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Abstract

The study of structural properties of few—body atomic systems (H-like, He-like etc.) pro-
vides a key testing ground for many quantum mechanical approximation methods such as
perturbation, variation, WKB method etc. These theoretical studies have immense ap-
plication in the field of confined systems, plasma diagnostics, astrophysical data analysis
etc. In this course of studies, we focus on studying the structural properties of few-body
atomic systems in free case (only Coulombic attraction and repulsion among the constituent
particles) and also in plasma environment.

This dissertation’s work has been organized into five chapters. The following para-
graphs provide an outline of these chapters:

Chapter 1

At the beginning of the first chapter “Introduction”, we have given a detailed account
on the rapid growth towards the production of relatively long-lived plasma using tunable
ultra-short intense X-ray free-electron laser (FEL) or orion laser etc. and the importance
of accurate theoretical estimation of the structural and spectral properties of plasma em-
bedded few—body systems for diagnostic determination of such plasmas. In this context,
the progress of atomic structure calculation starting from the hydrogen atom problem to
general three-body problem is discussed. The fundamental notions of classifying and defin-
ing the quantum states of a three-body or two—electron system have been given. In this
chapter we have introduced ‘plasma’ by defining its salient features, controlling parameters
(particle density, temperature etc.) and abundance in both laboratory and astrophysi-
cal environments. Classification of plasma has been made on the basis of plasma particle
distribution function (classical plasma and quantum plasma) as well as plasma coupling
parameter (weakly coupled plasma and strongly coupled plasma) defined as the ratio of the
average electrostatic energy to the average kinetic energy of the plasma particles. As plasma
contains a large number of charged particles, the collective interaction is very difficult to
tackle theoretically. Hence, a suitable model potentials are considered which incorporate
the collective behaviors of the plasma particles. The analytic expressions of the model
potentials in case of classical weakly coupled plasma, classical strongly coupled plasma,
quantum plasma and dusty plasma are given at the end of this chapter.

Chapter 2

In recent studies, H-like ions in motion within the plasma environment have become in-
creasingly significant from an experimental standpoint. Depending on plasma parameters
and ion velocity, a moving ion produces a ‘wake’ which alters the potential of the medium.
This potential modifies the energy levels and transition properties of the ion. Firstly we
give a detailed account of the works on structural properties of H-like ions under classical
weakly coupled plasma, quantum plasma and dusty plasma environments. Starting from
electrostatic considerations, we have presented the mathematical development of the model
potential in plasma environment using Meijer’s G function for an ion moving through classi-
cal weakly coupled plasma, classical dusty plasma and quantum plasma environments. We
have used trial wavefuntion expanded in Slater-type orbitals and subsequently solved the

iii
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Schrodinger equation under the framework of Ritz variational principle to estimate the en-
ergy eigenvalues of ions moving through plasma. The analytic forms of the matrix elements
and relevant basis integrals are given in relevant sections of this chapter. In the subsequent
section, the results and discussions are illustrated in detail. It is observed that the plasma
potential removes the [-degeneracy of the energy levels and the motion of the ion removes
the |m|-degeneracy (‘Stark-like’ splitting). The present work discusses how plasma density,
temperature, and ion velocity affect hydrogenic energy levels and the transition wavelengths
of m and o components of Lyman-« lines.

Chapter 3

In this chapter we have discussed the variation of ground state energy of different quantum
mechanical three-body systems with arbitrary comparable masses, embedded under clas-
sical weakly coupled plasma. We have also estimated the energy and width of resonance
S€ state of free hadronic three-body systems. In first section an extensive literature review
is given describing the works on both bound and resonance state properties of three-body
systems under plasma environments. At the beginning of methodology section, the con-
struction of trial wavefunction and variational equation are given in a most exhaustive way
possible. The trial wavefunction is expanded in multi-exponent Hylleraas-type basis set.
The analytic form of necessary basis integral is given and demonstrated with some practical
examples. In the last part of the methodology section, we have made a detailed discussion
on the theory of stabilization method to estimate resonance parameters (energy and width).
The results are given separately for bound and resonance states. In case of bound state, we
have reported “Borromean binding” for various three-body systems under classical WCP
whereas resonance parameters of S° state of three-body exotic ppY and pYY [Y : p, 7, K]
ions in the free environment are given.

Chapter 4

In this chapter we focus on the determination of structural properties of doubly excited F*
state of two—electron systems under both free and plasma (WCP) environment. A detailed
account on doubly excited states of two—electron systems under different plasma scenario is
given at the starting of this chapter. In the next section we elaborate the present method-
ology in the following steps: formation of trial wavefunction, construction of variational
equation, expansion of trial wavefunction in multi-exponent Hyllerass—type basis set and
analytical formulation of the relevant basis integrals. A detailed discussion on different
structural properties (energy eigenvalues, one— and two—particle moments, inter—electronic
angles etc.) of both meta—stable bound and resonance F¢ states of free two—electron sys-
tems is given in the next segment. The methodology established for free systems is then
extended to estimate different structural properties of two—electron systems embedded in
classical WCP environment. The study on the variation of transition energies for the dipole

transitions F¢ — D? with respect to the plasma screening strength is also included in this
section.

Chapter 5

In this chapter we finally conclude all the findings from the present dissertation’s works
as described in previous chapters. A consolidated account of the present work on the
accurate determination of the structural properties of the few—body atomic systems which
are necessary for astrophysical data analysis as well as in laboratory plasma diagnostics
is presented. We also discuss the potential future scopes of these works involving atomic
structure calculation in different external confining environment which may be significant
in different fields of research.



List of Publications

Peer reviewed publication included in the thesis:

)

2)

3)

5)

7)

Ezotic systems under screened Coulomb interactions: a study on Borromean windows
S. Dutta, J. K. Saha, S. Bhattacharyya, P. K. Mukherjee and T. K. Mukherjee
Phys. Scr., 89, 015401 (2014).

Precise energy eigenvalues of hydrogen-like ion moving in quantum plasmas
S. Dutta, J. K. Saha and T. K. Mukherjee
Phys. Plasmas, 22, 062103 (2015).

Binding Energies of Hydrogenlike Carbon under Mazwellian Dusty Plasma Environment
S. Dutta, J. K. Saha, S. Bhattacharyya and T. K. Mukherjee
Int. Rev. of Atomic and Molecular Physics. 6(2), 73 (2015).

Ritz variational method for the high-lying nonautoionizing doubly excited "3 F¢ states
of two-electron atoms

S. Dutta, A. N. Sil, J. K. Saha and T. K. Mukherjee

Int. J. Quan. Chem., 118, e25577 (2017).

Extensive investigations for metastable-bound and resonance 3F¢ states of He atom
S. Dutta, A. N. Sil, J. K. Saha and T. K. Mukherjee
Int. J. Quan. Chem., 119, 25981 (2019).

Doubly Excited 13 F¢ States of Two-Electron Atoms under Weakly Coupled Plasma En-
vironment

S. Dutta, J. K. Saha, S. Bhattacharyya and T. K. Mukherjee

Commun. Theor. Phys., 71, 853 (2019).

Resonance States of Hadronic Three-Body Ions: Stabilization Method
S. Dutta, J. K. Saha, S. Bhattacharyya and T. K. Mukherjee
Jour. At. Mol. Cond. Nano Phys., 7, 51 (2020).

Precise structure calculations of 13 F€ states of helium atom under exponentially screened

Coulomb potential



vi

9)

A. N. Sil, S. Dutta, D. Ghosh, J. K. Saha, S. Bhattacharyya and T. K. Mukhopadhyay
Atomic Data and Nuclear Data Tables, 158, 101649 (2024).

A study of hydrogenic ions moving through plasma environment: formulation of model
potential and determination of energy levels

S. Dutta, J. K. Saha, S. Bhattacharyya and T. K. Mukhopadhyay

Final version submitted for publication as a chapter in the book ‘A closer look at the
H atom’ Ed. A K Roy, Nova Science Publisher.

Peer reviewed publication not included in the thesis:

1)

Structural properties of lithium atom under weakly coupled plasma environment
S. Dutta, J. K. Saha, R. Chandra and T. K. Mukherjee
Phys. Plasmas, 23, 042107 (2016).

A survey on modelling and structural modification of atomic systems in plasma envi-
ronment

S. Dutta, J. K. Saha, S. Bhattacharyya and T. K. Mukherjee

Asian Journal of Physics, 25, 1339 (2016).

Critical stability and quantum phase transition of screened two—electron system A. Sad-
hukhan, S. Dutta and J. K. Saha
Int. J. Quan. Chem., 119, 26042 (2019).

Critical stability and structural properties of screened two—electron system in Feshbach
resonance state A. Sadhukhan, S. Dutta and J. K. Saha
Eur. Phys. J. D, 73, 250 (2019).



List of Conferences Attended

Presentation in Conferences/Seminars:

)

Participated in “3rd DAE-BRNS Symposium on Atomic, Molecular and Optical Physics”
held at Indian Institute of Science Education and Research (IISER), Kolkata, during
December 14-17, 2012.

Participated in “DST-SERC School on Physics of Highly Charged Ions” held at TIFR,
Mumbai, during February 10-March 3, 2013.

Participated in “Topical Conference on Atomic Processes in Plasma ISAMP-TC-2018”
held at Institute for Plasma Research (IPR), Gandhinagar, Gujrat, during November
18-20, 2013.

Participated and delivered a talk in “International Conference on Dynamical Systems
and Mathematical Biology(ICDSMB 2014)” held at Department of Mathematics, Ja-
davpur University, Kolkata—700026, during November 17-19, 2014.

Participated and delivered a talk in “UGC' Sponsored National Seminar on Frontiers
i Modern Physics” held at Department of Physics, Jogamaya Devi College, Kolkata—
700026, during November 21-22; 2016.

Participated and delivered a talk in “International Conference on Science, Technology
and Communication Skills (TCSCON-2024)” held at Department of Basic Science and
Humanities, Narula Institute of Technology, Kolkata, during February 22-24 , 2024.

vil



Chapter 1

Introduction



2 1: Introduction

Introduction

In the microscopic world, few—body physics includes the studies of light nuclei, light atoms,
small molecules etc. Since the very infant age of quantum mechanics, few—body atomic
systems are always under the spotlight for being an important candidate for testing the
hypotheses and laws of the quantum mechanics. In 1926, Schrédinger computed [1] the
energy eigenvalues of hydrogen atom from his revolutionary matter-wave equation and ar-
rived in good agreement with that of obtained by Neils Bohr using quantum theory [2].
While the hydrogen atom or the two—body atomic problem is exactly solved by the wave-

mechanics [1], difficulty arises when there are more than two interacting particles, even

though all the interacting forces are known. The presence of ri term in the Hamiltonian of
the few-body systems makes the Schrodinger equation non—seplzjxrable, r;; being the distance
between the i—th and the j—th particles. Since the earlier days of quantum mechanics
theoreticians assumed [3-8] approximation techniques like perturbation, variation etc., to
solve the two—electron problem which is the simplest candidate among the few-electron
systems. In case of the few—electron systems, the Born-Oppenheimer approximation [9]
is applied where the nucleus is assumed to be infinitely heavy and its motion is negligible
with respect to the motion of the electrons. Slater [3] used perturbation technique to find
the energy spectra of helium atom without making any attempt to separate the variables
at all. Hartree [4,5] made the central field approximations to solve the wave equation of
helium atom problem where the Hamiltonian boils down to effective one-electron Hamilto-
nians. Slater [3] and Hartree [4,5] calculated the ground state energy of helium atom as
—2.895 a.u. and —2.86168 a.u. respectively. These values are little above the experimental
value —2.9035 a.u. known at that time which was obtained by Lyman [10] in 1924. The
experimental determination of ground state of helium atom become more precise in later
years. For example, Bergeson et. al. [11] reported the energy of helium in ground state as
—2.903 693 775 a.u. In 1928 and 1929, Hylleraas [6-8] adopted Ritz variational method
with 18 to 38 terms in the basis set of trial function which contained the inter-electronic
distance r12 explicitly. For obvious reason, this type of basis functions are called correlated
basis. The best result he got for the ground state energy of helium atom is —2.9037 a.u. [7].
Since this work, till now the researchers are applying quantum-mechanical approximation
techniques using various basis sets and optimization programs to determine highly precise
energy levels of helium atom. The works of Pekeris [12] and Drake [13] are quite significant
in this matter where they estimated the non-relativistic energy eigenvalue of the ground
state of helium as —2.903 724 376 a.u. and —2.903 724 377 03415 a.u. respectively. Over
the years theoreticians enjoyed competing with one another on the determination of more
and more precise ground state energy of helium atom [14-22] just like the mathematicians
do to add more digits of the number ‘mr’. Moreover, it can be seen that the variational non-

relativistic energy estimates [12-22] are lower than that of the experimental result [11]. This
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is because of the fact that the non-relativistic energy values needs corrections regarding the
nuclear motion or the QED effects. These corrections were made by the researchers [23-26]
considering the nuclear mass of He atom as M (*He) = 7294.299508 a.u. which produces
ground state energy of helium atom as —2.903 304 557 7 a.u. (upto 10-th decimal place).

