, 

maximum pooling etc. In this way, the spatial volume of the feature output is 

reduced and at the same time, the computational time is also shortened by 

reducing the number of network parameters. Mathematically, a pooling 

operation can be represented as: 

                                       𝑚𝑥,𝑦,𝑧 = 𝑝𝑜𝑜𝑙(𝑎,𝑏)∈𝑆𝑥,𝑦(𝑛𝑎,𝑏,𝑧)                               (3.11) 

Where, 𝑚𝑥,𝑦,𝑧  represent the k
th

 feature map after the corresponding 𝑝𝑜𝑜𝑙(. )  
operation. Here, 𝑆𝑥,𝑦denotes the pooling receptive region around the nodes at 

location (x, y) and (𝑛𝑎,𝑏,𝑧) denotes the nodes at location (a, b). 
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3) Fully Connected Layer 

Fully connected (FC) layers are placed at the end of the CNN modules which 

serves the purpose of flattening the 2-dimensional feature outputs from the 

previous convolution and pooling layers into 1-dimensional interpretable data 

for the classification and regression tasks. Along with that, to contend with 

the issue of overfitting in training of the CNN networks, dropout 

regularization factor is often introduced after fully connected layers. The 

dropout function helps to mitigate the issue of overfitting in training of the 

CNN modules where the weight of half of the hidden layer nodes are dropped 

randomly at each training step. In this way, the appearance of one neuron of a 

particular hidden layer does not block the activity of another neuron of the 

same hidden layer which alleviates the situation of two nodes of a same 

hidden layer appearing at the same time and hence, improves the 

generalization ability of the network. For classification tasks, the output layer 

of a CNN network utilizes softmax activation for assigning class labels to the 

feature attributes and predicting categories. In addition to that, to ensure 

reliable classification performance, it is necessary to reduce cross entropy 

losses, which indicates the differences between the actual and the predicted 

model. The formula to determine the cross-entropy losses is given by: 

                                        𝑍(𝑧, 𝑝) = −∑ 𝑧𝑖 𝑙𝑜𝑔( 𝑝𝑖)𝑖                                      (3.12) 

Here, p denotes the probability score from the output of the FC layer and z is 

the predicted label which can assume values 0 or 1. Here back propagation 

has been used to compute the cross-entropy losses. Also, using stochastic 

gradient descent rule, the weights and biases of the previous operating layers 

have been adjusted. In existing literature, several state-of-the-art CNN 

architectures were reported for feature extraction and classification purpose 

by employing different configuration of the hidden operating layers. In this 

study, we explore four of such classical CNN architectures using the transfer 

learning (TL) strategy to extract deep neural features. A brief overview of TL 

strategy is given below. 
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3.3.4 Transfer learning 

Transfer learning (TL) signifies the process of streamlining information from 

one field to another. In context of deep learning, TL depicts the application of 

a finely tuned CNN architecture for feature extraction and classification 

purpose, which was trained earlier on a different data archive. It should be 

mentioned here that in practice, training a CNN architecture using TL 

strategy is more expedient than training it from scratch. The pre-trained CNN 

architecture consists of weights and biases, which characterize the features 

learned from the previous datasets and which again in fact can be transferred 

to different datasets [28]. Using TL, the last couple of hidden operating layers 

in the CNN architecture namely fully connected layers and the classification 

layers can be dissolved, and the rest of the CNN architecture can be trained 

on different datasets. Hence, using TL technique, a pre-trained CNN model 

can operate on a fresh classification task by fine-tuning its last couple hidden 

operating layers. In this study, TL strategy is applied to train four pre-trained 

CNN architectures namely AlexNet, VGGNet16, ResNet50 and GoogleNet 

for the purpose of automated feature extraction. A brief description of the 

employed pre-trained CNN models is given below, highlighting their 

different configurable operating layers and parameters.       

3.3.5 Pre-trained CNN models 

1) AlexNet 

The first CNN architecture used in this study is an efficient deep learning 

framework namely AlexNet which has been the winner of ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC), 2012 [29]. The AlexNet 

model was trained on the ILSVRC database and contains roughly 60 million 

network parameters. The basic structure of AlexNet is shown in Fig. 3.2. 

AlexNet consists of overall 8 network layers deep with 5 convolution blocks 

where, the first two convolution layers make use of 96 and 256 number of 

filters of sizes 11×11×3 and 48×5×5, respectively. Two max pooling layers, 

each having filter sizes 3×3, are connected to these convolution layers. The 

latter three convolution layers have 384, 384, and 256 numbers of filters 

having sizes of 256×3×3, 192×3×3 and 192×3×3, respectively. Another max-
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pooling layer of filter size 3×3 is connected at the conjunction between the 

last convolution layer and the succeeding two fully connected layers, both of 

which contain 4096 number of neurons each. The AlexNet model 

incorporates the ReLU activation function in its convolution blocks and the 

dropout regularization technique in the final classification layers. 

 

Fig. 3.2 Structure of AlexNet 

2) VGGNet 

VGGNet is a popular CNN architecture which was developed by the Oxford 

Visual Geometry Group (VGG) [30]. The structure of VGGNet is shown in 

Fig. 3.3. Like AlexNet model, VGGNet was also trained on the ILSVRC 

database, which contains over 1.2 million images of 1000 different class 

labels. This CNN algorithm has multiple deep variants ranging from 11 to 19 

layers, out of which, we have utilized the 16 layers deep VGGNet16 model in 

this work. Like AlexNet, the overall VGGNet16 architecture also contains 5 

convolution blocks with 3×3 convolution filters. The associated stride values 

are kept as 1 with filling size of 1. To reduce the spatial volume of the feature 

outputs, max-pooling layers of size 2×2 is used as handler in the VGGNet16 

model with step length of 2. At the end of the last max-pooling layer, three 

fully connected layers with 4096 number of neurons are connected to 

integrate the deep features into the 1-D feature map. A softmax classification 

layer is attached at the end of the three fully connected layers for the 

classification purpose. The VGGNet16 architecture uses around 138 million 

network parameters in its deep hidden layers. 

3) ResNet50 
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Residual networks or widely popular as ResNet is another efficient deep 

CNN architecture that has been proposed in [31]. The ResNet architecture 

incorporates a novel ‘identity mapping’ strategy in its hidden operating layer. 

 

Fig. 3.3 Structure of VGGNet16 

The problem of vanishing gradient is solved with the help of this identity 

mapping technique by providing an alternative shortcut path for the gradient 

to pass through. In addition, the identity mapping also helps the ResNet 

model to skip or bypass one or more than that weighted hidden layers if the 

current layers are not necessary as shown in Fig. 3.4. These skip connections 

aid in avoiding the possible issue of overfitting in extracting feature 

information from input data. It should be mentioned here that in this study, 

we have implemented the ResNet architecture which is 50 layers deep i.e. 

ResNet50 since it yielded the best performance among other ResNet models. 

4) GoogleNet 

GoogleNet is a widely used CNN model, which was the winner of ILSVRC, 

2014 [32]. GoogleNet was trained on the ILSVRC database, which contains 

over 1.2 million images of 1000 different class labels. This CNN architecture 

implements an ‘inception unit’ that permits real-time processing of input data 

across different convolutional layers, which helps in increasing the depth of  
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Fig. 3.4Structure of a residual module 

the architecture while eluding computation complexity. The inception units 

contain 2 convolutional layers, 4 convolution layers for dimension reduction 

and 1 max-pooling layer. GoogleNet consists of 9 such inception modules, 2 

convolution layers, 1 average-pooling as well as 4 max-pooling layers and 1 

classification layer with softmax activation. Interestingly, a global average- 

pooling layer is positioned at the bottom of the GoogleNet architecture in 

place of a fully connected layer to reduce the error rate. It implements ReLU 

activation units in the convolution layers and the dropout regularization 

strategy to escape overfitting in the classification layer. In this study, in order 

to extract deep neural features, the softmax classification layer was dissolved 

and the corresponding high dimensional feature vector was obtained as an 

output from the average-pooling layer. The structure of an inception module 

is shown in Fig. 3.5. 

3.3.6 Machine Learning classifiers 

In the present chapter, three well-known machine learning classifiers have 

been employed for classification of PQ signals using deep features extracted 
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Fig. 3.5 Structure of an inception module 

from pre-trained CNN models. The theoretical details of the employed ML 

classifiers are discussed below in brief. 

1)  Random Forest 

Random forest (RF) is a well-known machine-learning algorithm, which 

consists of a group of standard decision tree classifiers. RF utilizes a novel 

bootstrap-bagging strategy to allocate training inputs for each of the decision 

tree classifiers. The number of the training inputs dispersed at the nodes of 

each tree classifier corresponds to square root times of the initial feature size 

[33]. Also, the RF classifier boasts the advantage of being robust against 

noise by random splitting of the training inputs between the nodes of three 

classifiers. The output of the RF classifier is decided by aggregating the 

decisions of all the tree classifiers, using a majority voting method. It is also 

to be mentioned here that in order to optimize the performance of the RF 

classifier, setting the number of decision tree classifiers is an important task. 

Therefore, to optimize the classification performance, the number of decision 

trees varied within a range of 50 to 150 and noticed that using 80 decision 

trees; the best classification results were obtained.  
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2) Support vector machines 

Along with RF, another machine-learning algorithm, namely support vector 

machines (SVM) has been implemented in this work. Detailed description 

about the SVM classifier is reported in past studies [34]. SVM incorporates 

an optimum separating hyper-plane (OSH) to fit the input training data and 

the class margins between data inputs of different data labels is enhanced 

using the theory of structural risk minimization (SRM) [34]. Non-linear 

SVMs are used to map the training datasets from input space to higher 

dimensional feature space using kernel functions. In this work, we have used 

different kernel functions to determine the appropriate kernel function 

delivering highest classification accuracy. To determine the optimal width of 

the RBF kernel, the regularization parameter has been varied from 1 to 200 in 

steps of 0.1. 

3) k-nearest neighbor (kNN) 

In addition to RF and SVM, another well-known machine-learning classifier 

namely k-nearest neighbor (kNN) has been used in this study for 

classification of PQ signals. The kNN classifier is widely used in solving 

different classification problems since it is relatively simple to implement and 

robust towards ambiguous data samples. Based upon the recurrent class 

labels inside a certain dimensional cluster of training samples, kNN 

categorizes data labels based on majority voting technique [35]. Hence, 

selection of the two hyper-parameters of kNN is important to optimize the 

classification performance. The first one being distance parameter, which 

defines the class labels and the latter, is the selection of the k-value, which 

determines the dimension of the clusters being formed with training samples.  

