Ref. No. - PG/BPE/T/122A Master of Bio-Process Engineering 1st Year 2nd Semester Exam-2024 Department of Chemical Engineering, Jadavpur University

Even Semester –Jan-May'2024

Session: 2023-24

MBPE- 1st Year

Subject: Bio-Process Dynamics and Control (PG/BPE/T/122A)

Time: 3 hr

Full Marks: 100

(Attempt all questions)

		Marks
	CO ₁	
Q1	Point out the controlled variable, manipulate variable, controller, set point, sensor, final control element and disturbances in case of a human being driving a bicycle through sketch. How to diminish the disturbances in this control system?	10
CO ₂		
Q2	a) Solve the solving following differential equation by Laplace transform	
	$\frac{d^2x}{dt^2} - 6\frac{dx}{dt} + 15x = 2\sin 3t; \qquad x(0) = -1; \ x'(0) = -4$	15
	$\frac{d^2x}{dt^2} - 6\frac{dx}{dt} + 15x = 2\sin 3t; \qquad x(0) = -1; x'(0) = -4$ b) Explain the unit impulse through proper example.	2
Q3	A step change of magnitude 4 is introduced into the system having the transfer function	
		15
	$G(s) = \frac{Y(s)}{f(s)} = \frac{10}{s^2 + 1.2s + 4}$	
) (3) 3 11.2314	
	Determine the fraction overshoot, period of oscillation, maximum and ultimate values of Y(t).	
Q4	a) Derive the transfer function of mercury in glass thermometer with suitable notations and	10
Q4	assumptions.	10
	b) Deliberate the significance of resistance in water tank level system.	2 ·
CO ₃		
Q5	a) Give the merits and demerits of various type of controllers.	6
	b) Consider the characteristic equation of a control system given by $s^3 + (K + 0.5)s^2 + 4Ks +$	10
Q6	50 = 0. Find the value of K for the system to have sustained oscillation. a) Differentiate the servo and regulator problem. Derive the offset value for Proportional	16
QU	controller during regulator problem.	10
	b) Why does offset typically occur with P-only control and not with PI control?	2
	c) What will be happen if you use derivative action for any control system? Explain.	. 2
	CO ₄	
Q7	Derive the transfer function C(s)/R(s) for the control system shown below figure	
ζ,	E extre the transcer runction o(e)/ r(e) for the control system shown bolow figure	
	$R(s)$ $G_1(s)$ $G_2(s)$ $G_3(s)$ $C(s)$	
	$H_1(s)$	10
	$H_2(s)$	