Before we proceed further, we first describe the spectroscopic notations used here. Here we
have used the usual spectroscopic notation 2*'L™ under the LS—coupling scheme, where
S, L and 7 are the total spin, orbital angular momentum and parity quantum numbers
respectively. It is to be noted that the parity of the coupled state is determined by the

Lt where I and Iy are the individual angular momenta of the particles.

formula 7 = (—1)
If 7 = +1, the corresponding coupled state (L) is called as even parity (‘¢’) state and for
m = —1, the corresponding coupled state (L) is called as odd parity (‘0’) state. Again, if the
factor (—1)” becomes equal to (—1)"72, then the coupled state L is called a natural parity
state. On the other hand, if the factor ( —l)L+1 becomes equal to (—1)l1+12, then the coupled
state L is called an unnatural parity state. Table (1.0.1) shows some examples of natural
and unnatural parity states. Expanding the trial function in Hylleraas basis is the most
efficient technique to include correlation effects on the two-electron energy levels. Hyller-
aas’s calculations are applied to the ground state of helium with a spherically symmetric
angular part of the wave function. The distance of the electrons (r1,r2) from the nucleus at
origin and the angle (A12) between them were employed to express the wave function. The
situation is more challenging for the states other than S symmetry. A two—electron sys-
tem has 9 degrees of freedom. Due to the invariance of the Hamiltonian under translation
and rotation, Wigner [27] and Breit [28,29] demonstrated that the number of independent
variables in the Schrodinger equation can be reduced from nine to three. By taking the ad-
vantage of translational symmetry of Hamiltonian, the problem of two electrons with a fixed
nucleus is represented in six coordinates, three of which are the sides of the triangle formed
by the nucleus and two electrons and the remaining three are the Eulerian angles defining
the triangle’s orientation in space. These angles are needed to be separated out leaving the
Schrédinger equation in only three radial coordinates. Since the total angular momentum
is a constant of motion, the problem could be reduced to three dimensions regardless of how
the Eulerian angles were specified. Breit [28,29] adopted Hylleraas coordinates using the
same Fulerian angles as were introduced by Hylleraas [7], known as ‘Hylleraas-Breit angles’
which were quite unsymmetrical with respect to two electrons and hence very difficult to
separate it out from the Schrodinger equation. As a result, Breit’s [29] research was limited
to the (1s2p; 'P?) state of helium atom. Bhatia and Temkin [30] made the first successful
attempt at generalizing the helium atom problem by using symmetric Eulerian angle decom-
position technique. Because of their symmetry and exchange properties, the Euler angles
utilized by Bhatia and Temkin [30] have an obvious advantage over the Hylleraas-Breit
angles, and consequently the Eulerian angles were removed from the Schrodinger equation

for any angular momentum state of a two-electron system just like the separation of the
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Table 1.0.1: Spectroscopic notation of coupled angular momentum (L) states of two—electron
systems along with the electronic configurations (having individual angular momenta [; and
l2) for each coupled state. The superscripts e and o in the notation stand for ‘even’ and
‘odd’ parities respectively.

Parity of states Spectroscopic terms Configurations

Natural S¢ (L =0) ss (I3 =0,lp =0)
pp (h=1,1=1)
etc...
pe (Lzl) Sp (l1:0,l2:1)
pd (ll = 1,[2 = 2)
etc...
D¢ (L:2) sd (l1:0,12:2)
pp (h=1,0=1)
etc...
Unnatural Pe(L=1) pp (h=1,lp=1)
dd (I = 2,1y =2)
etc...
PO (L =2) pd (b =1,1p =2)
df (Ih, =2,l=3)
etc...
pPe (L =3) pf (lh=1,lp=3)
dd (Iy =2,lp=2)
etc...

polar and azimuthal angles from the Schrédinger equation of hydrogen atom problem. This
symmetric Eulerian angle decomposition technique was employed later in many works to
investigate P, D, F states [31-37]. In 1994, Mukherjee and Mukherjee [38] were able to
put out the general variational equation for states of arbitrary angular momentum for two—
electron systems in radial co—ordinates (r1,r2,712) of the triangle formed by the nucleus
and two electrons using the wave function provided by Bhatia and Temkin [30].

Among all these two—electronic states, doubly excited states (DES) lie above the first
(N = 1) ionization threshold of the one—electron sub-system. In DES of two-electron
systems, 2s% (159), (2s2p*3P?), 2p? (15¢,3P¢ 1 D) etc. lie below N = 2 ionization thresh-
old, 3s? (189), (3s2p'3P?), 3p? (1S¢3P¢ 1 D) etc. lie below N = 3 ionization threshold
and so on. DES are embedded in continuum and hence the effect of continuum states are
inherent in their description or structure. The DES may be formed experimentally in two

different ways which are illustrated below:

1. Electron scattering experiment: If a He™ ion in any arbitrary angular momentum
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state nl above N = 1 ionization threshold, is bombarded by an electron with right
amount of kinetic energy, a DES He** (nin'l’) can be formed (n,n’ > 2), where [ and

I are the angular momentum quantum numbers of the electrons in He—atom.

e~ + He™(nl) — He™ (nin'l')

2. Photo-absorption experiment: In this case, He—atom absorbs a photon, e.g. when

placed in a synchrotron radiation chamber, to get excited to a DES as

hv + He(1snl) — He** (nin'l’)

DESs can go through transitions to lower levels by emitting photons (radiative or fluo-
rescence decay). On the other hand, since the DES are embedded in the continuum they
interact with the continuum states due to the repulsive potential i As a result the two-
electron system in DES can undergo a non-radiative transition, cz:ﬁgd ‘auto-ionization’, in
which DES decay to a lower state of ionized one—electron sub—system of the two—electron

system. For example:

He**(252p;13 P°) — He™ (1s) + e~
He**(2p%! D¢) — Het(1s) 4+ e~

As discussed earlier, a projectile needs to have an exact amount of energy to form an
autoionizing DES. At this particular energy a sharp peak or ‘resonance’ can be seen in
the continuous absorption spectrum (in photo-absorption experiment) or scattering cross-
section (in electron-scattering experiment). For this reason, autoionizing states are also
known as resonance states. On the basis of angular momentum and parity conservation
rule under the LS-coupling scheme, Feldman and Novick [39] showed that autoionization
is allowed only for those transitions for which AL = 0, AS = 0 and Anw = 0. The above

examples satisfy these criteria whereas the following examples are forbidden:

He** (2p%;3 P¢) —» He'(1s) + e~
He**(2p3d;13 D°) - He™ (1s) + e~

Between N = 1 to N = 2 ionization threshold the DESs with natural parity shows auto-
ionization/resonance character whereas the DESs with unnatural parity is stable against
auto-ionization, called meta-stable bound states (MBSs) which are prone to decay via fluo-
rescence transitions. Above N = 2 ionization threshold, all the DESs are auto-ionizing in

nature. This theory is well supported by a number of experiments where the fluorescence
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and auto-ionizing lifetimes of various DESs are measured [40-44]. For example, the fluores-
cence lifetime of 2p? (3P¢) and 2p3d (1*D°) states of He-atom are 8047 ps [40] and 110420
ps [41] respectively. On the other hand, the auto-ionization lifetimes of 2s2p (13P?) and
2p? (1D°) states of He-atom are found to be 17 & 2 fs [42] and 9.1 & 2.3 fs [44] respectively.
In the beginning of this century, a new feature of the DESs is discovered due to the experi-
ments [45,46] which found that fluorescence decay is more probable than auto-ionization for
some definite resonance states. Saha et. al. [47] showed theoretically that the angular part
of the wavefunction determines which resonance states will show fluorescence activeness
over the auto-ionizing phenomena. This theory was verified in a heavy-ion collision experi-
ment performed by Kasthurirangan et. al. [48] where they measured both fluorescence and
auto-ionization rates of the 2p3d (1P?) state of highly charged two—electronic systems like
Sit3* S+ and CI'F. For example, the experiment [48] showed that the auto-ionization
rate (3.204 x 10'2 s71) is lesser than the fluorescence rate (3.28 x 102 s=1) of the 2p3d (1P?)
state of Si'®T ion. DESs have attracted a lot of attention in researches because they are
best suited for theoretical studies on resonance phenomena which are important in plasma
physics, astrophysics, laser-technology etc [49-51].

In case of general three-body systems with comparable masses Born-Oppenheimer approx-
imation [9] of fixed nucleus is not applicable for constructing the variational equation. The
centre of mass coordinates and the symmetric Eulerian angles can be separated out of the
equation [52] by exploiting the translational and rotational invariance of Hamiltonian re-
spectively. The effective variational equation of three-body system is then reduced to three
dimension which may be taken as the sides (r1,r2,712) of the triangle formed by the three—
body system [53]. The classification scheme of various states of a general three-body system
is similar to that of the two—electron systems.

Structural calculation of atomic systems under plasma environment is a field of active re-
search due to its application in plasma diagnostics. H-like and He-like spectral transitions
in plasma environment play a major role in these aspects. Lyman-« line (n = 2 — 1 transi-
tion) and Balmer-« line (n = 3 — 2 transition) are of particular importance in case of H-like
systems. Lyman lines are used for diagnostics of ions with higher energies. Balmer lines are
used to measure many things like magnetic and electric fields through Stark-Zeeman split-
ting, fluctuations in the electron density etc. For He-like systems, He, (1s2p — 1s?), Heg
(1s3p — 15?) lines as well as He-like satellite lines (2p* — 1s2p) etc. play significant role
in plasma diagnostics. Line shifts, line profile and broadening, line merging phenomenon,
relative intensities of spectral lines, continuum lowering and ionization potential depression,
disappearance of spectral lines efc. are useful tools for plasma diagnostics ¢.e. to measure
particle density and equilibrium temperature of the plasma. Hence, precise atomic data are
needed for the understanding of them. Depending on plasma conditions i.e. equilibrium

temperature and densities of plasma species, the atomic energy levels and transitions are
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modified. This modification of atomic data is important for determining the plasma condi-
tions. Huge technological advances have occurred in the last couple of decades, as a result
of which atomic spectroscopy has taken on an intriguing shape in plasma studies. The use
of X-ray free electron lasers (XFELs) in Linac coherent light source (LCLS), Orion lasers

and other lasers, is critical in such advancements [54-57].

For a free atom/ion, all the particles within the atom interact with each other
via Coulomb potential. But the inter—particle interaction changes its form from Coulombic
to non—Coulombic when the atom/ion is placed in plasma, which will alter the structural
properties of the atom/ion as compared to the free environment. It is true that most of the
structural modifications can be addressed considering the atom/ion to be static. However,
the motion of the ions or nucleus of atom with high velocity through the ‘sea’ of electrons in
plasma creates a ‘wake’. Depending on the plasma parameters and ion velocity, this ‘wake’
can sufficiently alter the potential ‘seen’ by the ion. As a consequence, the energy levels and
transition properties are also modified. It is worth noting that the fast ions in plasma are
quite difficult to detect, but their ‘wakes’ can be detected experimentally, e.g. by Collective
Thomson Scattering (CTS) technique [58]. Tracking the fast ions, e.g. hydrogen, deuterium,
tritium, a-particles inside plasma has attracted sufficient interest from researchers in recent
years because these ions are often major source of energy and momentum of plasma and
it carries important information about the plasma. Fast ions are also crucial ingredients
of a burning fusion plasma. Many techniques like Fast Ion D-ao (FIDA) Spectroscopy [59],
~v—ray spectroscopy (GRS) [60], CTS etc. are employed to detect fast ions in plasma in
various experimental projects e.g. the ITER project [61-63], ASDEX Upgrade [64], Joint
European Torus (JET) [65] etc. These experiments require precise theoretical atomic data
of H-like systems moving in such plasma environments. Within the plasma, some of the
injected fast ions undergo nuclear reactions and other fast ions neutralize and emit light.
By analyzing the signals coming out of the fast ions, information about the velocity and
the distribution of fast ions in plasma can be obtained.

The present study focuses on application of atomic data inside plasma environment. In
ion-atom or electron-atom collision experiments, all kind of bound and resonance states
are produced simultaneously in the collision chamber. The possibility of the formation of
plasma in collision experiment is very high as large number of electrons and different charge
states of ions are produced. By using advanced technologies such as ion source technology,
storage ring capabilities and trapped ion techniques, a wide spectrum of target atom is
attainable to study ionic resonances and even spectral properties of ions embedded within
plasma. Hence, atomic structure calculations under plasma confinement is a very significant
topic of research for both theoreticians and experimentalists.

Let us now construct a conjunctive idea on plasma. The name “plasma” was first intro-
duced by Irving Langmuir in 1928 [66] while studying oscillations in ionized gas. In the

Greek dictionary, “plasma” means something “formed” or “moulded”. In the following year,
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Tonks and Langmuir developed the theory of oscillating ions in the ionized gas which is fa-
mously known as “plasma oscillation theory” [67]. A very compact review on the historical
developments of plasma can be found in a book written by Paul M. Bellan [68]. Plasma
is considered as a medium which contains a large number of charged particles (electrons
and ions), charge-neutral particles, macroscopic particles (large molecules or dust particles)
etc., all moving due to thermal agitation. At any instant the interior of a plasma net charge
within a macroscopic volume remains zero. With the help of terrestrial and astrophysical
observations, scientists believe that 99% of the universe is made up of plasma. Very com-
mon examples of astrophysical plasma are Solar corona, nebulae, rings of Saturn, tails of
comet etc. Plasma is the reason behind their continuous source of energy. In earth’s atmo-
sphere, lightening, ionosphere etc. behave like plasma medium. Due to plethora of plasma
in natural objects, scientists are always keeping their eyes on the making of such plasma
environments in the laboratory scenario so that we can understand our universe better and

produce a sustained source of energy [61,69-71].

If the plasma temperature (7') becomes very high (T - 10* — 108K ), the thermal
de Broglie wavelength of the particles (Ag) turns out to be less than the average inter-
particle distance (d,,), which causes the plasma particles to become distinguishable and
obey the Maxwell-Boltzmann distribution. This type of the plasma is called classical plasma.
Classical plasma can be found in ionosphere [72], interstellar space [73], solar coronal region
[74], typical electric discharge [75], tokamak experiment (magnetic confinement fusion) [71],
inertial confinement fusion (ICF) experiments [61,70] etc. On the other hand, for very low
temperature (7'« 0 — 20K), Ap becomes greater than d,,. As a result, the plasma particles
become indistinguishable and follow the quantum distribution laws. Such type of plasma
is called quantum plasma (QP) which can be found in astrophysical objects like Jupiter’s
core, white dwarf star (high temperature quantum plasma) etc. [76] and can be produced
in laboratory experiments such as metals and metal clusters, quantum dots and quantum

wires [77], intense laser-solid density plasma interaction experiments [78] etc.

A quantity called Coulomb coupling parameter or simply Coupling parameter (T'),
defined as the ratio of the average electric interaction energy to the average kinetic energy of
the plasma particles, plays a pivotal role to classify plasma on the basis of the plasma particle
correlations. The plasma for which ' < 1 is called weakly coupled plasma (WCP) and for
I’ > 1, the plasma is called strongly coupled plasma (SCP) or non-ideal plasma. WCPs are
generally of very high or moderately high temperature and low density (n) plasma which
can be found [79,80] in gaseous nebula (T ~ 10*K and n ~ 103/c.c), solar coronal plasma
(T ~ 10°~10"K and n ~ 105—107/c.c), solar wind (T ~ 10°K and n ~ 10/c.c), the gaseous
discharge plasma (T ~ 10*K and n ~ 107 — 10'2/c.c), plasma in controlled thermo-nuclear
reaction (T ~ 108K and n ~ 10'°/c.c), inertial confinement fusion plasma (T ~ 10®K and
n ~ 10%/c.c), Tokamak plasma (T ~ 10° — 10°K and n ~ 10'%/c.c). Typical densities

of SCPs are n > 10%3/c.c. and temperatures are low (in few Kelvin). Such plasmas can
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be found in laser produced plasmas, highly evolved stars in high density states, interior of
Jovian planets, pulsed MHD generators, explosive shock tubes, two-dimensional states of

electrons trapped in surface states of liquid helium etc. [81,82].