3.4 Results and Discussions 

3.4.1 Analysis of PQ signals using XST 

In this contribution, the PQ signals were initially transformed into time-

frequency (T-F) domain using XST. For computation of cross spectrum, a 

sample PQ signal from each class is chosen as the reference. The cross 
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spectrum of the rest of the PQ signals for each class is done with their 

respective chosen reference signal. The single PQ signal (S6, SNR=15dB) 

and corresponding time-frequency image obtained using ST and XST is 

depicted in Fig. 3.6 (a-c). In addition, a multiple PQ signal (S22, SNR=15dB) 

and its corresponding T-F image obtained using XST and conventional ST is 

shown in Fig. 3.7 (a-c). It is evident from Fig. 3.6 (a-c) and Fig. 3.7 (a-c), that 

the resolution of images obtained using XST is better than the conventional 

ST i.e. the T-F images obtained using XST are less noisy compared to ST. As 

a consequence, different PQ signals can be clearly distinguished based in T-F 

plane using XST whereas, it is difficult to distinguish between single and 

multiple PQ signals from the conventional ST spectrum when the SNR is 

low. This is evident from Fig 3.6 (c) and Fig. 3.7 (c), where the T-F images 

for both single and multiple PQ signals look almost alike although they both 

represent different PQ signals. This inadvertently will lead to 

misclassification and poor detection accuracy. Thus, it is evident from the 

above analysis that XST proposed in this study is robust against noise which 

 

Fig. 3.6 Time domain PQ signal (a) S6 and corresponding T-F images 

obtained using (b) XST (c) ST for SNR=15dB 
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Fig. 3.7 Time domain PQ signal (a) S22 and corresponding T-F images 

obtained using (b) XST (c) ST for SNR=15 dB 

can be used to classify PQ signals accurately compared to ST especially in a 

noisy environment. Also, it is evident from Fig. 3.6 (b) and Fig. 3.7 (b) that 

the T-F images of different PQ signals are different from each other. Thus, T-

F images can be fed to deep neural networks for automated feature extraction. 

3.4.2 Performance metrics 

The T-F images obtained using XST were fed as inputs to four classical CNN 

architectures, from which deep features were extracted. It is to be mentioned 

here that in order to reduce the computational burden of the machine-learning 

classifiers in the subsequent classification stage, the extracted deep features 

were ranked according to their discriminative capability and only the top 

feature values having superior discriminative powers were selected in this 

study. For this purpose, we have used one-way analysis of variance 

(ANOVA) test to observe their respective discriminative powers. The 

ANOVA test essentially yields a probability density value, i.e., frequently 
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labeled as the ‘p-value’, which signifies the probability of occurrence of any 

feature value between different classes of PQ signals. The discriminative 

capability of the features values is derived from the magnitude of the p-

values. The lower magnitude of p-value corresponds to greater class 

separation of any feature value between different classes since p-values 

having lower magnitude indicates towards lower probability of the null 

hypothesis being rejected in the ANOVA test and vice-versa. Therefore, we 

have selected the p-values as a metric of distinguishability in this study. For 

measuring the discriminative powers of the extracted deep features, p-value 

having a threshold of 10
-10

 was selected in this work. In addition to the 

ANOVA analysis, the false discovery rate (FDR) correction test was also 

carried out to rule out the false positive cases in the following classification 

stage. Like the ANOVA analysis, a threshold value of 10
-10

 was again set for 

the FDR correction test. Finally, after performing the ANOVA analysis and 

FDR test, the top 50 highly correlated and statistically significant deep 

features from each deep learning network were selected as inputs to the 

machine-learning classifiers for classification of PQ signals. In this work, 

classification performance of the proposed method is assessed in terms of the 

following statistical parameters namely Accuracy, Recall and Specificity. 

These statistical parameters are calculated using the confusion matrix 

obtained for PQ classification using (3.13) -(3.15) as: 

                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = ( 𝑇𝑃+𝑇𝑁𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃) × 100                             (3.13) 

                                    𝑅𝑒 𝑐 𝑎𝑙𝑙(%) = ( 𝑇𝑃𝑇𝑃+𝐹𝑁) × 100                                 (3.14) 

                                 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) = ( 𝑇𝑁𝑇𝑁+𝐹𝑃) × 100                            (3.15) 

In the abovementioned equations, the terms TP and TN correspond to the 

correctly classified scenarios for the respective classification problem, 

respectively. Similarly, FP and FN denote the corresponding falsely 

classified cases, respectively. It is important to mention here that in this work 

we have incorporated a 5-fold cross validation scheme to avoid the possible 

pitfall of overfitting in the classification stage. Through this scheme, the 
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feature inputs to the machine-learning classifiers were partitioned into the 

ratios of 4:1, where 4 parts of the feature data were used to train the 

classifiers and the single remaining part was used for validation purpose. In 

this way, out of 500 signals, machine learning classifiers were trained using 

the deep features extracted from 400 PQ signals, and the remaining 100 

signals used to evaluate the performance. Apart from this, to ensure reliable 

classification performance, 10 consecutive iterations have been performed 

and finally mean along with standard deviation values have been computed, 

based on which the performance parameters have been reported in this work.  

3.4.3 CNN training  

Here, we have used the transfer learning (TL) method to train the CNN 

models for classification of PQ disturbances. TL symbolizes the transfer of 

knowledge from one field of interest to another. In reality, training a CNN 

network and updating the weights and biases network from scratch is lengthy 

task and at the same time the overfitting problem may degrade the training 

performance especially when the training data is limited. To overcome this 

problem, TL offers a unique solution through which, a CNN architecture 

which has been previously trained on a different but large dataset can be fine-

tuned and hence can be used for a different classification problem. In a 

nutshell, TL allows transfer of feature mapping and embedding information 

of any previous source model (MS) to a new target model (MT) can be 

transferred by only fine-tuning the parameters of the previously trained 

network. It is seen that for any image classification task, the initial few 

convolution layers can extract common image features such as edges and 

curves, while the deeper layers are capable of mapping the abstract feature 

representations more effectively. Therefore, when TL is used for any 

classification task, the common practice is to tune the deeper layers so that 

they learn from the new dataset while the information obtained from the 

shallow layers can be transferred. Considering the abovementioned facts, TL 

strategy has been adopted in this study to extract deep features from XST 

images of PQ signals. It is to be mentioned here that to feed the PQ 

disturbance T-F images to the pre-trained CNN networks, the images were 

resized to the dimensions of 227×227×3 for the AlexNet model and 

224×224×3 for the VGGNet16, ResNet50 and GoogleNet models, 
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respectively. In this study, for modification of CN models, we have used 

Keras library (Python) with TensorFlow running at the backend. In this work, 

a single fully connected layer has been retained for all the CNN models, and 

the number of output neurons has been set to eighteen, since the present work 

is an 18-class classification problem. Following the FC layer, a dropout unit 

is placed in series with softmax layer. The dropout rate is set to 0.5. The 

cross-entropy loss function is integrated inside the dropout layer. In addition 

to cross entropy function, this study also includes a momentum update factor 

of 90%. This aids in better converging of the network by taking inputs 

directly from the gradient of the loss function. In this study, the number of 

training epochs of the network has been regulated through an early stopping 

approach. Through this approach, the training procedure of the network is 

stopped if validation loss doesn’t get reduced by 10
-3

 for 10 consecutive 

epochs. Here, the epoch weights showing minimum validation loss have been 

considered for evaluation. In the training phase of the CNN, a mini-batch size 

of 250 was chosen. The initial learning rate was set at 10
-3

. Moreover, after 

every single training batch, the learning rate was reduced by a factor of 10
-5

. 

Adam optimizer was utilized to scale the learning rate for each network 

weight. The complete classification framework was carried out using a 

workstation having Intel core i7, 2.2 GHz processor, with 16GB RAM and 

NVidia GTX 1650 graphic card. 

3.4.4 Results of PQ classification   

The classification performance of the proposed PQ detection framework is 

presented in this section. The obtained classification Accuracy, Recall and 

Specificity (obtained by taking mean of individual parameters from the 

confusion matrices) along with their standard deviation values are reported in 

Table 3.2 for respectively. From the classification results reported in Table 

3.2, it can be observed that very high mean classification accuracies have 

been obtained for all the machine-learning classifiers which indicate that the 

proposed PQ detection scheme is highly efficient. From Table 3.2, it can also 

be observed that for all four deep networks, RF classifier delivered the 

highest classification performance for all four networks followed by the 

SVMand kNN classifiers. Among four deep neural networks, features 

extracted from ResNet50 deep learning delivered the best performance  
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Table 3.2 Classification performance of different classifiers 

Deep 

Learning 

Network 

Classifier Accuracy 

(mean ± 

std) 

(%) 

Recall 

(mean ± 

std) 

(%) 

Specificity 

(mean ± 

 std)  

(%) 

AlexNet RF 98.45 ± 0.25 98.29 ± 0.17 98.54 ± 0.16 

SVM-RBF 

(σ = 1.24) 
97.29 ± 0.18 98.67 ± 0.08 98.91 ± 0.13 

kNN (k=5) 96.52 ± 0.22 97.89 ± 0.15 98.17 ± 0.10 

VGGNet16 RF 98.10 ± 0.31 97.34 ± 0.17 96.25 ± 0.28 

SVM-

Linear 

97.79 ± 0.10 98.04 ± 0.38 97.20 ± 0.53 

kNN (k=3) 97.02 ± 0.24 95.24 ± 1.15 96.57 ± 0.50 

ResNet50 RF 99.72 ± 0.16 100 ± 0.0 99.70 ± 0.12 

SVM-RBF 

(σ = 4.8) 
98.79 ± 0.25 97.40 ± 1.04 97.45 ± 0.71 

kNN (k=7) 98.02 ± 0.12 96.21 ± 0.65 98.37 ± 0.51 

GoogleNet RF 98.65 ± 0.24 97.50 ± 0.14 98.28 ± 0.28 

SVM 

(polynomial 

index=3) 

98.10 ± 0.16 98.47 ± 0.58 97.42 ± 0.73 

kNN (k=5) 97.82 ± 0.82 96.59 ± 1.20 97.27 1.04 

among all three CNN models. The very high classification accuracies 

obtained in this work validate the efficacy of the proposed PQ detection 

model. It is to be mentioned here that the parameters of kNN and SVM 

yielding highest classification accuracies are indicated in parenthesis in Table 

3.2. Moreover, the obtained standard deviation values are also observed to 

very small in magnitude which signifies that the proposed classification 

model has performed robustly. Therefore, it can be inferred that the 

performance of the proposed PQ disturbance detection model is overall 

satisfactory and hence, can be potentially implemented to develop an efficient 

PQ detection framework. For better visualization of the interclass 

classification accuracies, the confusion matrix showing the performance of 
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RF classifier achieved using deep features extracted from ResNet50 model is 

shown in appendix in Table A.2.   

3.4.5 Comparison with different number of folds  

In this section, further investigation has been carried out to detect the 

variation in classification performances by varying different folds (train-test 

ratio). Fig. 3.8 shows the variation in classification performances in terms of 

accuracy obtained by varying different number of folds. From Fig. 3.8, it can 

be observed that by increasing the number of folds, average accuracy can be 

increased for all classifiers, by performing multiple iterations. The best 

accuracy is achieved for 5-fold cross validation. In Fig. 3.8, classification 

performance of machine learning classifiers using deep features extracted 

from only ResNet50 are presented since it delivered better performance than 

other deep neural networks. So, the performance parameters reported in 

Table 3.2 are reported based on 5-fold cross validation. 

