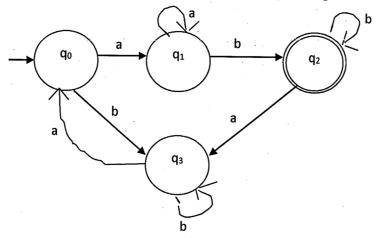
M. TECH. COMPUTER TECHNOLOGY FIRST YEAR SECOND SEMESTER EXAMINATION, 2024 THEORY OF COMPUTING

Time: Three hours Full Marks: 100

Answer any five questions

- 1. Design Turing Machines for the following languages
 - a) L= $\{0^n 1^n 2^n | n \ge 1\}$
 - b) Palindrome over {a, b}*

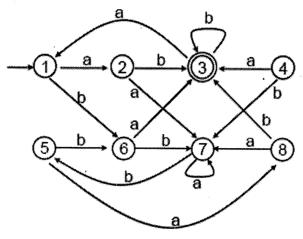

10 + 10

- 2. Construct PDA accepting by a final state for the following languages
 - a) (i) L= $\{a^nb^ma^n | m, n \ge 1\}$
 - (ii) L= $\{a^n b^m : m < n\}$
 - b) Construct a Context Free Grammar for each of the following with proper justification
 - (i) L= $\{a^mb^{m+n}c^n | m, n \ge 1\}$
 - (ii) L= $\{w \mid n_a(w) = 2n_b(w)\}$

(where n_a(w) means number of occurrences of symbol 'a' in string w)

(4+4) + (6+6)

- 3. a) Show that
 - (i) any regular set is closed under transpose.
 - (ii) any regular set is closed under complementation.
 - b) For the following DFA, find an equivalent regular expression


- c) Find a regular expression for
 - (i) $L = \{ab^n w \mid n \ge 3, w \in \{a, b\}^+\}$
 - (ii) $L = \{a^n b^m \mid n > 4, m \le 3\}$

(3+3)+6+(4+4)

- 4. a) Show that "There exists a language over \sum that is not recursively Enumerable".
 - b) Let $A_{TM} = \{(M, w) \mid \text{The TM accepts } w\}$. Show that A_{TM} is undecidable.
 - c) State Cook's theorem with all terms explained.

8 + 8 + 4

- 5. a) Find the union of two languages over {a,b}
 - i. all strings with at least one a
 - ii. all strings with exactly two b's
 - b) Design a grammar for $L = \{0^n 1^n 2^n | n \ge 1\}$ confirming that it does work.
 - c) Minimize the following DFA

(7+5+8)

- 6. a) Taking language $L=\{a^kb^k\mid k\geq 0\}$ as an example and three machines, M_1,M_2 , and M_3 , it can be shown that the runtime depends on a computational model. Machines, M_1,M_2 , and M_3 are described as
 - 1-tape Turing Machine M1: O(n²)
 - 1-tape Turing Machine M2: O(n log n)
 - 2-tape Turing Machine M3: O(n)

Design, explain the acceptability of the language L, and derive time complexity for machines M_1 , M_2 , and M_3 .

b) Show that a k-tape Turing machine can be simulated in a 1-tape Turing machine with polynomial overhead.

12 + 8

7. Construct a Turing machine for the function $f(m,n) = m \times n$ (Validate the construction taking at least one valid and another invalid string)

20

- 8. Prove that
 - a) If Language L is recursive then its complement \overline{L} is also recursive.
 - b) If Languages L and \overline{L} are Recursively Enumerable, then L is recursive.
 - c) The intersection of Recursive and Recursively Enumerable Languages are Recursively Enumerable.
 - d) The union of two Recursive Languages are recursive.

 (4×5)

----- X -----