The most important part of theoretical investigations is to model the plasma en-
vironment by an effective potential Vrs(r) felt by a foreign atom/ion placed inside the
plasma. There are many types of plasma model potentials V,¢s(r) available in literature,

some of which are listed below.

1. Classical WCP: If the atom or ion is embedded in the classical WCP environment,
the effective potential at a point around the nucleus having charge Z can be modeled
by (83]

Z
Veps(r) = ——e Ho" (1.0.1)
r
This potential is known as Ezponentially Screened Coulomb Potential (ESCP) or
Debye-Hiickel Potential. In this equation (1.0.1) the screening parameter is given
by

D=3, ~ dmg3n

1 KgT
AD

~1/2
> (in C.G.S unit) (1.0.2)

where Ap is called plasma screening length or Debye screening length which depends

on plasma density (n) and temperature (T) of plasma.

2. Classical SCP: Over the years, many compact forms of the effective potential V. ¢(r)
are constructed to model the classical SCP or dense plasma environment, such as
ion-sphere model [81], Thomas-Fermi model [84,85], Quasi-molecular model [86,87],
Crowly’s fried egg model [88], DFT based ion-correlation models [89], Libernan’s in-
ferno model [90,91] etc. Among these models, the ion-sphere model [81] is quite simple
yet capable in estimating the plasma parameters with the help of atomic structure
calculations under classical SCP environment. In this model the charge neutrality is
maintained by both free and bound electrons with the central positive ion inside the

ion-sphere (IS) or Wigner-Seitz sphere. The effective potential is given as following

Vops(r) = —Z—QZ;@F—<;Y} (1.0.3)

r

From the charge neutrality condition within the sphere, the IS radius (R) is connected

with the plasma electron density (n) by the following relation

Z-N
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where Z is the nuclear charge of the ion at the centre of IS and N is the number of

bound electrons in the ion.

3. Quantum plasma: Generally this kind of plasma falls into the SCP category. In
2008, Shukla and Eliasson [92] modeled the potential around a test charge (of charge
Z) embedded in a cold and dense quantum plasma under the framework of linearized
quantum hydrodynamic theory where it is assumed that the quantum force acting on
the electrons are dominant over the quantum statistical pressure. The potential is
known as exponentially cosine screened Coulomb potential (ECSCP) which assumes

the following form

Vers(r) = —% exp (—ﬁ%) cos <k§;> (1.0.5)

where kg = is the quantum wavenumber. The plasma electron fre-

quency (wpe) is given by the relation

1

4 2
Wpe = ( ”"eqfi) 2 (inC.G9) (1.0.6)

Me

Ne, ¢e and m, being the number density, charge and mass of electron respectively.

In addition to the plasma model potentials described above there are some other model
potentials which are also important for the atomic structure calculations under plasma
environments e.g. potential in classical dusty plasma (DP) [93], potential in non-Maxwellian
astrophysical plasma [94-96] etc. A unified model potential in dense plasma is given by
Stanton and Murillo [97].
These models, in conjunction with various quantum mechanical approximation techniques,
yield valuable outcomes that are significant within the context of plasma diagnostic studies.
In the subsequent chapters of this dissertation, different structural properties of two—body
and three-body systems have been demonstrated under various plasma scenario. Our study
starts with the hydrogen atom (or H-like ion) moving through different types of plasma
environments like classical WCP, QP and classical DP. The effective potential of the atom
is evaluated by solving Poisson’s equation where the plasmas are considered as dielectric
media. Variation of energy eigenvalues with respect to plasma parameters (density and
temperature) as well as ion velocity is studied using Ritz variation principle. We have
further investigated the effect of plasma and ion velocity on different dipole transitions.

In the next phase, we have studied the structural properties of different three—body
systems (including exotic ions) embedded in classical WCP where the effective potential is

modelled by ESCP (1.0.1). For a wide range of plasma screening parameter (1.0.2), energy
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eigenvalues of the ground state 1s? (1S®) of three-body systems are estimated under the
Ritz variational framework using a trial function expanded in multi-exponent Hylleraas-
type basis set. Energy and width of resonance 'S¢ state below second ionization threshold

of different hadronic three-body exotic ions are evaluated using stabilization method.

In the last part of the present study we focus on high-lying doubly excited F¢ state
of two—electron systems under both free and classical WCP environment. Ritz variational
principle has been employed to determine the energy eigenvalues of metastable bound F¢
states while stabilization method is used to estimate resonance parameters (energy and
width) of resonance F€ states for different plasma screening. In this case, the trial function
contains not only the most fundamental pf configuration but also a high-lying dd con-
figuration for the F€¢ state, where both pf and dd parts are expanded in multi-exponent
Hylleraas-type basis set. Other structural properties like one— and two—particle moments,
inter—electronic angles etc. of both metastable bound and resonance F¢ states of helium

atom are also given for different plasma screening parameters.
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Moving H-like atom under plasma environment

The structural properties of hydrogen—like (H-like) ions are quite important in plasma diag-
nostics because the features of hydrogenic lines (Lyman-«, Lyman-/3, Balmer-«, Balmer-3
etc.) in plasma environment carry important information about the plasma parameters
like density and temperature. Plenty of works have been carried out by researchers in this
direction where the ion is considered to be static. However, H-like ions which are in motion
inside the plasma environment have become quite important from recent experimental point
of view. As the ions move through the ‘sea’ of electrons, they leave a ‘wake’, the effect of
which depends on the plasma parameters as well as on the ion velocity. The ‘wake’ alters
the potential experienced by the ion and hence, the energy levels and transition properties
are modified. In this chapter, we give a detailed account of formation of the model potential
felt by the moving ion in both classical and quantum plasma. The dusty plasma environ-
ment is also considered. Starting from electrostatic considerations, we have presented the
mathematical development of the model potential in plasma. environment. This model po-
tential is subsequently used to solve the Schrodinger equation using the variational principle
to estimate the energy values and transition energies of ions moving through plasma. The
effects of plasma density, temperature and ion velocity on the hydrogenic energy levels as
well as on transition wavelengths of 7 and ¢ components of Lyman-« lines are discussed.
Energy eigenvalues of several states of H-like carbon (C°) ion moving through electron—
hole quantum plasma are provided at the end of this chapter for a range of plasma densities

and ion velocities.

2.1 Literature review

In the presence of weakly coupled plasma (WCP), the interaction between the particles of
an atom/ion changes from Coulomb to exponentially screened Coulomb potential (ESCP)
as given in equation (1.0.1). Analytic solution of Schrédinger equation with ESCP is not
possible even for the H-like atoms/ions which is the simplest candidate among the few
body atomic systems. After the pioneering work by Ecker and Wiezel [98] using suit-
able physical approximations (known as ‘Ecker-Wiezel approximation’), several other quan-
tum mechanical approximation techniques like perturbation [99-104], variation [105-111],
variation—perturbation theory [112], numerical techniques [113-116] etc. were adopted to
solve the Schrodinger equation with ESCP for the H-like atomic systems. The removal of
I—degeneracy and the reduction of the number of bound states of H-atom under WCP were
reported in literature with different methodologies [100,101,105,106,113-115]. Using numer-
ical techniques, Roger et.al. [115] showed that the number of bound states decrease almost

linearly with plasma screening strength. Using variation technique, Lam and Varshni [107]
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and Garavelli and Oliveira [109] reported comparable results with Rodger et.al. [115] ex-
cept in the region very close to critical screening where the energy eigenvalues become zero.
Alteration of other structural properties like the size of atoms, transition probability for
spontaneous emission etc. under WCP can be found in literature [107,108,111,117]. The
estimation of structural properties of H-like atomic systems under WCP formed within
spherical box grabbed attention of many researchers [103,104,111,112] where modifications
of transition energy, oscillator strength, transition probability, hyperpolarizability of photo-
excitation etc., due to the alteration of the both plasma screening and the box radius were
explored. The simultaneous effect of Plasma screening and external static electric field on
the atomic properties was also studied for H-like systems [118,119].

Theoretical investigations on the spectral properties of few-body systems under strongly
coupled plasma (SCP) are limited as compared with those under WCP model. The main
effects of SCP on H-like systems are to modify the energy levels, ionization potential of
the systems, fine structure splitting, photo-absorption cross-sections etc. [120-123]. Struc-
tural properties of H-like systems like the spectral line shift, line broadening, continuum
merging of bound states etc. under SCP are used by the theoreticians [124-127] to predict
the density of hot-dense plasma produced by laser implosion. In these works, besides the
adoption of ion—sphere (IS) model people also used self-consistent method or random phase
approximation to the dielectric function of the medium to incorporate the effect of density
of the plasma medium. Bhattacharyya et. al. [128] predicted line shifts of Lyman lines
of H-like C°F, AI'?* and Ar'™ and compared the IS and truncated Debye models using
both non-relativistic and relativistic methods. The modifications of the dynamic polariz-
abilities, oscillator strengths and transition probabilities of H-like Het, Li?*, Be?t, B4+ and
C°* ions under SCP are reported by Sil et. al. [129] where they have assumed IS potential
to model the plasma environment where the time-dependent variation-perturbation theory
was employed. They have shown that the dynamic polarizability of the ions remains nearly
invariant as IS radius decreases, but below a certain value of radius dynamic polarizabil-
ity falls off abruptly. Li and Rosmej [130] proposed an analytic method where the energy
values of LSJ-levels of H-like Al'2% ion are estimated using finite temperature and high
density plasma represented by modified IS-model. Relativistic multi-configuration Dirac-
Fock method has been employed by Chen et. al. [131] to estimate the effect of density
of SCP on the energy levels, transition energies and oscillator strengths of transitions of
highly charged H-like Ne®*, Al'2* and Calt ions. While in this work [131] the authors
assumed IS-model, in a later investigation Chen et. al. [132] assumed a general model po-
tential [97] to mimic the SCP environment which is dependent on both temperature and
density. Within the relativistic framework built in Flexible Atomic Codes (FAC), Chen et.
al. [132] estimated the variations of the ionization potentials, transition energies and pho-
toionization cross-sections of H-like AI'?* jon with respect to different plasma temperatures

and densities. Mukherjee et. al. [133] adopted non-relativistic generalized pseudospectral
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method to estimate the multipole oscillator strengths, multipole polarizabilities and Shan-
non entropy of one-electron systems (Z = 1 — 4) under both WCP and SCP environments.
Atomic structure calculations under dense quantum plasma grabs attention of a large num-
ber of theoreticians due to its huge abundance in semiconductor devices, quantum dots,
quantum wires [134], neutron stars, white dwarfs [135], laser produced plasma [136], fusion
plasma [137,138] etc. The most celebrated model potential of the dense quantum plasma
medium is exponentially cosine screened Coulomb potential (ECSCP) as given in equa-
tion (1.0.5). The effect of ECSCP on the bound states of one—electron systems started by
adopting different approximation techniques like Ecker—Weizel approximation [139,140], hy-
pervirial Pade scheme [141], 1/N expansion technique [142,143] etc. In the course of last few
years, a large number of works [144-150] has been performed regarding the structure calcu-
lations of one—electron systems under dense quantum plasma environment. The variation
of energy eigenvalues of nl (n < 10,1 =0-9) and n'l’ (n’ < 8,I'’ = 0—7) states with respect
to the screening parameters of ECSCP and generalized ESCP was extensively studied by
Roy [144] where it was reported that the effect of ECSCP is stronger on the energy levels as
compared to generalized ESCP. Hu et.al. [151] compared five different models used to de-
scribe dense quantum plasma, by calculating their effects on 1s energy level of H-atom using
Ritz variation technique. Using Ritz variation technique with relativistic correction, Hu et.
al. [146] showed that the probability of the radiative transition 1s — np (n = 2,3) of C°F,
O"F, AI'>* and Si'3* ions, decreases as plasma density increases. Variation of oscillator
strength and transition probability for the Lyman and Balmer series upto n = 5 with respect
to temperature and density of dense quantum plasma was investigated by Zhou et. al. [148]
where the authors used the finite temperature unified model potential given by Stanton and
Murillo [97] to mimic the dense quantum plasma environment. Nayek et. al. [149] revealed
the changes in the energy eigenvalues as well as the radial distribution of the wavefunction
with respect to the screening of both ESCP and ECSCP for 36 bound states within n < 8 of
one—electron systems having Z = 1 — 18. The critical screening parameters for every bound
states of each systems are given in their study [149], for both ESCP and ECSCP. Ly et.
al. [150] solved Schrodinger equation of H-atom under dense quantum plasma and uniform
magnetic field by using highly accurate numerical technique to determine different bound
state energy eigenvalues for different screening parameters of ECSCP describing the dense
quantum plasma. Few studies on the variation of photoionization cross-section of H-atom
under dense quantum plasma can be found in literature [145,147].

From the above discussion on some of the earlier works done in the field of plasma—embedded
H-like systems, it is evident that since the early days, the H-like ions play a key role in
understanding plasma environment in various aspects. However, all of them were static.
The moving H—ion in plasma for various reasons are gaining attention over the past few
years. The modification of bound state properties of slowly moving one-electron systems

under quantum plasma is studied by very few researchers in the literature [152,153] where
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the authors adopted Ritz variation principle and perturbation method with necessary rela-

tivistic corrections. The model potential considered in their works consisted of ESCP part
cos 6

and ‘wake’ part which is proportional to the velocity of the nucleus and varies as ~
(0 is the polar angle and r is the radial distance from the nucleus). They have found [{52]
“Zeeman”—like splitting of the energy levels due to the influence of the wake part and the
rates of different dipole transitions between the energy levels vary with the velocity of the
nucleus.

In the subsequent sections of this chapter we will present different structural properties of
H-like systems under classical weakly coupled plasma, quantum plasma and dusty plasma
environments. Beginning with electrostatic considerations, we provided the mathematical
development of the model potential for an ion moving through the plasma environments
considered here. In the next step, we have employed Ritz variational principle using trial
wavefuntion expanded in Slater-type basis set, to estimate the energy eigenvalues of H-
like systems moving through plasma. In pertinent sections of this chapter, the analytical
forms of the matrix elements and the necessary basis integrals are provided. The results
and discussions are detailed in the next section. At the end of this chapter, the effects of
temperature, ion velocity, and plasma density on hydrogenic energy levels as well as the

transition wavelengths of m and o components of Lyman-« lines are discussed.