 

Fig. 3.8 Variation of classification accuracy with no of folds 
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Fig. 3.9 Variation of classification accuracy with varying SNR (dB) 

3.4.6 Effect of noise on classification performance  

To validate the efficiency of the proposed PQ detection model, white 

Gaussian noise with different signal-to-noise ratios (SNR) ranging from 0-30 

dB is mixed with the PQ signals. The variation of classification accuracy 

with SNR for RF classifier using features extracted from ResNet50 is shown 

in Fig. 3.9. From Fig. 3.9, slight degradation in the performance of is noticed 

with the decrease in SNR. Also, no significant improvement in accuracy is 

observed after SNR=30dB. However, it can also be observed even when the 

SNR value is as low as 0 dB, 95.4% detection accuracy is achieved for RF 

classifier.  This is because the application of XST has resulted in better 

resolution of T-F images even in the presence of noise. In other words, 

application of cross spectrum has improved the noise robustness 

significantly. Therefore, it can be said that the proposed PQ disturbance 

detection scheme performs robustly in the presence of noise. 
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3.4.7 Effect of frequency variation on classification performance 

The frequency of power grid can fluctuate over a limited range which can 

influence the PQ detection accuracy. To observe the effect of frequency on 

PQ classification, the fundamental frequency of the simulated PQ events 

varied from 48Hz-52Hz in steps of 0.5 Hz.  For each case, the T-F images 

were obtained using XST and were fed to four deep networks for feature 

extraction and subsequent feature selection. Finally, the classification of T-F 

images was done using three machine learning classifiers. The variation in 

classification accuracies with frequency for three classifiers obtained using 

deep features extracted from `ResNet50 is shown in Fig. 3.10. It is imperative 

from Fig.3. 10 that the performance of different machine learning classifiers 

is almost consistent with the variation in frequency with very little 

fluctuations observed in performance parameters. Thus, it can be said that the 

performance of the proposed system is immune to the change in grid 

frequency fluctuations. 

 

Fig. 3.10Variation of classification accuracy with the change in frequency 
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3.4.8 Classification performance using other time-frequency methods 

In Table3.3, the performance of the proposed XST based T-F analysis is 

compared with some state-of-the-art T-F methods like short time Fourier 

transform (STFT), continuous wavelet transform (CWT), and generalized 

Stockwell transform (ST). Using three well-known T-F analysis methods, the 

input PQ signals were converted to RGB images. For computing STFT, 

Hamming window with 75% overlap has been used. For computing CWT, 

Morlet wavelet function has been used. The RGB spectrogram images were 

subsequently fed to four pre-trained deep networks for feature extraction and 

subsequent classification. Here also, only performance of ResNet50 with RF 

classifier is shown, since it has delivered better results compared to other 

models. It can be observed from Table 3.3 that the performance of XST is 

better than the existing T-F methods. This improvement is due to the 

increased resolution of XST images in the T-F frame obtained due to cross 

spectrum analysis, which has resulted in better accuracy of PQ signals 

compared to existing T-F methods. 

Table 3.3 Classification performance using other T-F methods 

T-F 

analysis 

Accuracy 

(mean ± std) 

(%) 

Recall 

 (mean ± std) 

(%) 

Specificity 

(mean ± std)  

(%) 

STFT 95.23 ± 0.75 94.01 ± 0.27 95.25 ± 0.36 

CWT 96.51 ± 0.51 96.32 ± 0.13 95.69 ± 0.29 

ST 97.25 ± 0.37 98.05 ± 0.32 96.40 ± 0.14 

XST 99.56 ± 0.07 98.49 ± 0.34 98.26 ± 0.31 

3.4.9 Computational Cost 

The overall computation time of the proposed PQ signal detection framework 

is discussed in this section. The computation of XST of 18 PQ signals and 

subsequent deep feature extraction using AlexNet, VGGNet16, ResNet50 and 

GoogleNet required 542 seconds, 798 seconds, 640 seconds, and 700seconds, 

respectively. Classification of PQ signals using RF, SVM and kNNrequired 
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65.1 seconds, 57.8 seconds and 54.3 seconds, respectively. Although the 

classification time required for RF classifier is marginally higher than the 

SVM and kNN yet it delivered better results than the other two. The entire 

feature extraction and classification of PQ signals was done using MATLAB 

R2020a environment, Intel core i5 system, 2.5 GHz processor, with 8 GB 

RAM. 

3.4.10 Validation on Real-life PQ signals 

In this section, additional experiments have been carried out on real-life PQ 

signals to verify the practicability of the proposed method. For this purpose, 

real-life PQ signals were procured from several available online databases 

[36-38]. Fig. 3.11 shows a real-life sag PQ signal no 2911 [38] and its 

corresponding T-F image obtained using XST. Here also, it is observed that 

for a real-life PQ signal, the T-F image plot obtained using XST is less noisy 

than that of ST. In this context, it is to be mentioned here that for deep feature 

extraction from real-life PQ signals, ResNet50 is used since it delivered best 

performance among 4 deep networks. The performance of different machine 

learning classifiers in classifying real life PQ signals using features extracted 

from ResNet50 model is reported in Table 3.4. The parameters of machine 

learning classifiers are tuned using the methods as mentioned earlier. It can 

be observed from Table 3.4 that the performance of different machine 

algorithms in classifying real life PQ signals are reasonably satisfactory. The 

overall classification accuracy of 96.45% has been achieved which further 

indicates the practicability of the proposed PQ classification model. 

3.4.11 Comparative study with existing literature 

In Table 3.5, the performance of the proposed PQ detection framework is 

compared with the existing methods. It can be observed from the comparative 

study that the proposed framework returned comparable and even better 

performance than some of the existing state of the art methods. It can be 

observed from the comparative study that the proposed framework returned 

comparable and even better performance than some of the existing state-of-

the-art methods. It can be observed from the comparative study that the 

proposed framework returned comparable and even better performance than  
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Fig. 3.11T-F image of (a) real life PQ signal obtained using (b) XST (c) ST 

Table 3.4 Classification performance on real-life PQ signals 

Classifier Accuracy 

(mean ± std)  

(%) 

Recall 

 (mean ± std) 

(%) 

Specificity 

(mean ± std)  

(%) 

RF 96.45 ± 1.04 97.20 ± 0.83 95.10 ± 1.29 

SVM-RBF  

(σ =2.6) 95.24 ± 1.40 96.42 ± 1.30 94.25 ± 1.80 

kNN (k=5) 94.05 ± 1.05 95.50 ± 1.02 93.40 ± 2.04 

most of the existing methods. Thus, the proposed method has definite edge 

over the existing methods in classification of synthetic as well as real PQ 

events. Moreover, compared to ST based methods [39-40], our proposed 

method is also more robust against noise. 
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Table 3.5 Comparison with existing methods 

Reference 
Number of 

PQ classes 
Method 

Accuracy 

(%) 

[9] 14 TQWT + SVM 97.29 

[39] 11 ST+ Probabilistic Neural 

Network (PNN) 

97.40 

[40] 12 ST+ Fuzzy expert system 99.20 

[4] 11 Cross correlation + RST 97.10 

[41] 10 EWT+ CNN 97.41 

[7] 22 XWT+ SVM 99.09 

[42] 13 Rule-based ST+DT 99.37 

[43] 9 Undecimated wavelet 

transform (UWT) + CNN 

99.5 

[17] 13 MST+RF 99.61 

[44] 9 Wigner Value Distribution + 

CNN 

99.67 

[45] 16 Multiresolution ST + DT 99.69 

This work 22 (synthetic) 

XST+ResNet50+RF 

99.72 

This work 5  

(Real-Life) 

96.45 

3.5 Conclusions 

In the present chapter, cross Stockwell transform aided deep learning 

framework for automated detection of PQ signals is proposed. The 1D PQ 

signals were transformed into 2D time-frequency images using XST. Four 

deep neural networks were trained for automated feature extraction from the 

T-F images of the transformed PQ signals. Finally, using ANOVA test and 

FDR correction, highly discriminative and statistically significant features 

were fed as inputs to three standard machine learning classifiers for PQ signal 

classification. In addition, tests have been carried out on real-life PQ data for 

practical verification. Investigations revealed that the proposed framework 

can classify PQ signals with very high accuracy. Among three deep neural 

networks, features extracted from ResNet50 model delivered best 

performance with RF classifier. Moreover, extensive analysis has been 
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carried out by varying different attributes of PQ signals which indicated that 

the performance of the proposed ResNet50 aided RF classifier is reasonably 

satisfactory for all cases. Finally, the proposed method has also been 

validated on real-life PQ signals for practical validation. It has been observed 

that the proposed model is capable of classifying the real-life PQ signals 

accurately even when the noise level is very low. Comparison with existing 

methods indicates that the performance of the proposed method is 

comparable and even better. Thus, it can be concluded the proposed 

framework can be used for accurate classification of PQ events in a noisy 

environment where conventional ST fails. Also, the proposed method is 

relatively simpler with no complex optimization involved. In future, the 

proposed model will be implemented in hardware using FPGA or low-cost 

micro-controller module for real-life PQ diagnosis. 
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Chapter 4 

Autocorrelation Aided Islanding Detection 

Using Bi-directional Long Short Type 

Memory Network 

4.1 Introduction 

In recent times due to the increase of load demands there is an unguent need 

for finding alternate sources of power generation that can match these load 

demands. This is done by using distributed generation (DG) system where 

conventional power generation sources are connected with alternate ones like 

solar, wind, fuel cell, etc. Despite the clear advantages, some serious 

problems arise due to various transient phenomena while connecting or 

disconnecting the DG sources with the utility grid. Among the different 

transient phenomenon, islanding detection is a major issue. Islanding is the 

condition where a part of the system gets isolated from the rest and the loads 

in this part are thus fed from the power generating unit connected to this 

isolated branch [1]. Appropriate detection of islanding is desirable because 

various operational problems related to power quality, safety hazard, voltage 

and frequency instability and damage to the system equipment etc. arise due 

to islanding. Thus, accurate detection of islanding is an important problem to 

address [2].   

Existing methods for islanding detection include active and passive methods. 

In active methods, small disturbances are injected into the system and 

islanding detection is performed by examining the change in output 

parameters. Some popular active islanding detection methods include active 

frequency drift (AFD), automatic phase shift (APS), and slip mode frequency 

shift (SMS) etc. [3-4]. However, with increase in reactive load these methods 
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show higher non-detection zone (NDZ) [5]. In passive methods, a threshold 

value of parameters is selected and based on the choice of threshold value, 

islanding is detected. However, the choice of suitable threshold is a challenge 

that may often lead to misinterpretation of islanding events [6]. In [7-8], rate 

of change of frequency (ROCOF) has been recommended as an index for 

detection of islanding events. However, it has been reported in [5] that in the 

case of real and reactive power mismatch, ROCOF leads to NDZ. Hence, to 

minimize NDZ, advanced signal processing techniques have been applied for 

accurate detection of islanding events. 

In existing literature, many signal processing techniques combined with 

machine learning tools have been implemented. Application of wavelet 

packet transform and extreme machine learning for islanding detection has 

been reported in [9]. In [10], Hilbert-Huang transform with extreme learning 

machine has been used for islanding detection. In [11], wavelet transform has 

been used to distinguish between islanding and non-islanding conditions. 

Application of Stockwell (S)-transform with modular probabilistic neural 

network (PNN) and support vector machines (SVM) have been reported in 

[12] to detect and classify islanding. Application of wavelet transform and S-

transform for islanding detection has been reported in [13]. In [5], use of 

signal processing techniques like hyperbolic S-transform, time-time (T-T) 

transform and mathematical morphology (MM) methods with SVM have 

been reported for islanding detection. Application of empirical mode 

decomposition and random forest classifier for islanding detection has been 

reported in [14]. Advanced signal decomposition technique for detection of 

islanding has been reported in [15]. Recently, application deep learning for 

islanding detection has been reported in existing literature [16-17]. 