2.2 Formulation of model potential: the present method

To obtain atomic data in plasma environment, we need to solve the Schrodinger equation
for which the potential term is needed. As the number of the particles in the plasma
medium is very large, it is difficult to obtain any ab-initio solution of the Schrodinger
equation by incorporating all the interactions in the Hamiltonian under plasma environment.
This difficulty may be overcome by considering a suitable model which may mimic all the

collective interactions within the plasma.

2.2.1 Moving ion in classical weakly coupled plasma

Let us consider a test charge ¢ moving with velocity ¢ within a plasma medium which is
considered as a linear dielectric medium. In figure (2.2.1) O is the origin where the charge
g was initially (¢ = 0) situated and O’ is the present position of ¢ at the instant ’t* i.e.
OO’ = §t. We are interested to find the electric potential (V) at P due to the moving test
charge ¢ surrounded by the plasma particles and OP = R. Hence, O'P =7=R—tis the
position vector of the field point with respect to the present position O’ of the test charge
q. We begin from the Gauss’s law in the medium as [154] (in S.I.),

V.D = gd(ﬁ — ¥t)  [egp = Permittivity of free space] (2.2.1)
€0
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Figure 2.2.1: Relative position of the point of investigation P with respect to the initial
position (O) and the later position (O’) of the moving charge g.

For a linear dielectric medium having dielectric function e, the displacement vector is D=
eoeﬁ; E being the electric field and is derived from the scalar potential V as E=-VV.

Equation (2.2.1) will become,

—VeVV — V2V = L5(R — wt) (2.2.2)
€0

Taking Fourier transform on both sides of equation (2.2.2) into the momentum space (k) of

the moving plasma particles, we can get

~FT.|VeNVV| - FT.[eV?V] = %F.T. |6(F — 7t)]

_ 6(1(](2;)3/2 /S(E t)e kB3 3
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= kET. [([VV]| = _a_ b i

€0 (27?)3/2
1 o
= kT x F.T.[|VV]] = qu Weﬂm
dee(B) k(i) — 4 1 iR
= tke(k) x ikV (k e
(k) (k) = €0 (2ﬂ)3/2
N 1 —ik.vt
VO = s (2.2.3)

€0 (27)%/2 k2e(k)

Here we have assumed that VV or (—E) is parallel to k i.e. the flow of plasma particles is
longitudinal. V (k) and e(k) are the Fourier transform of the potential V and the diclectric
function e.

From the inverse Fourier transform of equation (2.2.3) into the R-space and putting 7 =
R — Ut, we obtain the potential V() at field point P with respect to the instantaneous

position of the test charge ¢ as
ik?

_ € 3
V(r) = 8W3€0/k26(g)d k (2.2.4)

The dielectric function E(E) carries all the information about the interactions including all
types of collisions among the plasma particles and the charge velocity ¢. The dielectric

function for the classical electron-ion plasma [155] is given by

- 1 [Tk 1+ k203 1 ko
BT (B T e

where the Debye Length (Ap) or often called the screening length is given by,

Ap = <Z ;) (2.2.6)

with

N

Ao = (KpTaeo/q2ns) " (2.2.7)

Here s signifies type of plasma species i.e. s = e for plasma electrons, s = ¢ for plasma
ions, s = n for neutral atoms present in the plasma etc. A4 is called the screening length
or Debye length corresponding to the plasma species s. In equation (2.2.7) Kp is the

Boltzmann constant and T, ns; and ¢, are the plasma temperature, plasma number density
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and charge state of the species s respectively. Thermal velocity of the species ‘s’ is given by

1/2
vy = (KBTS> (2.2.8)

ms

If the velocity of the test charge is assumed to be lower than the thermal velocities of the
plasma particles i.e. v < vg, then the inverse of the dielectric function may be approximated

as

1 k22, \/? kX, - 1
-~ +iy| 5 Bk U x 2.2.9
e(k)  1+k2\% 2 (1+k2)3)? 25: visAZ (229)

Substituting (2.2.9) into (2.2.4) we obtain V (7) = V} + Vi, where

- / b i (2.2.10)
LT 8me ) T+ K20 -

and

= 1 k.7 37
\/7877‘360 / k 1+]€2)\2 kvgvs)\g x e rd k (2.2.11)

Let us take a spherical polar coordinate (k, «, ) system such that the polar angle « is the
angle between 7 and k and B is the azimuthal angle which lies in a plane perpendicular to
7 The volume element becomes d3k = k2 sin adadfBdk where 0 < oo < 7 and 0 < 8 < 27.

Integrating over « and 3, Vj reduces to

9AD
2eqm3r

‘/]_ = /0 msln krdk (2212)

We will solve the integral in equation (2.2.12) using Meijer’s G function (MGF) technique,
which will be further useful to evaluate other integrals appearing in V5. The MGF is defined
as [156]

Gm n A1,y ...y Q
pa b
1, ...,

— )T} T(1 = a; +1) .
) 27”/1_[] —l b+t)l_[] nt1 L (aj —t)XZdt
(2.2.13)

with the following conditions :

1.0<m<gand 0 <n <np.

2. Poles of I'(b; — t) must not coincide with the poles of I'(1 — a; + t) for any j and !
(where j =1,...,m;l =1,...,n), " being the Euler Gamma function.
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3. Residue of I'(—p), p being a positive integer, is Res{I'(—p)} =

4. The integration path L (equation 2.2.12) are of three types :

(a) where L runs from —oo to 4o0o: the poles of I'(1 — a; + t) lie to the left and
the poles of I'(b; — t) lie to the right of L (where j =1,...,m;l =1,...,n). The
conditions of convergence of the integration (2.2.13) are
p+4q<2(m+n)and |arg z| < (m—i—n—g— g) .

(b) where L is a loop, begining and ending at +o0: It encircles the poles of I'(b; —t)
(j = 1,...,m) once in the negative direction and all poles of I'(1 — a; + t) (I =
1,...,n) must remain outside the loop. The conditions of convergence of the

integration (2.2.13) are, ¢ > 1 and either p < qg or p = ¢ and |z| < 1.

(c) where L is a loop, begining and ending at —oo: It encircles the poles of I'(1—a;+t)
(I =1,...,n) once in the negative direction and all poles of I'(b; —¢) (j = 1,...,m)
must remain outside the loop. The conditions of convergence of the integration

(2.2.13) are, p > 1 and either p > g or p = q and |z| > 1.

5. Gmn (al,...,ap

ra | B z> is symmetric with respect to the set of parameters (a1, ..., ay),
1y -+ 0q
(@nt1, -y ap), (b1, ... b)) and (by1, ..., bg) e.g.

az,at, as, as, a4
Py — Ggi 9 ) 9 9 Py
b17b27b41b3

z> = ... (2.2.14)

G2 3 <a17a27a37a4)a5
54

bla b2a b37 b4

. G2 3 [ 41,02, 04,03, a5
- 54
b2, b1,b4, b3

We can associate several elementary and special functions with MGF. Let us take the

following example:

2
— 1
G219 2| = / T(b; —t) x 2tdt
1 1
= — [ Tb=-tT0h+=—t tdt 2.2.15
omi J, ( )(+2 ) X z ( )

The poles of I'(b—t) are at t = b+ n;n = 0,1,2,... and that of for I'(b + 5 — t) are at
t=>b+ % +n;n =0,1,2,.... Thus the residues of the integral in (2.2.15), due to the poles
of I'(b — t) are:

R, = 2mi { (_1)nr (1 - n> zb+"} n=0,1,2,..]

= 2mi {(471‘\/7?21”"} [as, r (; — n> = (_(;L)T;m\/%] (2.2.16)
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and the residues due to the poles of I'(b+ 5 — t) are:

—1)" 1
R = 2mi {( n!) r (2 - n> zb+%+"} n=0,1,2,..]
ontl 1
= —2mi {‘ﬁzbﬂﬂ} (2.2.17)
n!
According to the residue theorem the equation (2.2.15) becomes,
_ 1 &
G%Q( 12) = — Y [Ru+R)]
b’ b + 2 2mi n=0
. 823 1622
_ b1 9.1 _ _
= Vrz (1 222 + 2z i + T )
= rzbe 2V? (2.2.18)

The relevant terms in equation (2.2.12) can be evaluated using MGF as [156, 157]

_ k2 2
sinkr = VG o | | (2.2.19)
300 4
B -4 1 — 8
z a b o+
= GHi blazb 2.2.20
(I+ab)e — T(a) 11( g " (2.2.20)

Hence, equation (2.2.12) becomes

% ) / b sin krd(k2)
! deomr [, 1+ k2N\%
q)\% /OO 11 (02,2 1o — k*r? 2
= G AHkY | G d(k 2.2.21
4€0W2rﬁ ; 11| AP 02 %’ ol 4 (k%) ( )

where we have used the identities (2.2.19) and (2.2.20). Now, applying the following prop-

erty of MGF
mn [ A1y ap
z |G z | dx
5) P (bl,...,bq ”)

/OOGSt Cly ey Cy

0 “U\dy, . dy
n
£

EGHW sin (al,...,an,—dl,...,—dv,an+1,...,ap

ptv gtu
g b17"'me7_cla"’a_CU7bm+17"’qu

(2.2.22)
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equation (2.2.21) becomes

707_

27

Vi = \F (‘1

4607‘(’2

’1“2
e (2.2.23)

With the help of reduction property of MGF [156] given by
A1y .oy @ _ ag, ..., a
Ggmn 3 Up 2| = Gm_n 1_ y o Up P
P (bl,...,bql,al > p=1 o=l (bl,...,bq—l‘

and the symmetry property (2.2.14), we can write,

QT 20 — 7’2

degm2r Y
= Vme *p [using (2.2.18)]

(2.2.24)

1

’ 2

- ¢ b (2.2.25)

We will call this potential Vi as exponentially screened Coulomb potential (ESCP). The
potential (2.2.25) is of the form of Debye-Hiickel screening potential [83].
We now proceed to evaluate V,. Performing integration over the azimuthal angle (7) in

equation (2.2.11), we write

)\ A
qsv \/72 Y / i+ k:2)\2 / cos(o + 0)eF %7 sin gdo (2.2.26)
(] ts

where, 6 is the angle between 7 and ¢ and hence, (6 + o) will be the angle between k and

¥. The polar angle part of the integral can be written as

s
/ cos(o 4 0)e* S singdo = I — I (2.2.27)
0

v
where I; = cos@ / cos g€ 8 gin g do
0

2 cos § k in(k 2
cos [COS( r) _ sin(kr) = —Zj1(kr) cosf (2.2.28)
1

i kr k272

Jji(z) is the spherical Bessel function of first kind [158] and

™
I, = sin@/ sin 0e*" 5% sin gdo = sin 01} + 7 sin 1 (2.2.29)
0
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with I} = / sin? o cos(kr cos o) do (2.2.30)
0

and I”:/ sin? o sin(kr cos o)do (2.2.31)
0

Now, using the following properties [158]

cos(zcosl) = jo(x)— 2ja(z)cos20 + 2j4(x)dcosl — ......
and sin(zcosf) = 2j1(x)cosf — 2j3(x) cos 30 + 2j5(x) cos 50 — ......

equations (2.2.30) and (2.2.31) give

™
I = /siancos(krcosa)da
0

1 ™
= 2/ (1 — cos20) [jo(kr) — 2j2(kr) cos 20 + 2j4(kr)dcoso — ...]do
0

T .
= 3 Lo(kr) + ja(kr)]
and I = / sin? o sin(kr cos o)do
0

1 T
= 2/ (1 — cos20) [21(kr) coso — 2j3(kr) cos 30 + 2j5(kr) cosbo — ...]do =0
0

Thus, equation (2.2.29) becomes
I = gsinﬁ Lo (kr) + ja(kr)] (2.2.32)

Putting the values of I; and Iy from equations (2.2.28) and (2.2.32) respectively, we can
write the angular integral (2.2.27) as

™ ) 2
/ cos(o + 0)e* 5% sin gdo = — = j1 (kr) cos 6 + gsine [Jo(kr) + ja(kr)] (2.2.33)
0 (3

Using equations (2.2.27) to (2.2.29) and considering the real parts, equation (2.2.26) turns

to

QU)\ < k241 (kr)
= 2.2.34
o \/72 o2 cos@/ k:2)\2 5 dk (2.2.34)

We have employed MGF to find a closed analytic form of the potential V5. Using the

following identities:

_B8 8
. 2P _at g l—a+73
(1+azb)>  T(a)
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-jy<z>=G58<_

<y € at,y ..., Qp
° Gs t PR ) Gm n 5 eeny 2\ de
/0 (dl,...,d 5) P\ by, by
Gt+m s+n 7"'7an7_dlv---v_dvyan+17---,ap
f ptv gtu

mIs

)

- (2.2.35)
— 2.2.35
10y

Further simplification can be done by using the following properties:

o Shamn [0\ _ amon a1+ k, .. ap+k’
PO\ by +k, by + k

pa bi,...,bq
_ as, ..., a
2| =gmrt B ‘z
) pl“(bl,...,bq—1

bla ceey bm7 —C1ly ey —Cu, berla ey bq
we can write

B qv)\D %
8meg \/>Z Vs A2 o8 GG <1 1 _

2720

where K, (z) is called the Macdonald function or modified Bessel function of second kind.

The final form of V5 becomes

Vo = 87760\/>Z USAQTKO< >C089 (2.2.36)

This potential is called the near field wake potential (NFWP). From the convergence condi-

tion [156] of G2 J (H Y ou
2t 95~

it can be seen that the NFWP is effective for r < 2Ap.

2
2.2.2 Moving ion in classical dusty plasma

The effect of dust charge fluctuation on the potential around a slowly moving test charge
in un-magnetized classical dusty plasma was studied by Shukla [93] where the plasma was
considered to be consisted of electrons (e), positive ions (i) and negatively charged dust

grains (d). The plasma dielectric function is given as,

- T k. 1 Ve
e(k) = R _ 2.2.37
p> w( W3 k> YN iR (2:2.37)

s=e,i,d




26 2: Moving H-like atom under plasma environment

The Debye screening length of the species s are given by

As(s=e,1) = (e()TrLSTS/nSeQ)l/2 and M = (eoded/ndZ§e2)1/2

where ng is the equilibrium number density and Ts(s = e,,d) is the temperature of the
species ‘s’ (s = e,i,d). In this plasma the quasi charge neutrality condition becomes
Ne + Zgng = n;, Zg being the number of electrons accumulated on the dust grain of radius
rq. Following the work of Varma et.al [159], the dust charging frequency corresponding to

dust charge fluctuations can be written as,
ve = 1/47%2 (ra/N) |1+ (miTi fmeTo) Y g Jni | wpi (2.2.38)

and the electron-dust collision frequency as,

Ve = V8mngradiwp: (1 +T;/T.) (1 — exbo/T3) (2.2.39)
nge>

where Y9 = —Zge/4megry is the floating potential of the dust grain and wy; = is
€0Mm;

the plasma oscillation frequency of the ions. When the dust charging effect is very high, we

can assume v, > |k.7] and equation (2.2.37) can be re-written as,

- 1 7 k@ Ve (kD)
e(k) = 1+ Z —kz)\g (1 _Z\/;kvts> + 22 _Zk:2)\2uc2

s=ei,d
= 1;;];?% - zlf;i? \/Zif Zd vtslAZ + k;A% ”652'6) (2.2.40)

where,
)\13 = S;ﬂé + Vj;% (2.2.41)

A¢ is called the effective screening length of the plasma. Now on imposing the slowly moving

charge condition i.e for |k.7| < kv, the inverse of dielectric function gives

1 k2)\2 BN Ea 1 kN4 1 v (kv
N 2t2+i\/? 2t227;) Z 5 T iy 221/(21)) (2.2.42)
e(k) 1+k2XN 2(1+K2N))? k o UsAS (1 +E2A9)2 k2N v2
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Using this relation, the potential V() in (2.2.4) may be written as

V(i) = Vi+Ve+ Vs

q N ket
h Vi = "dk
where, 8m2eg / 1+k2)\2
. 1 s
V- — k? — Zk‘.’rd?)k
2 \f&r 60/ 1+k2)\2 Us;dvtsxg e
Vs = i / A k.G x T a3k
T )\?1/02 87r e (L+K22H)2

The solutions for V; and V, are same as given in the equations (2.2.10) and (2.2.11) respec-
tively, where Ap is to be replaced by A;.
After performing the angular integral over o and 5 as described in the previous subsection,

the third part of the potential becomes

4 > (k2 — ksin
W ::ez;tﬂ 02529 y /0 (k 7"0(‘15 f?“m/;)sz kr) (2.2.43)
Now consider a standard integral [156],
0 L _
/0 %dk: %e At (2.2.44)
The cosine part of the integral (2.2.43) will be,
© k2rcoskr 0 [ ksinkr ™ 72 .
/O mdk = r@r/o mdk = <r — M) e M (2.2.45)
Using equations (2.2.44) and (2.2.45), equation (2.2.43) becomes
r
Vg = — 9 e o A cosd (2.2.46)

4men 20202

This part of the potential is called ‘dusty potential’ (DP).

2.2.3 Moving ion in quantum qlasma

In the present section we will concentrate on the models for the collision-less quantum
plasma. The modeling of the potential in the quantum plasma scenario was first given by

Shukla et.al. [160] around a moving test charge within a semiconductor substance having
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electrons (e) and holes (h) as the plasma species (s). The dielectric function for the electron-

hole plasma was first given by Pine [155] as

- 1 rko\ 1+EX, x 1 k&
k) =1 1— it S i 2.2.4
e(k) =1+ Z \Zk2 ( ) m) A, 2 2 VA2 3 (2:247)

s

where,

1. v = mis(37r2ns)% is the Fermi velocity of the species s with ngy and mg being the

number density and mass respectively.

2. Ag is the screening length corresponding to the plasma species ‘s’. Using the Thomas-

1/2
n
Fermi model we may write \s = , Where w; = ( sds > is the plasma oscilla-

Us
\/gws €0Ms

tion angular frequency (in S.I.) of species ’s’.

3. The overall screening length Ag of the quantum plasma is given by

Ag = (Z g) (2.2.48)

Let us consider a slowly moving test charge through the medium i.e. v < v, for which

inverse of the dielectric function becomes

-1

e(k) 1+ k:Q)\g? 2~ N2 K3 1+ k:2/\2Q
k2 )\2 ENE 1
Q T Q =
~ — k. 2.2.49
1+ k203 Thas g Ze:h Vs A2 (2.249)

Substituting (2.2.49) into (2.2.4) we can write, V (7) = Vi + Va, where

22
q Q ik. 7 337,
- 43K 2.2.50
! 87m3¢o / L1 k205" ( )
d V; T4 Ay k.7 L kg 2.2.51
and Vo = Z287T3€0/k(1+k2)\2Q)2 .UXS:US)\EXG (2.2.51)

Since these two integrals are similar as the integrals in equations (2.2.10) and (2.2.11), we

can directly write the solutions as

Vi = AQ 2.2.52
! 47reo7“€ ( )
qu 1 T
and V2 = _87'('60 Z @TKO <)\Q) cos (2253)

s
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It is ,therefore, clear that in case of quantum plasma the velocity independent or static
potential V} has the same form as Debye-Hiickel potential [83] appeared in case of classical
WCP with only difference being the plasma screening length Ag replacing the classical
screening length A\p. Similarly, V5 is called the near field wake potential (NFWP) which is
effective upto 7 < 2Ag and can be considered to be zero for r > 2\g.

2.3 Determination of energy levels: the present method

To estimate energy eigenvalues of H-like systems moving through different plasma envi-
ronments Ritz variation technique has been employed. In the first step, a suitable trial
wavefunction is considered where the radial part is expanded in Slater—type basis set. Sub-
sequently, the variational equations for the plasma environments are given. In the last part
of this section, the relevant matrix elements of hydrogenic states upto n = 4 level are given
in closed analytic forms. and the analytic form of the necessary basis—integrals are provided
in detail. For the calculation of matrix elements, it is required to solve few particular types
of integrals. These integrals are known as ‘basis integrals’. The analytic expressions of the

basis integrals are also provided.

2.3.1 Wavefunction

The trial wavefunction is taken as
U(r,0,¢) =(r)Yim,(0,¢)(a+ bcosh) (2.3.1)

where, ¥ (r) is the radial part and Y}, (0, ¢) is the the spherical harmonics with [ and m
being the orbital and azimuthal quantum numbers, respectively. (a + bcos#) is the orbital
distortion term that arises due to the wake part of the potential (a and b are the distortion

parameters). The radial wavefunction ¥ (r) is expanded in terms of Slater—type orbitals as

N
w(r) = Zcirnie—/)ﬂ (2.3.2)
i=1

p; is the non-linear parameter which is generated in geometrical progression as p; = p;—17,
~ being the geometrical progression ratio. The starting value of p; is taken by employing
Nelder-Mead optimization algorithm [161] using single term in equation (2.3.2), whereas
the ending value of p; is taken as ~ —Ofth of the starting value of p;. In equation (2.3.2),
C; is the expansion coefficient in equation (2.3.2), which serves as the linear variational

parameters and N is the total number of terms in the basis set. The generalized eigenvalue
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equation [162] is written as

[

C=ESC (2.3.3)

where, H, S and C are the Hamiltonian matrix, overlap matrix and eigen-vector respec-

tively. By solving this equation we determine the energy eigenvalues F.

2.3.2 Variational Equation

The energy eigenvalues of two—body systems are determined by solving the variational

equation,
SUT)+ (V) —E(S)]=0 (2.3.4)

where the kinetic energy (K.E.) term, in spherical polar coordinates takes the form
Y EY (LS / OUN® L (0N 1 (U
S 2\my me or r2 \ 00 r2sin?6 \ 0¢

where m; and mo are the masses of the nucleus and the electron respectively. The potential

72 sin 0dOddr

(2.3.5)

energy (P.E.) term,

(V) = / Verp92r? sin 0dfdgdr (2.3.6)
and the normalization or overlap term,

(S) = / U272 sin Odhdpdr (2.3.7)

In equation (2.3.6) the effective potential energies (Ve ss) which were derived in the previous

section are listed below in atomic units (a.u.)

e Classical weakly coupled plasma

r

7 ——
Verr = - AD + &rK (;D) cosf (2.3.8)
v |2 1

is the coefficient of the NFWP and Z is the atomic number of the moving atom/ion.
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e Classical dusty plasma

r T
r

Z —_— J—
Vesr = —e At 4+ &rK <)\t> cosf + ye At cosd (2.3.10)

The first two parts are the exponentially screened Coulomb potential (ESCP) and

near field wake potential (NFWP) respectively, while the third part is called ‘dusty
potential’ (DP). In this expression,

Zv |2 1
£ = 2\52831@3 (2.3.11)

Zuv,
and x = 22N (2.3.12)
(2

are the coefficients of NFWP and DP respectively.

e Quantum plasma

r

g ——
Verr = - e AQ 4 érKy (;Q) cosd (2.3.13)

These two terms in the RHS of equation (2.3.13) are clearly the exponentially screened

Coulomb potential (ESCP) and the near field wake potential (NFWP) respectively.

In this expression, we have used

Zv 1
= — E — 2.3.14
g 2 3 UtsAg ( )

which is the coefficient of NFWP.

2.3.3 Matrix elements and basis integrals

We have estimated the energy eigenvalues of 1sg, 2sg, 2pg and 2py; states of hydrogen
atom moving under classical weakly coupled plasma, classical dusty plasma and quantum
plasma. Here the subscript signifies the values of the azimuthal quantum number ‘m’. A
special emphasis has been given on C°T jon moving under electron-hole quantum plasma
due to its abundance in such plasma scenario. In this case we have estimated the energy
eigenvalues of nsg [n = 1 — 4]; npg, npx1 [n = 2 — 4]; ndy, ndy1, ndyo [n =3 — 4] and nfy,
nfi1, nfio, nfrs [n = 4] states of C ion. The matrix elements of the K.E., P.E. and

overlap terms are given below for all the states mentioned above.
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Matrix elements of nsg

Following equation (2.3.1) the trial wavefunction is given by
N
U(r,0,¢) =Yo(0,¢)(a+ bcosh) Z Cir™ie "

i=1

(i) Matrix element of K.E.

N\ L (VP 1 (owy’
or r2 \ 00 r2sin20 \ 0¢

1
Tz‘j:§

ij

Now,

(?) = Yoo(0,¢)(a+bcosO) (nyr™i~t — piri) e P
T/

v ?
(88 ) = Y5(0,0)(a+bcosd)? (nr™ — pir™) (njr"i Tt — pir™) e~ (Pitps)r
r /..
ij

By performing the angular integrals over 6 and ¢ we obtain

bQ
Ti; = <a2 + 3> [ning A (ni + nj, pi + pj) — (nipj + njpi) A (ni +nj +1, pi + pj)

2

2b
+  pipiA(ni +nj+ 2,0+ pj)] + ?A (ni + ny, pi + pj)

The radial basis integral A (n,«) is defined below

o T 1
An,a) = / e dx = L+l [ = Euler’s gamma function]
0 antl
(ii) Matrix element of P.E.
e Classical WCP:
5 b 1
‘/ij = 2Z|a"+— A ni+nj+1,pi+pj+—
3 AD

4 1
+—-EabW ni+nj+3,pi+pj,f
3 AD
In this case, the radial basis integral W (o, «, ) is given by

W(o,a,y) = / 27 e K, (yx)da
0

VA(2)" (o +v)Do ~)
e e el

1 1l aa—7x
oct+uv,v+ -0+ o3
2 2 a+vy
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where, Re 0 > | Re v |, Re (& +7) > 0 and 2F) is the confluent hypergeometric
function [156].

e Classical dusty plasma:

b? 1
Vvij = —22<a2+3>A(ni+nj+17pi+pj+>\>+
t

1 4 1
— | + oxabA | n; +n;+2,p +pj + —
¢ 3 At

4
ggabW (nl +nj + 3, pi + pj, \

¢ Quantum plasma:

2

b 1
Vij = —2Z<a2+3>A<nz‘+nj+1ypz‘+pj+/\>
Q

4 1
+-8abW | ng +nj + 3, pi + pj, ~—
3 AQ

(iii) Matrix element of overlap term

b2
Sij =2 <a2 + 3) A(ni +nj+2,pi + pj)
The common multiplying factor in Tj;, V;; and S;; has been ignored.

Matrix elements of npg

Following equation (2.3.1) the trial wavefunction is given by
N
U(r,0,¢) = Yio(0, ¢)(a+ beosf) Y Cre i

i=1

Matrix element of K.E.

a? b

Ty = <3 + 5) [ninj A (ng +nj, pi + pj) — (nip; +njpi) A(ng +nj5 + 1, p; + pj)
a? . 4v?
3 15

+piij(ni+nj+2,pi+pj)]+2( >A(ni+nj,,0i+,0j)

Matrix element of P.E.

e Classical WCP:

a? b 1
Vij = “2Z—+—-A(ni+tnj+1,pi+pj+—
3 ) AD
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4 1
+=&abW | n; +nj + 3, pi + pj, ~—
5 AD
e Classical dusty plasma:

a’? b 1
Vij = =2Z| o +—|A(ni+tnj+1L,pi+pj+ |+
3 5 At

4 1 4 1
=&abW | ny +n; 4+ 3,0 + pj, — | + =xabA [ n; +n; +2,p; + pj + —
) At ) At

e Quantum plasma:

a®> b 1
V;j = 2Z(—+—]A ni+Nj+1,pi+pj+7
35 AQ

4 1
+-&abW ( ny +nj + 3, pi + pj, —
5 20

Matrix element of overlap term

a? b
Sij:2<3+5)A(ni+nj+2apz’+Pj)

Matrix elements of npi;

Following equation (2.3.1) the trial wavefunction is given by

N
U(r,0,¢0) =Y1+1(0,¢)(a+ bcosh) Z Cir'ie™ "

i=1

Matrix element of K.E.
a?  b?