Application of convolutional neural network (CNN) and continuous wavelet 

transform for islanding detection has been reported in [17]. 

In this paper, a novel technique using autocorrelation-based feature extraction 

technique has been proposed for detection of islanding condition. It is to be 

mentioned here that autocorrelation used in this work has definite advantages 

over other signal processing techniques. In the first case, autocorrelation 

operation is computationally simple compared to other signal processing 

techniques [18]. Moreover, unlike the wavelet transform, the performance 
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does not depend on the type of mother wavelet used. In comparison with 

EMD, autocorrelation is free from the problem of mode-mixing and end-  

 

Fig. 4.1 Flow chart of proposed framework. 

effect problems. Another distinct advantage of autocorrelation is that it is 

robust against random and uncorrelated noise present in any signal [19]. This 

implies that if two similar signals are contaminated with random uncorrelated 

noise, then the effect of that noise will not be reflected in the auto-

correlogram as the correlation coefficient value for random uncorrelated 

noise is very small [20]. Considering the advantages as stated above, 

application of autocorrelation-based feature extraction has been reported in 

many existing literature [21-22]. In this study, we investigate the feasibility 

of using autocorrelation-based feature extraction for classification of 

islanding event in power systems.  

In the present contribution, islanding as well as several real-life power system 

transient conditions, namely three phase faults, tripping of other DGs etc. 

have been simulated on a grid connected DG system. Initially, three phase 

voltage signals form the point of common coupling are recorded from which 

negative sequence voltage signals corresponding to different transient events 

is computed. The computed negative sequence voltage from the point of 

common coupling is autocorrelated for feature extraction purpose. The 

extracted features were fed to a Bi-LSTM classifier for classification of 

islanding and other transient events. It was observed that the proposed 

framework employing autocorrelation-based feature extraction and Bi-LSTM 
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classifier is capable of detecting islanding as well as non-islanding events 

accurately. A brief flowchart of the proposed method is given in Fig. 4.1. 

4.2 System under study 

 
Fig. 4.2 Simulated power system model 

The system under study is shown in Fig.4.2. Here a generalised DG model 

have been simulated having 2 DGs (wind turbines) which are connected to 

the grid via a point of common coupling (PCC). Each DG unit have been 

placed at a distance of 30 km from the PCC in a pi-section. The parameter 

details of the generator, transformer, distributed lines and the load is 

mentioned below: 

• Generator: Type-swing, frequency (f) = 60Hz, VRMS=120 kV and 

phase=0 (deg.) 

• Distributed Generators (DGs): 2 wind farms consisting of 6 wind 

turbines are connected to a 25 kV distribution system feeding a 120 kV gird 

through a 30 km, 25 kV feeder. 

• Transformer 1: Nominal power=47 MVA, f=60 Hz, Voltage 

rating=120kV/25kV, V1(RMS)=20kV, R1(pu)=0.08/30, L1(pu)=0.08, 

V2(RMS)=20kV, R2(pu)=0.08/30, L2(pu)=0.08, Rm(pu)=500, Lm(pu)=500 
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• Transformer 2,3: Nominal power=6×1.75MVA, f=60Hz, Voltage 

rating =25kV/575V, V1(RMS)=25 kV, R1(pu)=0.025/30, L1(pu)=0.025, 

V2(RMS)=575V, R2(pu)=0.025/30, L2(pu)=0.025, Rm(pu)=500, Lm (pu)=Infinity. 

• Distribution lines: 2 pi-section 30 km lines, f=60 Hz, R1=0.1153 

Ω/km, R0=0.413 Ohms/km, L1=1.05 mH/km, L0=3.32 mH/km, C1=11.33 

nF/km, C0=5.01 nF/km 

The islanding event is simulated by tripping the main circuit breaker CB1 

with loads L1 = 2MW, L2 =2MW, 30 MVAr, respectively.  At this condition, 

voltage readings are taken from the point of common coupling (PCC). In 

addition to islanding, other transient conditions like tripping of other DG’s, 

three phase fault etc. have been simulated to distinguish between islanding 

and other transient phenomenon. The circuit breakers were tripped according 

to the various simulated conditions, by varying switching times. In addition, 

voltage signals under normal operating conditions were also recorded. The 

simulation of different transient events is performed via. MATLAB 

Simulink. 

4.3 Methodology 

4.3.1 Negative sequence computation 

Negative sequence component of voltage and current is one of the primary 

indicators of any transients in a system [5]. So, in this paper the negative 

sequence voltage components have been computed on the three phase voltage 

signals acquired from the PCC. The mathematical expression for computation 

of negative sequence component from three phase voltage signals is 

described below: 

                                  )(
3

1 2

0 cba VVVV                                    (4.1) 

Where, Va, Vb and Vc represents the three phase voltage signals received at 

the PCC and V2 is the negative sequence voltage and λ=1∠120° is the 

complex operator. Using the above formulae, the three phase voltage signals 

recorded at the PCC have been converted to negative sequence voltage. 
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4.3.2 Autocorrelation sequence computation feature extraction 

The sole objective of the present work is to detect the islanding and transient 

disturbances in a grid connected DG system. For this purpose, suitable signal 

processing tool has been applied on the computed negative sequence voltage 

components for categorization of each type of transients [5]. In the present 

chapter, autocorrelation has been used to analyze the negative sequence 

voltage waveforms. In digital signal processing, autocorrelation is a measure 

of the similarity between two alike signals. In the other words, it is the 

measure of self-similarity of a signal. Autocorrelation of a discrete signal x(n) 

is calculated using the following formula: 

                𝑆̂𝑥𝑥(𝑚) = {∑ 𝑥𝑛+𝑚𝑁−𝑚−1𝑛=0 𝑥𝑛                    𝑚 ≥ 0𝑆𝑥𝑥(−𝑚)                                  𝑚 < 0                      (4.2) 

In (4.2), ‘xx’ is the autocorrelation sequence (also known as autocorrelogram) 

and the index ‘m’ indicates the lag or the time shift parameter. For a given 

discrete sequence with N number of sample points, autocorrelation operation 

gives (2N-1) sample points. 

 

4.3.3 Feature extraction 

Feature extraction is an important part in any classification task. Extracting 

meaningful features can boost the performance of the classifier. In this paper, 

we have extracted 36 features from the negative sequence voltage 

autocorrelograms. The extracted features from autocorrelation sequences are 

given in In Table 4.1. It is to be mentioned here that these extracted features 

(EF) are a combination of different statistical, Hjorth as well as non-linear 

features. Detailed mathematical expression of these extracted features is 

provided in [19]. These 36 features are fed as inputs to a Bi-LSTM classifier 

for classification of islanding and non-islanding events. 

4.3.4 Bi-directional-long short term memory network  

Bidirectional-long short term memory network (Bi-LSTM) is a deep neural 

network used for time series prediction as well as for classification. Bi-LSTM 
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is proposed as an extension of long short term memory network (LSTM), 

which tackles the problem of vanishing gradient suffered by the Recurrent 

Neural Networks (RNNs). Fig. 4.3 shows a basic RNN which looks 

somewhat like this from the high level. Detailed information about the RNN  

Table 4.1 Extracted features 

EF1: Maximum value EF19: Margin factor 

EF2: Index of the maximum 

value 

EF20: Form factor 

EF3: Equivalent width EF21: Clearance factor 

EF4: Centroid EF22: Kurtosis factor 

EF5: Absolute centroid EF23: Waveform index 

EF6: Root mean square width EF24: Peak index 

EF7: Mean EF25: Skewness index 

EF8: Standard deviation EF26:1
st
 Quartile 

EF9: Skewness EF27: 3
rd

 Quartile 

EF10: Kurtosis EF28: Waveform length 

EF11: Median EF29: Wilson amplitude 

EF12: R.M.S value EF30: Sample Sign integral 

EF13: Square root of amplitude EF31: Hjorth feature mobility 

EF14: Peak to peak value EF32:Hjorth feature 

complexlity 

EF15: Variance EF33: Shannon Entropy 

EF16: Crest factor EF34: Renyi Entropy 

EF17: Shape factor EF35: ApproximateEntorpy 

EF18: Impulse factor EF36: Sample Entropy 

can be found out in [23]. The Bi-LSTM uses two independent RNNs instead 

of a single RNN. The basic working principle behind such a network is that 

the input sequence in its normal order is fed to the first network while the 

sequence is reversed when fed to the second layer. This reversal of input 

sequence helps the model learn not only from the previous states but also 

from next states simultaneously. Fig. 4.4 shows the architecture of a 

bidirectional RNN (BRNN). As it’s evident from Fig. 4.3 and Fig. 4.4 that 

the only difference between RNN and BRNN is that in BRNNs, there is an 
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additional independent RNN to enable the model to learn from not only the 

past but also the future. Otherwise, the basic working principle remains the 

same. The vanishing gradient problem of RNN exists here too. So, to deal 

with the aforesaid issue, again LSTMs come to the rescue. The structure of 

Bi-LSTM is shown in Fig. 4.5. From Fig. 4.5, it can be seen that in Bi-  

 
 

Fig. 4.3 Simplified structure of RNN. 

 

Fig. 4.4 Structure of BRNN 

 
 

Fig. 4.5 Structure of Bi-LSTM. 
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LSTM, the single layered repeating module of an RNN is replaced by a four 

layered repeating layer, but twice here, one for the forward RNN and the 

other for the backward RNN. An important thing to note is that the output 

sequence is calculated by subjecting the RNN layers to an activation 

function. So, Bidirectional LSTMs are an extension of traditional LSTMs. 

Application of Bi-LSTM as a classifier has been reported in many recent 

works [24-25]. In this work we investigate the feasibility of using Bi-LSTM 

as a classifier for classification of islanding and other transient events using 

features extracted from negative sequence voltage autocorrelograms. 

4.4 Results and Discussions 

4.4.1 Autocorrelation of negative sequence voltage signals 

Fig.4.6 (a-d) shows the time variation of negative sequence voltage signals 

obtained under normal operating condition, islanding condition, three phase 

fault and tripping of other DG, respectively. The corresponding 

autocorrelation sequences for the above 4 events are also shown in Fig. 4.7(a) 

through Fig. 4.7(d), respectively. From Fig. 4.7 (a-d) it can be observed that 

the negative sequence voltage autocorrelograms of different transient events 

are distinctly different from each other. So, it is possible to distinguish 

different transient events by extracting suitable features from the  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 4.6 Normalized negative sequence voltage of different transient events 

autocorrelation sequences. In this study, 36 features as mentioned in Table 

4.1 are extracted from the autocorrelation sequences of negative voltage 

sequence components for classification of islanding and non-islanding 

events. The training of Bi-LSTM classifier as well as the performance of the 

proposed model using the extracted features is discussed in the next section. 

 
(a) 

 
(b) 
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(c) 

 

(d) 

Fig. 4.7 Autocorrelation sequences of negative sequence voltages 

 

Fig. 4.8 Training of Bi-LSTM classifier 



Chapter 4 

 

86 

 

4.4.2 Training of Bi-LSTM 

The Bi-LSTM proposed in this work has a hierarchical structure that consists 

of an initial input layer for sequence input. This is followed by one Bi-LSTM 

layer, one dropout layer and four fully connected layers. Finally, a 

classification layer with softmax as the activation function is placed at the 

output. The number of neurons fed to the input layer is 36. In the case of Bi-

LSTM, the hidden units are selected as 100 with 50% dropout rate. The 

classification layer at the output is responsible for predicting the respective 

classes as determined by the probabilistic scores obtained from the Bi-LSTM 

layer. For the purpose of training, the initial learning rate was kept at 0.001 

and for scaling the learning rate corresponding to each weight, Adam 

optimizer was selected and Cross-entropy was chosen as the loss function. 