Tij = 2 (3 + 15) [ning A (ni +nj, pi + pj) — (nipj + njpi) A(ni +nj + 1, pi + pj)

a2 2
+pipj A (i +nj +2,pi+ pj)] +4 (3 + 5) A(ni +nj, pi + pj)
Matrix element of P.E.
e Classical WCP:
a? b 1
V;j = 47 §+T5 A ni+nj+1,/)i+pj+g

8 1
+ﬁ§abW (nZ +nj+ 3, pi + pj, )\D)
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e Classical dusty plasma:

a’>  b? 1

8 1 8 1
]5@MV<W+nf+&M+RﬁM>+W5MMA<m+nf+1M+RW¥&)

¢ Quantum plasma:

a®?  b? 1

8 1
+B§abW (nl +nj + 3, pi + pj, )\Q>

Matrix element of overlap term

a® b
Sij:4<3+15>A(ni+nj+2,pi+pj)

Matrix elements of nd

Following equation (2.3.1) the trial wavefunction is given by

N
U(r,0,¢) = Yao(0, ¢)(a+beosf) Y Cr™e i
=1

Matrix element of K.E.

a?  11b?
T. =
“ < 5 105

) [ninj A (ni + nj, pi + p;) — (nipj +n;pi) A(ni +nj + 1, pi + p;)

3a? | 38D
+ o pipA(ni g+ 2,00+ pp)] + 2 =+ 5o ) Alni+ng, i+ p))

Matrix element of P.E. for quantum plasma

a? 112 1

22 1
—i-ﬁﬁabW <m +nj + 3, pi + pj, )\Q>

Matrix element of overlap term

a?  11b?
Sij:2<5+105>A(ni+nj+2,pi+pj)
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Matrix elements of ndy;

Following equation (2.3.1) the trial wavefunction is given by

N

U(r,0,¢0) =Y211(0,¢)(a+ bcosh) Z Cir'ie™ "
i=1

Matrix element of K.E.

a2 b2
Ti; = <15 + 35> [ninj A (ni +nj, pi + pj) — (nipj +njpi) A(ni +nj + 1, p; + pj)

3a? | 1107
+ pipi A (ni +nj + 2, pi + pj)] +2 ( +

R > A (ni +nj, pi + pj)

Matrix element of P.E. for quantum plasma

CL2 2

1

4 1
+£§abW <nl +n; + 3, pi + Pjs )\Q>

Matrix element of overlap term

a? b
Sz’j—2<15+35)A(”i+”j+2,m+w’)

Matrix elements of ndyo

Following equation (2.3.1) the trial wavefunction is given by

N

U(r,0,¢) =Ya 12(0,6)(a+ bcosb) Z Cirie=Pi"
i=1

Matrix element of K.E.

a2 2
Ti; = (15 + 105) [nin A (n; +nj, pi + pj) — (nipj +njpi) A(ni +nj + 1, p; + pj)
a?  2v?
+ pipjA(ni +nj+ 2,0+ pj)] +2 5 + 35 A (n; +nj, pi + pj)

Matrix element of P.E. for quantum plasma

a? b2 1
Vi' = =27 T5+ﬁ A ni—l—nj-l-l,pi-i-pj%—g
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4 1
Matrix element of overlap term
a? b?
Sij =2 <15+105> A(ni+nj +2,pi+ pj)
Matrix elements of nfj
Following equation (2.3.1) the trial wavefunction is given by
N
U(r,0,¢) = Ys0(0,6)(a+ bcosb) Z Cirie= "
i=1
Matrix element of K.E.
a?  23b?
Ty = T [nin A (n; +nj, pi + pj) — (nipj +njpi) A(ng +nj + 1, p; + pj)
6a®>  149b°
+mmA@u+W+aﬁn+mﬂ+2(7,+ m5)A0u+nﬁm+pﬂ
Matrix element of P.E. for quantum plasma
a?  23b? 1
Vij = 27 <7+315>A <nz‘+nj+1)pi+pj+>\@>

92 1
+%§abW (”z +nj + 3, pi + pj, )\Q>

Matrix element of overlap term

a?  23b
Sz’j:2<7+315>A("z‘+"j+2>m+0j)

Matrix elements of nfi

Following equation (2.3.1) the trial wavefunction is given by

N

U(r,0,¢) =Ys11(0,¢0)(a+ bcosh) Z Cir"ie™ "
i=1

Matrix element of K.E.

2 2
a
T = (21 + 45) [ninj A (ni +nj, pi + pj) — (nipj +njpi) A(ni +nj + 1, pi + pj)

37
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a?  23b?
+pipiA(ni+ng +2,pi+ py)] +4{ — + 5o | Al +ny, pi+ pj)
Matrix element of P.E. for quantum plasma
a®> b 1
V;j = 27 ﬁ—i_ﬁ A ni—l—nj%—l,pi—&—pj—i—g

4 1
+Z5§abW (n, +nj + 3, pi + pj, )\Q>

Matrix element of overlap term

a®?  b?
S’ij:2<21+45>A(ni+n1+2api+pj)

Matrix elements of nfio
Following equation (2.3.1) the trial wavefunction is given by
N
U(r,0,¢) =Ys12(0,¢p)(a+ bcosh) Z Cir™ie "
i=1

Matrix element of K.E.

a2 b2
T; = (105 + 315> [nin; A (n; +nj, pi + pj) — (nipj + njpi) A(ni +nj + 1, pi + p;)
2a> V?
+ pipsA(ng +nj+2,p + pj)] + 2 ETT A (ni +nj, pi + pj)

Matrix element of P.E. for quantum plasma

Vi = —22( S v P A(mny 4 Lty +
o= 105 ' 315 BT RITN

4 1

Matrix element of overlap term

a? v?
Sij =2 (105+315>A(ni+”j+2>m+0j)
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Matrix elements of nfis

Following equation (2.3.1) the trial wavefunction is given by

N

U(r,0,9) = Ya,ea(0, 9)(a+beos) 3 Cope o
i=1
Matrix element of K.E.
a2 2
T,; = <35 + 315> [nin A (n; +nj, pi + pj) — (nipj +njpi) A(ni +n; + 1, pi + pj)
3a2  5b°
-l-piij(ni-l-nj-i-Q,pi-i-pj)] +4 g%—ﬁ A(ni-l-nj,pi—l-pj)
Matrix element of P.E. for quantum plasma
% 2 LA DY (S
R L L7 e - s . L
i 35 315 i j y Pi T Py )\Q

4 1
Jr%fabw (nz +n;+3,pi + pj, >\Q>

Matrix element of overlap term

a? b?
Sij =2 <35+315>A(ni+nj+27m+0j)

2.4 Results and Discussions

At first, we report the energy eigenvalues of 1sg 2sg, 2po and 2p+; states of H atom moving
under classical weakly coupled plasma, classical dusty plasma and quantum plasma for a
particular plasma particle density and very few ion velocity (v). The energy eigenvalues
of 1sg 2sg, 2po and 2p47 states of free static hydrogen atom are also evaluated to observe
the shift in the energy eigenvalues in the plasma conditions. In the next phase, the energy
eigenvalues of nsg [n = 1 — 4]; npg, npx1 [n = 2 — 4]; ndy, ndy1, ndyo [n =3 — 4] and nfy,
nfii, nfre, nfig [n = 4] states of C* jon moving under electron-hole quantum plasma

are given elaborately for different set of plasma densities and various ion velocities.

2.4.1 H atom in classical weakly coupled plasma

The plasma we consider is composed of free electrons and H* ions having equal number
density n = 102'm™3. With a view to assessing the effects of plasma environment and
the ‘wake’ potential through the ESCP and NFWP terms (equation—2.3.8) respectively, we

have also carried out the energy calculation for a ‘free’ (no plasma in the surrounding) and
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static H atom. For a free atom, we set Ap = oo and for a static H atom, we set v = 0 in
equation (2.3.8). Moreover, there is no velocity dependent distortion in the wavefunction
for static H atom and hence, we set a = 1, b = 0 in equation (2.3.1). All the results are

given in table (2.4.1). The present results for free and static H atom can be readily verified

from Bohr’s energy formula E,, = —pu H27112 (a.u.) where pg = is the reduced mass
of hydrogen atom. In this expression, my = 1836.152667 a.u. is the mass of the nucleus
i.e. of proton and n is the principal quantum number of the states. Under the plasma
environment having density n = 10>!m ™3, the energy eigenvalues of static hydrogen atom
(v = 0) become more positive with respect to the free case, exhibiting the effect of ESCP.
It is evident from Table (2.4.1) that 2sp, 2py and 2py; states are degenerate in the free
case, but under plasma environment (n = 10*!m~3 and v = 0), the energy of 2sq state
becomes more negative (i.e. more bound) than 2pg +; states. This is the typical breaking
of accidental degeneracy (i.e. the [—degeneracy corresponding to a given n) which occurs
due to the presence of plasma surrounding, or in other words, the effect of ESCP. However,

the 2py and 2py; states are still degenerate, as is seen from table (2.4.1). When the H

Table 2.4.1: Energy eigenvalues (a.u.) of 1sg, 2s9, 2pp and 2p4; states of H atom moving in
classical plasma having number density n = 102m =3 of electrons for different ion velocities

v (m/s).

n v 1sg 250 2po 2p41
free 0 ~0.499727 -0.124931 -0.124931 —0.124931
102! 0 ~0.499720 -0.124924 —0.124921 -0.124921

1x10* -0.499682 —0.124822 -0.124782 —0.124854
1x10° -0.499447 -0.123987 -0.121662 —0.124174
3x10° -0.498917 —-0.122123 -0.115341 —0.122698
5%10° -0.498388 —0.120269 -0.109149 -0.121231
7x10° -0.497859 -0.118425 -0.102968 —0.119809

9%x105 -0.497330 -0.116589 -0.097177 -0.118363

atom is moving (v # 0) through the plasma, the effect of NFWP on the energy eigenvalues
comes into play. Due to the presence of the ‘cos®’ term in NFWP, the |m|-degeneracy

is eliminated for each ion velocity (v) and thus, a Stark-like splitting of energy levels are
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found. For example, table (2.4.1) shows, for v = 10* m/s and n = 102'm~3, the energy
eigenvalues of 2pg and 2py; states are —0.124782 a.u. and —0.124854 a.u. respectively.
Similar feature is observed for other velocities also. It is evident that at higher velocities
(say, v > 10° m/s), the effect of NFWP becomes more prominent. For, n = 10%'m=3,
we have found maximum effect of NFWP at v ~ 9 x 10° m/s beyond which the thermal
Mach number of the moving ion defined by the ratio Mp = 1(5 = e, i) becomes close to
unity or even higher. The thermal Mach number depends strivcftly on the density of plasma
particles. The present methodology is valid when Mr < 1 and, therefore, for v > 10° m/s

when n = 102'm =3, the expression for NFWP may not be completely valid.

1,220+

1,210 \\\

1,200 ]

—e— Ly o-line
—u— Ly, mi-line

T T T T T T T T T T T T T T T T T T T 1
0 2.0x10° 4.0x10° 6.0x10° 8.0x10% 1.0x10°
Ion velocity (m/s)

Figure 2.4.1: Transition wavelength of m and o-components of Lyman-« lines of a moving
hydrogen in classical plasma environment.

From the data given in Table (2.4.1), we can estimate the transition wavelength
(M) of m-line (2pg — 1sp) and o-line (2p+1 — 1sp) corresponding to Lyman-« transition of
hydrogen atom. In Figure (2.4.1), we have depicted the variation of A\ with respect to ion
velocity (v) under classical plasma environment. The conversion factor used here to obtain

the transition wavelength A (in A) from the energy difference (AE in a.u.) between initial
455.633494

and final states is A = N It is seen from Figure (2.4.1) that although A values of
both 7 and o lines decrease as v increases, the rate of decrease of ) is faster in case of 7-lines
than of o-lines. Thus, a ‘blue-shift’ of spectral lines corresponding to Lyman-« transition
can be found under plasma environment if the ion velocity increases. In a real scenario,
when an initially energized moving ion loses its kinetic energy due to various processes in
plasma and consequently its velocity decreases, a ‘red-shift’ in both 7 and ¢ components
of Lyman-a transition in weakly coupled classical plasma environment should be observed.

This feature may find important application in the field of plasma diagnostics.
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2.4.2 H atom in classical dusty plasma

Similar to classical plasma, the energy eigenvalues of 1sg, 2sg, 2pg and 2pi; states of
hydrogen atom in dusty plasma environment are estimated using Ritz variational method
and the results are given in table (2.4.2). For the sake of comparison, the results of ‘free’
and static H-atom are also given in table (2.4.2). We have chosen typical size of dust radius
rq = 0.5 nm, charge accumulated on dust grain Z; = 100 a.u. and mass of dust grains
mg = 10000my in these calculations. The parameters of the model potential are chosen
appropriately to mimic classical plasma environment. The densities of plasma electrons,

3 n; =2 x 102 m™3 and ng =

ions (H') and dust particles are taken as n. = 10*! m
10! m~3 respectively. The temperatures of electron (7.), ion (7;) and dust (7}) are taken
as Ty = T; = 2T, and where T, = 2.9 x 10* K. For these plasma parameters, the effective

plasma screening length becomes A\; = 971.16 a.u. or 51.39 nm.

Table 2.4.2: Energy eigenvalues (a.u.) of 1sg, 259, 2pp and 2pyq states of H atom moving
in classical dusty plasma having number density n, = 102!m~3 of electrons for different
ion velocities v (m/s).

Ne v 1sg 250 2po 2p41
free 0 —0.49972783 —0.12493196 —0.12493196 —0.12493196
102! 0 —0.49869893 —0.12389767 —0.12397295 —0.12397295

1.0x10% —0.49869808 —0.12389719 —0.12390410 -0.12397267
1.0x10% —0.49869388 —0.12389288 —0.12389723 —0.12397038
1.5x10%  -0.49869165 -0.12389052 -0.12389342 -0.12396911
2.0x10%  -0.49868943 -0.12388816 —0.12388960 —0.12396784
2.5x10%  -0.49868720 -0.12388580 —0.12388579 —0.12396657

3.0x10* -0.49868497 -0.12388344 -0.12388197 -0.12396530

As shown in table (2.4.2), for the static case (v = 0) due to the effect of ESCP part
in the potential (2.3.10), the I-degeneracy is removed and as a result the energy of 2s state
becomes different from those of 2py and 2p; states. While studying the variation of energy
eigenvalues with respect to v, the thermal Mach number My = UE (s =e,i,d) is kept below
unity to maintain the validity of the model potential. For v >S 0, the |m| degeneracy of

energy eigenvalues is removed due to the ‘cos 6§’ term in NFWP and DP parts in the effective
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1,215.94
1,215.93

1,215.92

—e— Ly, o-line
—a— Ly, n-line

1,215.91

1,215.68

Transition wavelength (A)

1,215.66

R e T T e T T e e e e
5.0x10° 1.0x10% 1.5x10% 2.0x10% 2.5%104 3.0x104 3.5x10%
Ion velocity (m/s)

Figure 2.4.2: Transition wavelength of m and o-components of Lyman-« lines of a moving
hydrogen in classical dusty plasma environment.

potential (2.3.10). This feature is more or less similar to what was found in classical plasma
environment. For instance, table (2.4.2) shows that the energy eigenvalues of the 2pg and
2p+1 states are —0.12390410 a.u. and —0.12397267 a.u. respectively, indicating that the
states are not degenerate at ion velocity v = 10% m/s and plasma electron density n, =
102" m™3, thus giving rise to Stark-like splitting. This splitting becomes more prominent

at velocities greater than 10* m/s, as is shown in table (2.4.2).

Similar to the classical plasma, we have estimated the transition wavelengths (\) of
m and o components of Lyman-« transition of moving H atom for different v under classical
dusty plasma environment and variation of A with respect to v is shown in figure (2.4.2). It
is remarkable that, unlike the classical plasma, the variation of A\ show different behaviour
for 7 and o-lines. It can be seen from figure (2.4.2) that for 7—line \ decreases (‘blue-shift’)

as v increases whereas the o—line shows red-shift.

2.4.3 H-like ion in quantum plasma

The energy eigenvalues of 1sg, 2sg, 2pg and 2p; states of hydrogen atom moving in electron-
hole quantum plasma are estimated variationally, as is done in previous cases, and the
results are given in table (2.4.3). Number densities of electrons and holes are considered

3. The effective masses of hole and electron are taken

to be equalin, = nj = 10%° m
as my = 0.39M, and m. = 0.26M, respectively [163, 164], where M, is the rest mass
of the electron. Table (2.4.3) shows that under quantum plasma environment the energy
eigenvalues of static hydrogen atom (v = 0) increase from the free energy eigenvalues. It is
also evident that under the same plasma condition (n, = 102°m~3 and v = 0), the breaking

of [-degeneracy takes place due to the effect of ESCP, similar to that observed in classical
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Table 2.4.3: Energy eigenvalues (a.u.) of 1sg, 259, 2pp and 2p4; states of H atom moving
in quantum plasma having electron number density n, = 102°m ™3 of electrons for different
ion velocities v (m/s). The notation P(4Q) stands for P x 10%%.

Ne v 1sp 250 2po 2p+1
free 0 -0.499727  -0.124931 -0.124931 -0.124931
10% 0 -0.346612  -0.200549(-1) -0.129652(-1) —0.129652(-1)

1.0x10%  -0.346600 —0.200511(-1) ~—0.129595(-1) —0.129632(-1)
1.0x10° —-0.346571 —0.200227(-1) —0.129097(-1) —0.129455(-1)
1.2x10° -0.346565 —0.200164(-1) —0.128986(-1) ~—0.129418(-1)
1.4x10% —0.346558 —0.200101(-1) —0.128876(-1) —0.129379(-1)
1.6x10% —0.346552 —0.200038(-1) —0.128765(-1) —0.129340(-1)

1.8x10° ~0.346545 —0.199975(-1) ~0.128654(-1) ~0.129301(-1)

1,365.74 4

1,365.72 4

1,365.7 - —e— Ly, a-line
—=— Ly, n-line

s

1,365.55

Transition wavelength (A)

1,365.5

35454+—"—m 7
8.0x10° 1.0x10° 1.2%105 1.4x%105 1.6x10° 1.8x10° 2.0%10°

Ton velocity (m/s)

Figure 2.4.3: Transition wavelength of m and o-components of Lyman-« lines of a moving
hydrogen in quantum plasma environment.
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plasma. For hydrogen atom moving with velocity v = 10* m/s the energy eigenvalues of
all the states increases slowly. In this case, the energy eigenvalues of 2pg and 2py; states
become —0.0129595 a.u. and —0.0129632 a.u. respectively, which denotes the lifting of
|m|-degeneracy and Stark-like splitting is observed in this case also. Similar features are

observed for the higher velocities up to v = 1.8 x 10° m/s, as shown in table (2.4.3).

Figure (2.4.3) shows the variation of transition wavelengths (A) of 7 and o-lines
corresponding to the Lyman-« transition of hydrogen atom with respect to different v
under the quantum plasma environment. Similar features are observed as found in case of
classical dusty plasma environment i.e. A of the 7-line decreases (‘blue-shift) and for o-line,

it increases (‘red-shift) as the ion velocity (v) increases.

C5t jon

We have made an extensive study on the energy eigenvalues of nsg [n = 1 — 4]; npg, np+1
[n = 2—4]; ndy, ndi1, ndis [n = 3—4] and nfg, nfi1, nfis, nfiz [n = 4] states of C*>* ion
moving under quantum plasma environment considering the relevant parameters similar to

real experimental scenario.

Table 2.4.4: Values of plasma screening lengths (Ag in a.u.) and the coefficients of the wake
potential (¢ in a.u.) of C°* moving in QP for different plasma particle densities ng (in /c.c.)
and ion velocities v (in cm./sec). The symbol P(+Q) corresponds to P x 10%.

ns(/c.c.) wv(cm./sec) Ag(a.u) ¢(au.)
10%° 103 0.5856781(+01)  0.3826279(-05)
10° 0.3826279(-03)
107 0.3826279(-01)
10%° 103 0.3990179(+01)  0.3826279(-05)
10° 0.3826279(-03)
107 0.3826279(-05)
102! 103 0.2718477(+01)  0.3826279(-05)
10° 0.3826279(-03)
107 0.3826279(-01)
10%2 103 0.1852077(+01)  0.3826279(-05)
10° 0.3826279(-03)
107 0.3826279(-01)
10% 103 0.1261805(+01)  0.3826279(-05)
10° 0.3826279(-03)
107 0.3826279(-01)

The effective masses of the plasma constituting electron (e) and hole (h) are 0.26 a.u.

and 0.39 a.u. respectively [163,164]. Such parameters carry physical significance if we



46 2: Moving H-like atom under plasma environment

Table 2.4.5: Convergence of the energy eigenvalues (a.u.) of 1sg, 2p+1, 3d+o and 4 f13 states
of C>* moving in QP. The plasma particle density ns, = 10'? /c.c. and the velocity of the
ion v = 103cm. /sec. N represents the total number of terms in the basis set.

N 1sg N 2p+1 N 3d+9 N 4fys

1 16.996 989 379 2 3.516 726 519 3 1.101 328 256 4 0.328 549 543
3 16.996 997 305 5 3.544 757 189 7 1.114 962 499 9 0.329 492 549
6 16.996 997 518 9  3.544 757 475 12 1.114 962 616 15 0.329 493 091
15 16.996 997 543 20 3.544 757 476 25 1.114 962 632 22 0.329 493 108
28  16.996 997 543 35 3.544 757 476 42 1.114 962 632 39 0.329 493 108
45  16.996 997 543 54 3.544 757 476 52  1.114 962 632 49 0.329 493 108

consider the ion to be embedded inside Si where the temperature is very low (0-20 K). For
other types of environment, the parameters may differ. We have considered the plasma
particle densities (n. and nj) within the range 10 — 10?3 /c.c. and ion velocities v in the
range 103 — 107cm./sec. Table (2.4.4) shows the values of plasma screening lengths Ag
(equation—2.2.48) and the coefficients of the wake potential £ (equation—2.3.14) in equation
for the C5T ion moving in the quantum plasma for different parameters. For each density,
v is chosen in such a manner that the thermal Mach number (M) remains below unity.
Orbital distortion parameters a and b (equation—2.3.1) are optimized using Nelder-Mead
(NM) algorithm [161]. We increase the number(NN) of terms in the basis set expansion
(2.3.2) which includes different powers of ‘r’ to achieve desired level of accuracy of the
energy eigenvalues for all the states considered. The p values we use here are different for
different powers of ‘v’ and taken in decreasing geometrical sequence. Table (2.4.5) displays
the results for convergence of energy eigenvalues for 1sg, 2p+1, 3d+o and 4fi3 states with
plasma density (ns) 10'%/c.c. and ion velocity (v) 10® cm./sec. It is evident from table
(2.4.5) that the energy eigenvalues converge upto 9-th decimal place in each case. Similar
convergence of energy values are obtained for all the calculations done here.
Tables (2.4.6), (2.4.7) and (2.4.8) show the energy eigenvalues of C°T ion for n = 1—4 levels
corresponding to different ng and v. The first row of each table shows the free results i.e.
72
without plasma medium, which agrees with the non-relativistic energy eigenvalues —5.2
(a.u.) of one-electron systems where Z = 6. The results presented in the tables (2.4.6),
(2.4.7) and (2.4.8) show that the energies become more and more positive as plasma particle
density and ion velocity increase.
The reason behind this behavior is that, as we increase ng it decreases A\g which screens or
scales down the effect of Coulomb potential largely. On the other hand, the wake coefficient
& increases as v increases, which strengthens the positive NFWP resulting in the shift of
energy levels towards continuum. In order to asses the effect of ESCP on the energy of

C* jon in quantum plasma environment, we set v = 0 in our calculations and the results
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Table 2.4.6: The energy eigenvalues -E (a.u.) of 1sg, 259, 2pg and 2p1 states of C°* moving
in QP having different sets of plasma particle (electron and hole) densities ns (/c.c.) and
ion velocities v (cm./sec).

-E (a.u.)

ns (/c.c.) v (cm./sec) 1sg 250 2po 2p1
0 0 18.00000000 4.50000000  4.50000000 4.50000000
1019 0 16.99701207 3.55780856  3.54476161 3.54476161
103 16.99699754 3.55780693 3.54472655 3.54475747
10° 16.99699738 3.55780657 3.54472073 3.54475700
107 16.99698206 3.55777061 3.54418783 3.54449515
1020 0 16.54217234 3.16902746 3.14230776 3.14230777
103 16.54214839 3.16902456  3.14229037 3.14224439
10° 16.54214822 3.16902418 3.14229621 3.14224287
107 16.54213093 3.16898702 3.14223675 3.14215211
102" 0 15.89053458 2.65209786  2.59865596  2.59865596
103 15.89046598 2.65208981 2.59862497  2.59858157
10° 15.89046573 2.65208933 2.59862135 2.59858025
107 15.89044045 2.65204099 2.59825988  2.59844818
1022 0 14.96731440 1.99849293 1.89549274 1.89549274
103 14.96727643 1.99848876 1.89542088 1.89549069
10° 14.96727627 1.99848850 1.89541666 1.89549053
107 14.96726037 1.99846268 1.89483600 1.89547373
1023 0 13.68055489 1.23890690 1.05303897 1.05303897
103 13.68051129 1.23890275 1.05281193 1.05303710
10° 13.68051115 1.23890257 1.05280651 1.05303730
107 13.68049712 1.23888478 1.05229719 1.05302671

are displayed in the first row of each density in the tables (2.4.6), (2.4.7) and (2.4.8). The
energy eigenvalues in these cases show that for a fixed principle quantum number (n), the
states with different angular momentum () are now non-degenerate e.g. from table (2.4.6),
for ng = 10'9/c.c. and v = 0, we see that the energies of 259 and 2pg(or 2p+1) states are
-3.55780856 a.u.
free case with energy -4.5 a.u. Thus the ESCP lifts the ‘I’ degeneracy corresponding to a

and -3.54476161 a.u. respectively, whereas they are degenerate in the

fixed value of n. Although the energy levels are still degenerate with respect to the ‘m’
values i.e. energies of 2pg and 2py; are still the same as discussed in the above example.
Same feature can be found from the tables (2.4.6), (2.4.7) and (2.4.8), for all ns and v = 0.
The increase in energy eigenvalues with the increase in v takes place in a much slower rate
as compared to the same with respect to the increase of ns. It is evident that the effect
of static (v = 0) ESCP is more pronounced than the velocity dependent NFWP under

the quantum plasma environment considered. The significant role of the NFWP is that it
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Table 2.4.7: The energy eigenvalues -E (a.u.) of 3sg, 3po, 3p+1, 3do, 3d+1 and 3dyo states
of C** moving in QP having different sets of plasma particle (electron and hole) densities
ns (/c.c.) and ion velocities v (cm./sec).

-F (a.u.)

Ng v 380 3p0 3p:|:1 3d0 3d:|:1 3d:|:2

0 0  2.00000000 2.00000000  2.00000000 2.00000000  2.00000000 2.00000000
10 0 1.14923194 1.13789722  1.13789723 1.11496287 1.11496287 1.11496287
103 1.14923145 1.13788733  1.13789606 1.11496273 1.11496270 1.11496263

10°  1.14923096 1.13787887 1.13789537 1.11496174 1.11496190 1.11496236

107 1.14918232 1.13709896  1.13759242 1.11486312 1.11488121 1.11493546

100 0 0.85275345 0.83113577 0.83113577 0.78686902 0.78686902 0.78686902
103 0.85275269 0.83113114 0.83111901 0.78686882  0.78686878  0.78686868

10°  0.85275224 0.83113021  0.83111706 0.78686792  0.78686805 0.78686843

107 0.85270789 0.83104578  0.83097475 0.78677385 0.78679108 0.78684275

1021 0 0.51307024 0.47479205  0.47479205 0.39462864 0.39462864 0.39462864
10> 0.51306840 0.47478483  0.47477478 0.39462843 0.39462840 0.39462828

10°  0.51306792 0.47478106  0.47477341 0.39462775 0.39462784  0.39462810

107 0.51302066 0.47440449 0.47463583 0.39455982  0.39457226  0.39460957

102 0 0.18762946 0.13082887  0.13082887 0.01136017  0.01136017
10 0.18762878 0.13081719  0.13082853 0.01136002  0.01135996
10°  0.18762861 0.13081432  0.13082842 0.01135976  0.01135987
107 0.18761157 0.13044258 0.13081701 0.01133326  0.01135103

102 0 0.00358750
103 0.00358738
10°  0.00358736
107 0.00358535

lifts the |m| degeneracy of the states. For example, from table-2.4.6 we can find that for
ns = 1019 /c.c. and v = 103cm. /sec, the energy eigenvalues of 2py and 2p; are -3.54472655
a.u. and -3.54475747 a.u. i.e. 2pg and 2p41 are non-degenerate by an amount 0.00003092
a.u. Similar results can be found for npy, np11 [n = 2 —4]; ndy, nd11, ndye [n = 3 —4] and
nfo, nft1, nfie, nfig [n = 4] states for all the cases with ngy # 0 and v # 0, as given in
the tables (2.4.6), (2.4.7) and (2.4.8). The removal of |m| degeneracy for [ > 1 states arises
due to the ‘cos@’ term in the velocity (v) dependent NFWP under the quantum plasma

environment, which resembles with the Stark-like splitting of the energy levels.
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Figure 2.4.4: Plot of energy values (in a.u.) of 2pg and 2p; states of C3* against ion velocity
(in cm./sec) for different plasma particle densities ng (/c.c).
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(in cm./sec) for different plasma particle densities ng (/c.c).
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(in cm/sec) for different plasma particle densities ng (/c.c).
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Figure 2.4.7: Plot of energy values (in a.u.) of 3dp, 3d; and 3ds states of C°* against ion
velocity (in cm/sec) for different plasma particle densities ng (/c.c).
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velocity (in cm/sec) for different plasma particle densities ng (/c.c).