The number of iterations were set to 2000 with the size of mini-batch size 

kept at 20 and for training the Bi-LSTM, number of epochs was set at 80. 

The training of the Bi-LSTM classifier is shown in Fig. 4.8. The entire 

training was performed on a personal computer with machine configuration 

as follows: Processor: Intel i5 (9th Gen), RAM: 8 GB RAM, Graphics Card: 

NVIDIA GTX in MATLAB 2020 (a) environment. 

4.4.3 Evaluation of Bi-LSTM 

In this section, the classification performance of the Bi-LSTM classifier is 

evaluated.  In the present work, a total of 1000 negative sequence voltage 

signals (250 per class) were obtained. These signals were obtained by varying 

the parameters like varying in active and reactive power, time of occurrence 

etc. After autocorrelation operation, 250 autocorrelograms were obtained for 

each class. Now as mentioned earlier, since 36 features were extracted from 

each autocorrelograms, size of the input feature matrix is 250 ×36. These 

features were split in the ratio of 80:20 for training and testing the classifier 

performance. In this work, two types of (one binary and one multiclass) 

classification problems are presented. The description of different types of 

classification problems is given in Table 4.2. The purpose of the binary 

classification (C-I) is to distinguish only between islanding and non-islanding 

events including the normal operation. The multiclass classification can 

distinguish each type of event separately and can send the decision to the 
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relay to take necessary action. The performance of Bi-LSTM classifier has 

been evaluated in terms of the following indices namely accuracy, sensitivity 

and specificity, respectively. The mathematical expression of the above 

indices are given by (4.3)– (4.5): 

                         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 × 100                              (4.3) 

                               𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%) = 𝑇𝑃𝑇𝑃+𝐹𝑁 × 100                             (4.4) 

                                   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) = 𝑇𝑁𝑇𝑁+𝐹𝑃 × 100                             (4.5) 

The parameters true positive (TP), true negative (TN), false positive (FP) and 

false negative (FN) were computed from the confusion matrices of C-I and 

C-II, respectively. The performance of the Bi-LSTM classifier is shown in 

Table 4.3. It can be seen from Table 4.3that Bi-LSTM has delivered very 

high accuracy for both C-I and C-II, respectively. The performance of C-I is 

marginally better than C-II. Nevertheless, for both C-I and C-II, the 

performance of Bi-LSTM is almost consistent with some minor deviation 

indicating satisfactory performance of the proposed model. 

Table 4.2 Classification Problem 
Classification  Description Type of 

problem 

C-I Islanding vs. Non-islanding 

Events 

Binary 

C-II Normal operation vs. 

Islanding vs Three phase 

fault vs. Tripping of other 

DGs 

Multiclass 

Table 4.3 Performance of Bi-LSTM classifier 
Classification  Accuracy  

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

C-I 99.0 100.0 98.45 

C-II 98.50 99.20 97.75 
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4.4.4 Comparison with standard machine learning algorithms 

In this section, the performance of the proposed model is compared with 

some existing benchmark machine learning algorithms namely, support 

vector machines, k-Nearest Neighbour (kNN) and random forest (RF) 

classifiers. Detailed description of these classifiers can be found out in [26-

28]. For SVM, kernel functions were varied and it was observed that RBF 

kernel has delivered best results. To determine the optimum kernel width, the 

regularization parameter is varied in steps of 0.1 from 1-200. For kNN, the  

Table 4.4 Classification performance using other ML classifiers 
Classification Classifier 

and 

Parameters 

Accuracy 

(%) 

Sensitivity 

(%) 

Sensitivity 

(%) 

C-I SVM-RBF 

σ=1.2 

97.50 96.20 95.48 

kNN 

k=3, 

Euclidean 

97.25 98.56 97.30 

RF 98.45 99.27 97.85 

Proposed Bi-

LSTM 

99.0 100 98.45 

C-II SVM-RBF 

σ=1.2 

96.21 97.20 96.75 

kNN 

k=5, 

Euclidean 

97.10 98.65 96.52 

RF 97.65 98.56 98.14 

Proposed Bi-

LSTM 

98.50 99.20 97.75 

performance is evaluated by varying the distance parameter as well as the 

value of k. In the case of RF classifier, the optimal number of decision tress is 

kept at 50. The performance of different classifiers in islanding detection is 

reported in Table 4.4. It can be observed that for both C-I and C-II, the Bi-
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LSTM classifier proposed in this study delivered best results compared to 

other classifiers. From Table 4.4, it can also be seen that the performance of 

RF is better than both SVM and kNN. It is interesting to note that all the 

classifiers have delivered reasonably accurate results which indicate the 

robustness of the proposed autocorrelation-based feature extraction model. 

4.4.5 Performance analysis in presence of noise 

The performance of the proposed model is also analyzed in the presence of 

noise. For this purpose, white Gaussian noise with different signal to noise 

ratios (SNR) are mixed with the voltage signals. The classification accuracy  

 

Fig. 4.9 Variation of accuracy with noise level (SNR) 

of the proposed Bi-LSTM model is plotted against different signal to noise 

ratios (SNR) in Fig. 4.9 for both C-I and C-II, respectively. It can be 

observed that the classification accuracy showed not much deviation even 

when the SNR is as low as 10 dB. This is observed to be true for both CPs. 

This is because since autocorrelation-based signal analysis and feature 

extraction technique is robust against noise, hence the classification accuracy 

is almost unperturbed in presence of noise. Thus, the performance of the 

proposed model is robust against noise.  
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4.5 Conclusions 

In this paper, a novel technique for classification of islanding and non-

islanding events in a grid connected DG system is proposed. For this purpose, 

islanding and several other transient events (faults, DG trip etc.) were 

simulated and three phase voltage signals corresponding to each transient 

events have been recorded from which respective negative sequence voltage 

signals have extracted.  Then autocorrelation is applied on the acquired 

negative sequence voltage signals. From the respective autocorrelograms, 36 

fault features were obtained. The features were fed to Bi-LSTM classifier for 

classification of islanding and non-islanding events. In this study, one binary 

and one multiclass classification problem has been addressed. It has been 

observed that for both the cases, the performance of the proposed model is 

satisfactory. Further investigations have revealed that in comparison with the 

standard machine learning classifier, the performance of the proposed Bi-

LSTM model is better. Besides, it has been observed that the performance of 

the proposed autocorrelation aided machine learning model is immune to 

noise. Thus, it can be concluded that the proposed autocorrelation aided Bi-

LSTM-based islanding detection method can be used for accurate detection 

of islanding and non-islanding events in distributed generation system. 
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Chapter 5 

Time-Frequency Image Representation 

Aided Deep Feature Extraction-Based Grid 

Connected Solar PV Fault Classification 

Framework  

5.1 Introduction 

Solar photovoltaic (PV) systems are one the most popular and reliable 

sources of renewable energy that can cater to the ever-increasing demand of 

increasing demand of non-conventional energy sources all over the world. 

The solar PV systems can generate electricity with zero carbon-di oxide 

emission, thereby can reduce the detrimental effects of climate change [1]. 

Hence, large scale solar PV systems are being installed all over the world. 

Solar PV system can operate in either standalone mode or in grid connected 

mode. Operation of grid connected solar PV system is more challenging and 

requires proper monitoring to ensure the reliability of power system network. 

In the event of faults occurring in grid connected PV system, the power 

system operation gets critically affected resulting in substantial financial 

losses. Different types of faults can occur in a grid connected PV system [2-

4]. If not detected early, these faults severely limit the operation of solar PV 

system. For small scale solar panels, detection and isolation of faults is 

generally done by skilled technicians. However, the above method is 

dependent on human intervention and is error prone especially for large solar 

panel connected to grid. Therefore, it is necessary to develop an accurate and 

fast fault detection methodology for maintaining safe and continuous 

operation of grid connected solar PV systems. 



Chapter 5 

 

96 

 

Commonly occurring faults in solar panels include hotspots, cracks, 

delamination, and discoloration, malfunctioning of bypass diode, internal 

short circuit etc. [3]. In existing literature several techniques have been 

proposed by the researchers for fault detection of solar PV systems. 

Application of imaging techniques like infrared imaging [5] for condition 

monitoring of solar panels have been reported in [5-6]. Although imaging 

techniques can be useful for remote condition monitoring of solar panels, the 

method fails to give reliable results during low-light conditions. Condition 

monitoring of PV modules using current voltage (I-V) characteristics [7] 

have been reported in existing literature [7-9]. Recently, advanced signal 

processing techniques as well as modern machine learning tools for fault 

detection and classification in solar panels. In [10], fault detection in solar 

photovoltaic array using fast Fourier transform (FFT) and total harmonic 

distortion (THD) has been reported. Since the current waveforms during 

faulty condition are significantly deviant from stationary behavior, analysis in 

time-frequency domain has been reported in existing literature.  

In [11] feature extraction using wavelet transform multi-resolution analysis 

has been proposed for classification of faults in solar panels. In [12] wavelet 

packet transform has been applied for DC arc fault detection in solar PV 

systems. However, the main limitation of wavelet transform-based signal 

analysis technique is that it is not signal adaptive in nature as the shape of the 

mother wavelet remains fixed throughout the length of the signal. 

Application of several signal decomposition techniques has been used to 

diagnose faults in solar PV systems [13-14]. In [13], empirical mode 

decomposition (EMD) has been used for fault detection in solar PV systems. 

But the main limitation of EMD is that it suffers from mode mixing and end 

effect problems. Application of dispersion entropy and variational mode 

decomposition (VMD) for detection of faults in grid connected PV system 

has been reported in [14], However, one limitation of VMD is that iterative 

extraction of intrinsic mode functions (IMFs) is tedious and computationally 

expensive. In [15], recurrence plot has been implemented for detection of DC 

series fault in solar PV systems.  Application of machine learning algorithms 

like support vector machines (SVM) [16], artificial neural network [17], k 

nearest neighbour [18] decision tree (DT), random forest (RF), extra trees 

(EXT), extreme gradient boosting machine (XGBoost) and light gradient 
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boosting machine (LightGBM) [19], principal component analysis (PCA) 

[20] etc. for fault classification in solar PV system has been reported in many 

existing literatures. Although satisfactory accuracy has been achieved in 

classifying faults in solar PV systems, from practical point of view existing 

methods have certain limitations. 

In the first case, most of the existing methods rely upon manual feature 

extraction for classification of faults in solar PV systems. In any 

classification problem, feature extraction is an important part as the 

performance of the machine learning features can be extracted either 

manually with prior knowledge or automatically without prior knowledge. 

Manual feature selection always imposes the risk of selecting redundant 

features which may directly influence the classification results. Considering 

the above-said facts, this study proposes a deep feature extraction-based 

framework for accurate fault detection in solar PV systems. The advantage of 

deep learning algorithms is that it can select features automatically from a 

given input image and at the same time can improve classification accuracy 

by selecting only the relevant features and by discarding the redundant ones. 

Moreover, deep learning can be easily implemented in low-cost 

microcontroller or raspberry-pi. Considering the advantages as stated above, 

in this work, a stacked sparse autoencoder model is used to extract deep 

features from the time-frequency images of current data. SSA is a deep 

learning architecture which is widely used for automatic feature extraction 

purposes. Application of SSA-based feature extraction has been reported in 

various existing literature [21-22]. The main benefit of using SSA-based 

feature extraction technique is that the feature extraction method is fully 

automated without any need for manual intervention. Moreover, SSA is an 

unsupervised deep machine learning approach i.e., they don’t need any 

labeled data for training [21]. In other words, SSA can train and self-learn 

without pre-defined class labelling which can be used for real-time PV array 

fault diagnosis even if prior information about the type of fault data is not 

present. Thus, SSA has definite advantages over supervised machine learning 

algorithms. Taking these benefits into account, SSA is utilized in this work to 

extract meaningful features from the time-frequency representation (TFR) of 

current signals to construct an accurate and reliable solar PV fault detection 

system. In this study, three phase current signals of healthy as well as three 
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different fault scenarios were from the point of common coupling (PCC). The 

acquired three phase current data were initially converted to direct (d-axis) 

and quadrature (q-axis) using extended Park’s vector approach. The extended 

 

Fig.5.1 Flow chart of the proposed fault detection method 

Park’s vector approach has been successfully implemented for identification 

of faults in induction motors [23,26]. However, the aforesaid approach is not 

explored in power system for detection of faults. Considering the aforesaid 

fact, Park’s vector approach has been used in this work. The novelty of the 

proposed work is that this is the first study where extended Park’s vector 

approach has been used to analyze the three phase fault currents in grid 

connected solar PV systems. Using extended Park’s vector approach, the 

obtained daxis and qaxis currents in time–domain was transformed to time-

frequency images using smoothed pseudo-Wigner-Ville distribution 

(SPWVD). A distinct advantage of using SPWVD over other time-frequency 

methods for e.g., continuous wavelet transform (CWT) is that the former 

does not depend on the nature of the choice of mother wavelet [24]. 

Moreover, unlike short time Fourier transform, the time- frequency analysis 

does not depend on the overlap and the type of window. Also, SPWVD is 

free from the mode-mixing and end-effect problems as suffered by EMD. 

Therefore, SPWVD is used in this work to analyze the current data in time-

frequency (T-F) frame. A flowchart of the proposed fault detection 

framework is portrayed in Fig. 5.1. The main contributions of the present 

work are as follows: 

(i) A novel technique using extended Park’s vector approach is proposed for 

fault detection of grid connected solar PV systems. The transformed current 
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components (Id and Iq) obtained from Park’s vector were analyzed in time-

frequency domain using smoothed pseudo-Wigner-Ville distribution 

(SPWVD). 

(ii) A stacked sparse autoencoder (SSA)-based deep learning framework is 

proposed for automated feature extraction from TF images of current data. 

(iii) Using analysis of variance (ANOVA) and false discovery rate (FDR) 

correction, most discriminative deep features were selected. 

(iv)  Classification of faults is done using selected deep features and four 

popular machine learning algorithms. 

5.2 Acquisition of Fault data 

In the present work, three phase current signals have been obtained a real-life 

grid connected solar PV experimental dataset to develop the fault 

classification model. The experimental setup consisted of a grid connected 

solar PV system operated under maximum power point tracking (MPPT) and 

limited power point tracking (LPPT) mode. The detailed description of the 

experimental set-up can be found in [25]. The schematic of the grid 

connected PV system is given in Fig. 5.2(a). The actual photograph of the 

experimental set-up is shown in Fig. 5.2(b). The fault dataset has a total of 16 

data files with each file containing information about each type of event. 

These files were labelled as 0-7, with 0 being fault free and 1-7 representing 

different faults simulated under both MMPT and LPPT mode of operation. 

The different types of fault cases investigated include PV array mismatch, 

faults in inverters, anomalous grid operation, faults in feedback sensors and 

faults in MPPT controller with varying severity etc. It is to be mentioned here 

that in the present work, PV array mismatch caused due to 10% to 20% 

nonhomogeneous partial shading is used. Since PV array mismatches are 

challenging to detect in real-life due to the large variability in sensor data at 

the DC-side, therefore it is selected to verify the efficacy of the proposed 

method. The percentage of PV array mismatch has been determined using the 

method mentioned in [26]. In addition, each file contains information about 

the following parameters: (i) sampling time (⁓10µs) (ii) Ipv: current 
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measurement from PV array (iii) Vpv: voltage measurement from PV array 

(iv) Vdc: measurement of DC voltage (v) measurement of three phase currents 

(Ia, IbandIc) (vi), Measurement of three phase voltages Va, Vb and Vc (vii)  

 
(a) 

 

 (b) 

Fig.5.2 Schematic of (a) Experimental set-up (b) Actual photograph [25] 

magnitude of current Iabc (viii) frequency of current (ix) magnitude of voltage 

Vabc (x) frequency of voltage Vf. In this work, the three phase current data (Ia , 

Ib and Ic) has been used for classification of faults in grid connected PV 

system. Also, in this study, out of 16, 4 data files, (three files representing 

different types of faults and one fault-free condition) have been used to 

develop the fault classification model for grid connected PV system operating 

under MPPT mode. The different class labels with their detailed description 
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used in this work are given in Table 5.1. The time variation of single cycle 

(0.02 s) three phase current signals for different classes (mentioned in Table 

5.1) are shown in Fig. 5.3(a-d), respectively. It can be seen from the time  

Table 5.1 Fault classes and their description 

Class 

Label 

Type of Fault Description 

C0 No fault Healthy condition 

C1 Feedback Sensor fault One phase sensor fault 20% 

C2 PV array mismatch 10 to 20% non-homogeneous partial 

shading 

C3 Boost converter 

controller fault 

+20% in time constant parameter of 

PI controller in MPPT controller of 

the boost converter 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 5.3 Single cycle fault current signals for (a) C0 (b) C1(c) C2 and (d) C3 

variation of single cycle three phase current waveforms shown in Fig. 5.3(a-

d), it is difficult to discriminate between no-fault and fault current waveforms 

as the current waveforms look almost alike. Hence, extended Park’s vector 

approach is applied on current waveforms to transform the current data to d 

axis and q axis, respectively. 

5.3 Methodology 

5.3.1 Extended Park’s Vector approach 

The extended Park’s vector approach is a popular method of mapping three 

phase voltage or current signals into direct (d) and quadrature (q) axis. The 

mapping allows visualization of three-phase quantities into d and qaxis. The 

mathematical formulae that relate d-axis (Id) and q-axis (Iq) current 

components with three phase quantities (Ia, Ib and Ic) is given by [27]: 

                                  𝐼𝑑 = √23 𝐼𝑎 − 1√6 𝐼𝑏 − 1√6 𝐼𝑐                                                (5.1) 
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                                      𝐼𝑞 = 1√2 𝐼𝑏 − 1√2 𝐼𝑐                                                           (5.2) 

Using the above formulae, single cycle three phase current signals (Ia, Ib and 

Ic) shown in Fig. 5.3(a-d) acquired from PCC were converted to d-axis and q-

axis components, respectively. The time variation of Id and Iq components for 

no fault as well as for different types of fault classes are shown in Fig. 5.4(a-

d) and Fig. 5.5 (a-d), respectively. It is evident from Fig. 5.4 (a-d) and Fig.5.5 

(a-d), that significant differences in d-axis and q-axis currents are observed 

for both no-fault as well as for different fault classes. Such variations were 

absent if only three phase current signals were considered as  

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 5.4 Direct (d)-axis current signals (Id) for (a) C0 (b) C1(c) C2 and (d) C3 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 5.5 Quadrature (q)-axis current signals (Iq) for (a) C0 (b) C1(c) C2 and (d) 

C3 

shown in Fig. 5.3(a-d). Thus, it is evident that segregation of three phase 

current signals into d-axis and q-axis components can aid in better 

discrimination of faults. Additionally, it is evident from Fig, 5.4(a-d) and Fig. 

5(a-d) that both d-axis and q-axis currents are non-stationary in nature. 

Hence, analysis in joint T-F plane will deliver fruitful results. Considering 

the aforesaid fact, in this study, smoothed Wigner-Ville distribution 

(SPWVD) is employed in this work. Brief mathematical details of SPWVD 

are given in the next subsection. 

5.3.2 Smoothed pseudo-Wigner-Ville distribution 

As mentioned earlier, Id and Iq current data shown in Fig. 5.4 and Fig. 5.5, 

reveals that the signals of healthy as well as different fault classes are having 

non-stationary characteristics. Due to such non-stationary behaviour of 

current data, analysis in joint T-F plane can be suitable to investigate the non-

linear dynamics of current signals to diagnose faults in PV systems. In 

existing literature, several methods like, Wigner-Ville distribution (WVD) 

[28] and smoothed pseudo-Wigner-Ville distribution” (SPWVD) [29-30] etc. 

are available to analyze EEG time-series in joint time-frequency plane. 

According to [29], resolution in TF image plot obtained from STFT, CWT 

and WVD is poor due to cross-terms of both time and frequency. In this 

study, this problem is overcome by using smoothed pseudo-Wigner-Ville 

distribution (SPWVD) which yields excellent time-frequency resolution due 

to introduction of cross-term reducing windows in time and frequency 

domain simultaneously. Additionally, the type and length of the “cross-term 
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reducing window” can be selected independently. Due to these advantages, 

SPWVD is more suitable to bring out hidden features from the time-

frequency images of current data compared to traditional time-frequency 

analysis like short time Fourier transform (STFT), continuous wavelet 

transform (CWT), etc. The mathematical formulation of the smoothed 

pseudo-Wigner-Ville distribution of any current signal l(t) can be represented 

as [29]: 

𝑆𝑃𝑊𝑉𝐷(𝑡, 𝑓) = ∫ 𝑢 (𝜏2) 𝑢∗ (− 𝜏2) ∫ 𝑣(𝑡 − 𝑡′) … …∞−∞∞−∞ 𝑙 (𝑡′ + 𝜏2) 𝑙∗ (𝑡′ −                                                 𝜏2) 𝑑𝑡′𝑒−𝑗2𝜋𝑓𝑡𝑑𝜏                                             (5.3)                                                            

 

In the above equation, u(t) denotes a window that reduces cross-terms in time 

domain whereas v(t) signifies a window that reduces cross-terms in frequency 

domain. It is worthwhile to mention that v(t) can be selected independently.  

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 5.6Time-frequency representation of d-axis current signals obtained 

using SPWVD for class (a) C0 (b) C1 (c) C2 and (d) C3 

Time-frequency analysis of Id and Iq current signals yields complex time- 

frequency (T-F) matrices. The T-F images were obtained by taking the 

magnitude of the respective T-F matrices. The T-F plots of d-axis and q-axis 

current signals (Id) and (Iq) for fault free as well as faulty signals analyzed 

using SPWVD have been shown in Fig. 5.6 (a-d), and 5.7 (a-d), respectively. 

In Fig. 5.6 and Fig. 5.7,y-axis denotes the frequency and x-axis denotes the 

time (data points). It is worth mentioning here that image plot of the 

magnitude of the T-F matrices i.e., time-frequency representation (TFR) plots 

can be used as inputs to the deep learning network for automated feature 

extraction [30]. 
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(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 5.7Time-frequency representation of d-axis current signal obtained using 

SPWVD for class (a) C0 (b) C1 (c) C2 and (d) C3 

5.3.3 Stacked sparse auto encoder 

Feature extraction is an important part of any classification. Feature 

extraction is an important part of any classification task. Manual selection of 

features is unsophisticated and unreliable. Also, it may lead to 

misclassification because of the selection of insignificant and redundant 

features. In this work, a deep learning framework known as stacked sparse 

autoencoder (SSA) based automated feature extraction and reduction process 

has been proposed to obtain significant features from the time-frequency (T-

F) matrix of different current signals obtained after applying SPWVD. Brief 

theoretical background of SSA is given below. 

An autoencoder is an unsupervised machine learning algorithm consisting of 

two fundamental parts of an autoencoder and a decoder. A SSA model 

consists of two sparse autoencoder, connected in cascade. The encoder part of 

the first model extracts deep features from the input data and the encoder part 

of the second model eliminates the redundant features, extracted by first 

model, and reduces the dimension of the feature set [31]. In Fig. 5.8, a 

schematic diagram of stacked autoencoder architecture is shown. The 

encoder part encodes the input data x in terms of meaningful features F and 
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the decoder reconstructs the input data as output𝑥′ in terms of approximation 

of x from the encoded features by using (5.4) and (5.5) as:                                                𝐹 = ℎ(𝑊𝑥 + 𝐵)                                                       (5.4) 

                                   𝑥′ = 𝑔(𝑊′𝐹 + 𝐵′)                                                     (5.5) 

Here, h and g are the activation functions of the hidden layers of encoder and 

decoder respectively and W, 𝑊′, B and 𝐵′ are the weight matrices and bias 

vectors of encoder and decoder, respectively. In SSA, several parameters 

control and prevent the learning and model overfitting. For example, sparsity 

regularizer of an autoencoder model enforces a constraint on the sparsity of 

the output from the hidden layers. This regularizer is a function of the 

average output activation value of a hidden neuron, 𝜌̂𝑖defined as: 

                                       𝜌̂𝑖 = 1𝑛 ∑ 𝐹𝑖(𝑥𝑗)𝑛𝑗=1                                                        (5.6) 

 

Fig. 5.8 Structure of stacked sparse autoencoder  

Where, i, n, and j indicates the i
th

 neuron, total number of training data and j
th

 

training sample respectively. The sparsity of the autoencoder model, ξsparsity 

has been determined by using Kullback-Leibler divergence theorem which is 

given by: 
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                  𝜉𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = ∑ 𝜌 𝑙𝑜𝑔( 𝜌𝜌̂𝑖) + (1 − 𝜌) 𝑙𝑜𝑔( 1−𝜌1−𝜌̂𝑖)𝐷𝑖=1                      (5.7) 

 

Two parameters ‘sparsity regularization’ and ‘sparsity proportion’ control the 

impact of sparsity regularizer and the average activation value. Different 

regularization techniques are present to control the overfitting of the 

autoencoder model during the training process [31]. Here, L2 regularization 

method is utilized to train the model. The L2 regularized weight matrices is 

given by: 

                                     𝜉𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 12 ∑ ∑ ∑ (𝑤𝑗𝑖(𝑙))2𝑘𝑖𝑛𝑗𝐿𝑙                                      (5.8) 

The cost function used by the algorithm for approximation of input data as 

the output is expressed as:  

                 𝐶 = 1𝑁 ∑ ∑ (𝑥𝑘𝑛 − 𝑥̂𝑘𝑛)2 + 𝜃 × 𝜉𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝛿 × 𝜉𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝐾𝑘=1𝑁𝑛=1      (5.9) 

In (5.9), the first term denotes the mean squared error between input and 

output for k
th

 neuron, θ and δ are the L2 regularization coefficient and sparsity 

regularization coefficient of the autoencoder model. The term ξsparsity is the 

sparsity regularizer which is determined by Kullback-Leibler divergence this 

present work. In this contribution, sparsity regularization parameters, sparsity 

proportion, L2 weight regularization parameter and maximum training epochs 

are set as 4, 0.05, 0.001 and 100 respectively. To obtain the encoded features 

at the end of the training process, a decoder layer has been removed from the 

model at the final training iteration. 

5.3.4 Machine learning classifiers 

In this present chapter, the extracted deep features are classified using 

random forest (RF), multiclass support vector machines (SVM), k-nearest 

neighbour (kNN) and naïve Bayesian (NB) classifiers. Since, theory of these 

aforementioned machine learning classifiers is well known, hence detailed 

mathematical description is not reported here. However, details of RF, SVM, 

kNN and NB classifiers can be found out in [32-34]. 
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5.4 Results and Discussions 

5.4.1 Performance analysis of Stacked sparse auto encoder (SSA) 

The T-F images of Id and Iq signals for four classes obtained using SPWVD 

had initial dimensions of 415 × 526 × 3. The T-F images were then converted 

to grayscale and were further resized into 224 × 224, before being served as 

inputs to the stacked sparse autoencoder model for deep feature extraction. 

The SSA performance in feature reconstruction form the input images by 

training the hidden layers is shown in Fig. 5.9. It can be seen from Fig. 5.9 

that the best training performance is obtained when epoch value reaches 100. 

So, 100 epochs were used in this work to train the autoencoder model. In this 

present contribution, the number of hidden layers for the first autoencoder 

model has been set to 50, from where 50 highly correlated deep features have 

been obtained initially. The feature set was given as input to the second 

autoencoder model whose number of hidden layers have been set to 25 and 

from the output terminal of the encoder layer, a feature set comprising 25 

deep features have been obtained.  

 
Fig. 5.9 Training of sparse autoencoder 
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The statistical significance of these features was examined utilizing analysis 

of variance (ANOVA test) were found to be statistically significant with p- 

value less than 0.001. Finally, using the 25 extracted deep features, 

classification of faults was done for both fan and drive end signals. In this 

paper, 5-fold cross validation with train-test ratio of 80%-20% has been used 

to evaluate the classifiers performance. Classification performance has been 

observed in terms of four statistical parameters, which are Accuracy, 

Sensitivity, Specificity and Precision. The mathematical expressions 

corresponding to these measuring indices (expressed in percentage) are given 

by (5.10) -(5.13): 

                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 × 100                         (5.10) 

                          𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝐸𝑁) = 𝑇𝑃𝑇𝑃+𝐹𝑁 × 100                                        (5.11)                                                                                             𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃𝐸) = 𝑇𝑁𝑇𝑁+𝐹𝑃 × 100                               (5.12)                                  𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅𝐶) = 𝑇𝑃𝑇𝑃+𝐹𝑃 × 100                               (5.13) 

Where TP, TN, FP and FN symbolize true positive, true negative, false 

positive and false negative respectively. Table 5.2 and Table 5.3 show 

different classifiers’ performances evaluated in terms of the aforesaid 

measuring indices for both Id  and Iq current signals respectively. It is to be 

mentioned here that in Table 5.2 and Table 5.3, the optimal number of trees 

for the RF classifier were selected as 50 and 60, respectively. In the case of 

SVM, grid search algorithm was used to determine the regularization 

parameter by varying from 1-500 in steps of 0.1. The optimum kernel width 

in Table 5.2 and Table 5.3 was set at 2.4 and 3.6, respectively. For kNN, 

Euclidean distance has been used with the optimum value of k set at k=3 and 

k=5, for Table 5.2 and Table 5.3, respectively. From Tables 5.2 and 5.3, it 

can be observed that most of the classifiers delivered reasonably high 

accuracy, sensitivity, specificity, and precision for both Id and Iq current 

signals. However, the performance of different classifiers is found to be 

slightly better for the Id compared to Iq signals. Among different classifiers, 

kNN returned highest classification accuracies than the other classifiers. The 

performance of NB classifier is found to be inferior for both the cases. 
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Nevertheless, the performance of different classifiers is satisfactory for both 

Id and Iq signals. In addition, the standard deviation values indicated in 

parenthesis are reasonably low for the kNN classifier indicating that the 

proposed model is robust. 

Table 5.2 Classification performance of quadrature axis (Iq) current data 

Classifier ACC (%) SEN (%) SPE (%) PRC (%) 

RF 93.88±4.1 94.22±3.7 92.72±4.2 92.61±7.0 

SVM 91.40±5.4 89.89±9.1 92.16±6.6 86.14±9.8 

kNN 98.79±1.0 96.00±2.4 95.38±3.6 96.80±1.2 

NB 89.96±2.4 95.50±1.2 92.11±1.7 88.17±2.3 

 

Table 5.3 Classification performance of quadrature axis (Iq) current data 

Classifier ACC (%) SEN (%) SPE (%) PRC (%) 

RF 92.56±3.8 93.10±3.5 91.45±4.0 92.10±6.5 

SVM 90.25±4.5 87.49±8.1 91.20±5.8 87.24±9.1 

kNN 97.56±1.8 95.20±2.5 94.80±3.8 94.05±1.8 

NB 88.86±2.5 94.45±1.3 91.05±2.8 87.15±4.1 

5.4.2 Statistical test of different classifiers 

In Fig 5.10, statistical analysis using one-way analysis of variance (ANOVA) 

test and post-hoc Tukey Kramer test has been reported. This is done to get 

better insight into the classification performances of different machine 

learning classifiers employed in this study. Using the ANOVA test, an 

overall significance with p < 0.05 has been obtained. From the post-hoc 

analysis signals, both RF and kNN deliver higher statistical significances 

with NB. Also, between RF and SVM, lower statistical significance is 

observed for both Id and Iq current signals. Nevertheless, the performance of 

classifiers for both datasets is observed to be reasonably satisfactory, 

indicating the robust performance of the proposed model. 
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Fig. 5.10 Post-hoc statistical test (Tukey Kramer) between all the classifiers 

 
Fig 5.11. Variation in classification accuracies with varying number of folds 

5.4.3 Comparison by varying number of folds 

The classification performance of the proposed model is further verified by 

implementing different number of folds in the cross-validation process. It is 

to be mentioned here in this section, classification accuracy only kNN 

classifier is being reported since it delivered best performance compared to 

the other classifiers as reported in Table 5.2 and Table 5.3. The variation in 

the obtained classification accuracies with different number of folds ranging 
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from 2-7 is presented in Fig. 5.11, for both Id and Iq fault signals respectively. 

From Fig. 5.11, it can be seen that initially, the classification accuracies 

increase with increase in number of folds. The increasing trend in the 

obtained classification accuracies plateaus after 5 folds and thereafter, no 

significant rise is observed. Considering this observation, a 5-fold cross-

validation technique has been adopted in this study for classification of PV 

array faults.  

5.4.4 Comparison using different methods. 

In this section, the performance of proposed SPWVD aided TFR-based fault 

classification framework and kNN classifier is compared with some existing 

methods like short time Fourier transform (STFT). Wigner-Ville distribution 

(WVD) as well as Hilbert transform (HT). The accuracy of fault 

classification obtained using different classifiers is shown in Table 5.4. For 

each of the above-mentioned methods, the deep features were extracted using 

SAE for both Id and Iq transformed current data. It can be observed that 

among different methods, SPWVD delivered better performance than the 

other T-F methods which indicates the superiority of the proposed SPWVD 

method. This observation was found to be true for both Id and Iq current 

signals. Also, compared to WVD, SPWVD returned better performance. This 

is because, application of SPWVD reduces cross-terms in time domain which 

is reflected in the TF representation. Hence, SPWVD based T-F 

representation can be considered as a superior time-frequency image 

representation method for classification of grid connected solar PV systems. 

In addition, the overall computation time (which includes signal to image 

conversion using SPWVD, deep feature extraction using SAE and  

Table 5.4 Comparison using different methods 

Method Classifier Id Iq 
Computational 

time (minutes) 

STFT 

kNN 

93.45±3.3 92.76±4.0 14.56 

WVD 95.46±2.1 94.50±3.2 11.52 

HT 96.14±1.4 95.35±2.6 12.50 

SPWVD 98.79±1.0 97.56±2.1 10.45 



Time-Frequency Image Representation Aided Deep Feature Extraction-Based Grid Connected 

Solar PV Fault Classification Framework  

117 

 

classification using kNN) indicated in Table 5.4 indicates that the proposed 

SPWVD method takes minimum time compared to other methods. The 

computational time is calculated using a system with 32GB RAM, Intel core 

i5 64-bit processor and central processing unit (CPU) clocked at 3.6 GHz 

with one NVIDIA graphics processing unit (GPU) and using MATLAB 2020 

a environment. 

5.4.5 Comparison with other T-F methods 

In Table 5.5, performance of the proposed fault detection scheme is 

compared with some of the existing methods which have been reported 

earlier using the same dataset. In Table 5.5, the comparative study was 

carried out considering only those literatures where similar dataset has been 

used for fault classification in grid connected PV systems. It can be noticed 

from Table 5.5 that the proposed fault detection scheme has performed better 

compared to the existing literature. In addition, it should also be noticed that 

most of the existing studies were carried out using conventional machine 

learning methods, which is dependent on manual mode of feature extraction. 

In this study, the fault classification performance has been reported using 

deep feature extraction from current signals which signify the superiority of 

the proposed bearing fault detection scheme. 

Table 5.5 Comparison with existing literature 

Reference Method ACC (%) 

[2] Adaptive Neuro-Fuzzy interface 

System 

95.4 

[35] PCA + kNN 97.9 

[36] PCA+ kNN 97.36 

[36] PCA+RF 97.78 

This study 

(Id) 

SPWVD + SSA-based deep 

features + machine-learning 

classifiers 

98.79 

This study 

(Iq) 

SPWVD + SSA-based deep 

features + machine-learning 

classifiers 

97.56 
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5.5 Conclusions 

In the present chapter, a novel framework using SPWVD based time-

frequency analysis and SSA based deep feature extraction is proposed for 

automated detection of faults using single cycle fault current signature 

analysis. The proposed method is validated on fault current data obtained 

from real life grid connected PV system. Instead of considering the three 

phase current waveforms, the proposed method makes use of extended Park’s 

vector approach to convert the single cycle three phase current signals to d-

axis and q-axis components to improve the fault detection accuracy. The 

obtained Id and Iq currents in time domain were transformed into time-

frequency plane using SPWVD. It has been observed that the time-frequency 

images of healthy as well as faulty current data showed distinct differences 

among each other. The RGB time-frequency images were converted to 

grayscale and were subjected to deep feature extraction using SSA. Then, 

ANOVA test followed by FDR correction were used for selection of 

meaningful deep features. The selected relevant deep features were then fed 

to four benchmark machine learning classifiers for classification of current 

signals. It has been observed that among different classifiers, kNN delivered 

better classification performance compared to other machine learning 

classifiers. Comparative study with existing studies revealed that the 

performance of the proposed method is comparable and even better. Thus, it 

can be concluded that the proposed method can be implemented to develop 

an efficient fault detection system for grid connected solar PV systems. In the 

present work, only three fault cases have been investigated. In future, more 

fault scenarios will be investigated to develop a robust fault classification 

model. In addition, the proposed deep learning aided fault classification 

method will be validated in hardware using low-cost microcontroller or 

FPGA module.  
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In the present thesis, several advanced signal processing and machine 

learning techniques have been proposed for detection and classification of 

transient disturbances in power systems. The outcomes of the present thesis 

work are briefly summarized as follows: 

In chapter 2, multi-resolution analysis of two very frequently occurring 

power system transients namely oscillatory and impulsive transients are done 

using discrete wavelet transform (DWT). Next, the envelope spectrum of the 

first four detail coefficients is obtained using Hilbert transform and several 

features are extracted from the selected envelope spectrums of both class of 

transient signals. Using ANOVA test, statistical analysis of the extracted 

features has been done to investigate the discrimination capability of the 

selected features which are finally used as inputs to a support vector 

machines (SVM) classifier for classification of power system transients. It 

has been observed that based on DWT envelope analysis and employing 

SVM classifier 100% classification accuracy is obtained in detection of 

different types of power system transients. Using the proposed method, it is 

possible to detect and classify switching transients occurring in power 

systems with very high accuracy. However, in this chapter, only switching 

transients are considered. In real-life power systems, apart from switching 

transients, power quality disturbances (PQ) are a common problem and 

detection of PQ disturbance is a challenging issue. In the next chapter, this 

problem is addressed and a method for accurate detection of PQ disturbances 

is proposed. 
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In chapter 3, automated and accurate detection of single as well as power 

quality (PQ) events is important from the point of view of safety as well as 

maintaining the reliability of the power transmission and distribution 

network. However, detection of multiple PQ events in a noisy environment is 

a challenging task. Another important issue is the choice of meaningful 

features that can directly influence the accuracy of PQ detection. Considering 

these two aforesaid facts, this paper presents a novel framework for 

automated classification of PQ signals in a noisy environment employing 

cross Stockwell Transform (XST). The XST proposed in this paper has better 

noise suppression capability compared to conventional Stockwell Transform. 

Here, XST was used to convert 1D PQ signals to 2D time–frequency (T–F) 

images. To improve the accuracy of PQ detection, an automated feature 

extraction method employing deep learning is implemented in this work. The 

noise free T–F images obtained using XST were fed as inputs to several pre-

trained convolutional neural networks (CNNs) for deep feature extraction. 

Transfer learning technique was implemented to reduce the computational 

cost. The extracted deep features were further undergone selection using one-

way analysis of variance test followed by false discovery rate correction. The 

statistically significant deep features were subsequently fed to three 

benchmark machine learning classifiers for classification of PQ signals. In 

addition, tests were also carried out on real-life PQ signals to verify the 

practicability of the proposed framework. Investigations revealed that the 

proposed method returned mean accuracy of 99.72% and 96.45% for 

classification of simulated and real-life PQ signals, respectively. Although 

the proposed method is capable of detecting PQ disturbances with very high 

accuracy, in this chapter, the detection of islanding events in presence of grid 

connected renewable energy sources is not considered. Islanding detection in 

grid connected systems is a major issue and considering this fact in the next 

chapter a method for islanding detection is proposed. 

In chapter 4, an autocorrelation aided deep learning framework for islanding 

detection in grid connected distributed generation (DG) system is proposed. 

For this purpose, islanding along with other transient events were simulated 

on a grid connected power system network with DG penetration. Each case's 



Conclusions and Future Work 

 

126 

 

negative sequence voltage signals obtained at the point of common 

connection were used to determine the sequence components of the 

autocorrelation function. From the autocorrelation sequences representing 

each type of transient event, 36 features were extracted. The obtained feature 

vectors were fed as inputs to a bi-directional long-short type memory 

network (Bi-LSTM) classifier for classification of islanding and other events. 

It has been examined that the suggested methodology has resulted in 99.01% 

accuracy in discriminating islanding from non-islanding events. Besides, for 

the multiclass classification, a mean accuracy of 98.50% is obtained. 

Comparative studies with machine learning classifiers indicated that the 

result of the suggested methodology is better. The proposed model can be 

used for accurate prediction and classification of islanding and other transient 

events in power system network. Although the method proposed in this 

chapter can detect islanding and non-islanding events accurately, detection of 

faults in grid connected renewable energy systems is a challenging issue. 

Considering the aforesaid fact, in the next chapter, a novel method for 

detection and classification of faults in grid connected solar PV systems is 

proposed. 

In chapter 5, a smoothed pseudo-Wigner-Ville distribution (SPWVD) and 

stacked sparse autoencoder (SSA) based automated feature extraction 

technique is proposed for accurate detection of faults in grid connected solar 

PV systems. To this end, three phase current data of normal as well as 

different fault scenarios obtained from point of common coupling (PCC) 

were converted into direct (d) and quadrature (q) axis using extended Park’s 

vector approach. Then, the obtained d-axis (Id) and q-axis (Iq) currents were 

converted to 2D time-frequency images using SPWVD. The converted time-

frequency spectrum of the normal as well as faulty current data were used as 

inputs to the proposed SSA model for deep feature extraction. After 

extraction of deep features using SSA, analysis of variance (ANOVA) test 

and false discovery rate (FDR) correction was employed to select the most 

discriminative features. The feature selection was followed by classification 

using machine learning classifiers. It has been observed that the proposed 

technique achieved mean fault recognition accuracy of 98.79% and 97.56% 
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for d-axis and q-axis currents respectively, respectively. The present 

approach can be used for accurate diagnosis of faults in grid connected solar 

PV systems. 

 

Thus, it can be concluded that in the present thesis work several new 

techniques for detection and classification of transient events in power 

systems is proposed. Prospective extensions of the proposed thesis as future 

work are discussed in the following subsection.  

6.2 Future Works  

The proposed methodologies in this thesis are aimed at the development of 

efficient detection and classification frameworks for transient detection in 

power systems. The methods proposed in this thesis can be extended in future 

in different directions, some of which are mentioned below.  

1. In the present thesis work, manual feature extraction method has 

been implemented for classification of switching transients. In 

future, deep learning methods could be implemented for detection 

and classification of switching transients in power systems. 

Moreover, in future, hardware set-up will be fabricated for 

generation of switching events in laboratory and classification of 

switching transients will be done using signals captured from 

hardware for detection of transient events. 

2. For PQ transient event detection, cross time-frequency analysis 

employing cross Stockwell transform (XST) and automated feature 

extraction framework employing benchmark deep learning models 

have been proposed. In future, other cross spectrum analysis 

methods like transform like cross hyperbolic Stockwell transform 

(XHST), cross Hilbert transform etc. could be implemented for 

analysis of PQ signals in time-frequency frame. Moreover, apart 

from using benchmark deep learning models, a customized deep 
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learning model could be designed for more accurate detection of PQ 

signals. 

3. In the context of islanding detection, autocorrelation-based feature 

extraction method has been used in grid connected renewable energy 

systems. In future, deep feature extraction using deep learning 

models could be implemented to improve the islanding detection 

scheme. Also, in future the proposed islanding detection model 

could be implemented in hardware in loop to validate the 

practicability of the proposed method. 

4. For automated fault classification method in grid connected solar PV 

systems, a method employing smoothed-pseudo-Wigner Ville 

distribution method is proposed. In future, other time-frequency 

analysis methods could be explored for improved fault classification 

in grid connected PV systems. Moreover, only three faults and one 

fault-free case have been considered here. In future, additional fault 

cases will be investigated to improve the resiliency of the proposed 

fault detection scheme. 
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Appendix 

A.1 Mathematical Model of PQ disturbances 

In Table A.1 the mathematical model of PQ disturbances is given. In Table 

A.2, the confusion matrix for PQ disturbances classification is shown. 

Table A.1: Mathematical model of PQ disturbances 
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A.2 Confusion Matrix of PQ classification 

Table A2: Confusion matrix of power quality classification 
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