-0.3294918 —

-0.3294919 —

-0.3294920 —

-0.3294921 —

-0.3294922 —

-0.3294923 —

-0.3294924 —

-0.3294925 —

-0.3294926 —

-0.3294927 —

-0.3294928 —

Energy (a.u.)
Energy (a.u.)

-0.3294929 —

-0.3294930 —

-0.3294931 —

-0.3294932

T T

1000

10000

100000

Ion velocity (c m./sec )

-9.68E-002 —
-9.68E-002 —
-9.68E-002 —-
-9.68E-002 —
-9.68E-002 —
-9.68E-002 —
-9.68E-002 —
-9.68E-002 —-
-9.68E-002 —-
-9.68E-002 —-
-9.68E-002 —
-9.68E-002 —
-9.68E-002 —
-9.68E-002 —
-9.68E-002 —
-9.68E-002 —

-9.68E-002 T

1000 10000

100000

Ion velocity (c m./sec )

Figure 2.4.9: Plot of energy values (in a.u.) of 4fy, 4f1, 4f> and 4f3 states of C>* against
ion velocity (in cm/sec) for different plasma particle densities ns (/c.c).



2: Moving H-like atom under plasma environment 53

The variation of energies of npy, np+1 [n = 2 — 4]; ndy, nd+1, ndes [n = 3 — 4]
and nfo, nfi1, nfio, nfys [n = 4] states with v for few fixed values of ng are shown in the
figures (2.4.4), (2.4.5), (2.4.6), (2.4.7), (2.4.8) and (2.4.9), respectively. It is evident from
figure (2.4.4) that corresponding to plasma density ns = 10'?/c.c, 2p41 states energetically
lie below 2pg state for the entire range of ion velocity (v) and thus no crossing of energy
levels is being observed. But, when the density is higher than the previous one, the 2pg
state lies energetically below 2pi; states for low ion velocity, whereas after a ‘critical ion
velocity’, 2py, states become more negative than the 2py state, and hence crossover is
observed. Similar feature of crossover of npg and npy1 [n = 3 — 4] states is observed and
shown in figures (2.4.5) and (2.4.6), respectively. Hence, ‘incidental degeneracy’ of npy and
np+1 states occurs at the ‘critical ion velocity’. The crossing of energy levels and subsequent
appearance of incidental degeneracy of d and f states occur for each densities considered, as
shown in the figures (2.4.7), (2.4.8) and (2.4.9). The phenomenon of incidental degeneracy
was reported earlier by Sen [165] in case of a hydrogen atom, confined in an impenetrable
spherical shell. Table (2.4.9) shows the values of critical ion velocities at the crossing

points of p, d and f states with some selective plasma densities. In comparison to our

Table 2.4.9: Variation of energy eigenvalues —FE (a.u.) and critical ion velocity (cm./sec)
at the ‘crossing point’ of energy eigenvalue vs ion velocity curves, for different angular
momentum states with respect to plasma particle densities ng (/c.c.). The symbol P(+Q)
corresponds to P x 109.

Crossover States Ng Critical ion velocity ~Energy (-E) at crossing
2po,2p1 0.5(+20) 7.22(+5) 3.27700464
1.0(+20) 8.79(+6) 3.14214490
0.5(+21) 1.36(+6) 2.77855694
3po,3p1 0.5(+20) 1.19(+5) 0.92995292
1.0(+20) 3.75(+6) 0.83103806
0.5(+21) 3.72(+5) 0.58490697
4po,4Ap1 0.5(4+20) 5.78(+4) 0.23720661
1.0(+20) 2.78(+6) 0.83103806
0.5(+21) 1.27(+5) 0.05775748
3dy,3d1,3ds 1.0(+19) 1.13(+4) 1.11496259
0.5(4+20) 1.77(4+4) 0.89347312
1.0(+20) 1.67(+4) 0.78686862
0.5(+21) 2.24(+4) 0.39462823
4dy,Ad ,4ds 1.0(+19) 4.70(+3) 0.35842729
0.5(4+20) 7.31(+3) 0.20993047
1.0(+20) 6.51(+3) 0.14683872
0.5(+21) 7.96(+3) 0.02025229
4fo,4f1,4f2,4fs  1.0(+19) 3.09(+3) 0.32949309
0.5(+20) 2.64(+3) 0.16679314
1.0(+20) 2.84(+3) 0.09678679
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present calculations, there were some contrasting results reported by Hu et.al. [152] while
studying the variation of energy eigenvalues of moving C°* ion under the quantum plasma
environment using Ritz variational principle. For example, Hu et. al. [152] reported that
for ne = 8.0 x 107 /c.c. and ion velocity v = 5 x 10° cm. /sec, the ground state (1sg) energy
of C°* becomes -25.60524 a.u. which is more negative than the ground state energy -18.0
a.u. for the free CP* ion. According to their calculation [152], the contribution of NFWP
is negative which make the total energy of moving ion in quantum plasma overbound as
compared to the ‘free’ case. The present calculation shows that, according to equation
(2.3.13) the effect of NFWP is positive and the ground state (1sg) energy of the C°* ion
as -17.33679 a.u. for n, = 8.0 x 1017/c.c. and v = 5 x 105 cm./sec. Table (2.4.10) shows
the comparisons between the energy eigenvalues calculated in the present method to those
obtained by Hu et. al. [152].

Table 2.4.10: The energy eigenvalues —E (a.u.) of nsg [n = 1—4]; npg, np1 [n = 2—4]; ndy,
ndy, ndy [n = 3 —4] and nfo, nfi, nfz, nfs [n = 4] states of C3F ion moving with velocity v
(cm./sec) in a quantum plasma environment having particle density ns = 8.0 x 10717 /c.c.
The symbol P(+@Q) corresponds to P x 109.

1.40000094 1.12586272
1.39998729 1.12655361

State v —FE (present work) —FE (Hu et. al. [152])
lsp  1.0(+04) 17.33681118 16.98306649
1.0(405) 17.33681098 17.25328413
5.0(405) 17.33681008 25.60522514
259 1.0(404) 3.86368685 3.54344882
1.0(+05) 3.86368633 3.57641662
5.0(405) 3.86368405 4.40032501
2po  1.0(+04) 3.85782487 3.52966415
1.0(405) 3.85781925 3.53956809
5.0(+05) 3.85779427 3.77474159
2p1  1.0(4+04) 3.85779514 3.52956493
1.0(+05) 3.85779322 3.52966415
5.0(405) 3.85778469 3.53214473
3sp  1.0(404) 1.40534564 1.13800837
1.0(++05) 1.40534488 1.14713322
5.0(+05) 1.40534149 1.36260174
3po  1.0(+04) 1.40001207 1.12586272
1.0(+05) 1.40000307 1.12861525
5.0(405) 1.39996310 1.19290815
3p1 1.0(+04) 1.40000402 1.12583700
(+05)
(+05)
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Continuation of Table (2.4.10)

State

v

—F (present work)

—F (Hu et. al. [152])

3do

3dy

3da

480

4po

dp1

4dy

4dy

4dy

4fo

4f1

4fa

4f3

+04
+05

1.0(404)
1.0(+05)
5.0(+05)
1.0(404)
1.0(4-05)
5.0(+05)
1.0(404)
1.0(405)
5.0(+05)
1.0(404)
1.0(405)
5.0(+05)
1.0(404)
1.0(405)
5.0(+05)
1.0(404)
1.0(405)
5.0(+05)
1.0(+04)
1.0(4-05)
5.0(+05)
1.0(404)
1.0(405)
5.0(+05)
1.0(404)
1.0(405)
5.0(405)
1.0(404)
1.0(405)
5.0(+05)
1.0(404)
1.0(405)
5.0(+05)
1.0(404)
1.0(405)
5.0(+05)
1.0(404)

1.38931351
1.38931254
1.38930820
1.38931351
1.38931272
1.38930917
1.38931351
1.38931325
1.38931206
0.58332127
0.58332038
0.58331642
0.57864913
0.57863836
0.57859047
0.57864648
0.57864279
0.57862644
0.56923669
0.56923546
0.56923001
0.56923670
0.56923570
0.56923124
0.56923675
0.56923642
0.56923493
0.55490176
0.55490031
0.55489389
0.55490177
0.55490045
0.55489459
0.55490179
0.55490086
0.55489667
0.55490185

1.10181765
1.10203080
1.10715733
1.10181765
1.06519697
1.10223659
1.10181765
1.10193893
1.10490827
0.38038470
0.38363334
0.45895839
0.36991115
0.37089235
0.39373940
0.36990012
0.36991115
0.37015737
0.34919409
0.34926980
0.35111057
0.34919336
0.33600587
0.34934403
0.34919373
0.34923783
0.35030319
0.31860361
0.31861941
0.31900087
0.31849924
0.31860544
0.31865101
0.31860397
0.31866130
0.32004822
0.31860361

95
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Continuation of Table (2.4.10)

State v —FE (present work) —FE (Hu et. al. [152])
1.0(405) 0.55490153 0.31863742
5.0(+05) 0.55490014 0.31860397

The second contradiction appears from the work of Hu et. al. [152] is that, they reported
the lifting of degeneracy of the energy levels with respect to the magnetic quantum number
‘m’ i.e. ‘Zeeman-like splitting’, due to the presence of velocity dependent wake part in the
potential. But we have found that the calculation of the matrix element of kinetic energy
have some mistakes and for this reason they observed Zeeman-like splitting of the energy
levels. On the contrary, we get the Stark—like splitting of the energy levels due to the ‘cos§’
term in the velocity dependent NFWP (2.3.13).
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Three—body exotic ions

When the nucleus or the electrons or both are replaced by the exotic particles like muon (u),
pion (), kaon (K'), tauons (7), positron (e1), anti-proton (p) etc., then the atomic systems
are called exotic systems. The binding energies of such exotic systems are very high in
comparison to the binding energy of an atomic system because of the exotic particles which
are much heavier than the electrons. Examples of two—body exotic systems are positronium
(eTe™), true-muonium (u+p~), anti-hydrogen (e*p), #*n~, ptu~, ptn~, p" K~ etc. and
three-body systems are negative positronium Ps™(eTe~e™), ptptu~, pTptn—, pTpT K~
etc. Few—body exotic systems are generally formed in particle accelerators by trapping
exotic particles via Coulomb field due to a nucleus. The exotic systems formed in this
manner are in high excited states from which they cascade down to the lowest energy level
either by emitting photons or via Auger transitions. Since the experiments producing the
exotic systems deal with high speed projectiles into the matter, it produces different charge
states within the medium which can form a plasma environment which may, in turn alter
the effective potential experienced by the exotic ions, or in other words, a screening through
the environment is generated. Thus the structure calculations of the exotic systems become
important to predict the fundamental processes of forming those exotic systems as well as
the plasma parameters of the medium. Here we will give a detail account on the structural

properties of two- and three-body exotic systems under classical weakly coupled plasma

(WCP).

3.1 Literature review

Saha et. al. [166] and Sil et. al. [167] investigated the structural properties of two-body
exotic ete™,pTp~ and put p~ using the time-dependent variation-perturbation theory under
the influence of WCP formed within a spherical box. For a fixed radius of the box, it is seen
that the transition energy, oscillator strength and transition probability of the Lyman-series
(1s = np; n = 2,3,4) decreases as up increases.
In comparison to the two—body exotic systems, the structure calculations of three-body
exotic systems under WCP grabs attentions of a larger number of researchers around the
globe [168-195]. Stability and negative charge affinity (electron affinity and negative muonic
affinity) of Ps™, H; and Hy molecule were investigated under WCP environment [170,173,
176] using correlated wavefunctions in the variational framework. Kar and Ho [174]showed
that dipole polarizabilitiy of 1S and 3P° states of H; increases as jp increases.

The study on the few-body “Borromean” systems adds another dimension to the
field of investigation on the stability of such systems under WCP environment. An N—body
bound system (N > 3) is called a Borromean system if it’s all (N — 1), (N —2),....... , 3,

2 — body sub-systems are unbound [196]. In 1935, Borromean binding was first observed
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by Thomas [197] while comparing three-nucleon and two-nucleon bound state energies. 35
years later, in the context of nuclear scattering, Efimov [198] showed weak binding of sym-
metric three-body bosonic system while its two—body subsystem does not exist — which
is famously known as “Efimov effect”. Except the nuclear physics, Borromean systems are
also encountered in different disciplines of science like atom and molecular physics, chemical
physics, biology etc. [199]. In the beginning of this century some experiments were reported
where Borromean bindings in ultra—cold gas was confirmed [200-202]. Under the WCP en-
vironment Borromean binding is explained with respect to the critical screening parameter
1§, of the interaction potential modeled by ESCP (1.0.1). Critical screening parameter puf,
is defined as the specific value of plasma screening parameter/strength pp (1.0.1) for which
the system placed under the plasma environment destabilizes, or in other words, the binding
energy of the system becomes zero. While studying the stability of the ground states of H
atom, Hy and molecular Hy under WCP using Monte Carlo technique, Bertini et.al [171]
found that (u%), < (H%)H; < (up)y, i-e. both Hy and Hy show Borromean binding.

Apart from the ground state Kar and Ho [182,183] observed Borromean binding of Hj ion
with respect to the variation of up for the 3P°,! D¢ 3 F° and 'F¢ states using exponentially
correlated wavefunction under the variational framework. The Borromean binding of sym-
metric three-body exotic systems like p*pTpu~, dtd*u~, ttttu~ (dt = deuteron and t* =
triton) and asymmetric three-body exotic systems like p™dtu~, p™tTu~, dttTu~ are also
reported in literature [177-179] where the workers estimated the Borromean window (BW)
which is defined as the difference between the pucop values of three-body and its two—body
sub-systems. Now the question arises that, which kind of three-body systems can show
BW? Pont and Serra [179] estimated BWs of various symmetric three-body systems to
address this question. They reported [179] BWs of /symmetric three-body systems for dif-

ferent mass ratios (gy,) which is defined as g, = ™ \here m' = mass of the non-identical
particle and m = mass of any one of the remainir?é two identical particles. It can be seen
from their work [179] that BW exists for ¢, < 1 i.e. only positively charged three-body
systems can show BW. An extensive study has been made by Pawlak et. al. [184] where
the authors performed variational calculations using correlated wavefunction to find the
BWs for a large span of ¢,,. Their work revealed that BW exists for g,, < 1.668 i.e.
some of the negatively charged three-body systems like 77~ pu~, Ps~ etc. can also posses
BWs. Jiang et. al. [186] estimated BWs for positively charged heavy molecular ions like
ptdte ,pTtte ,dtdte,d"tTe  tTtte  , dtT T, p Tt ,pTdtu,ptpTpu,d"d T p~ and
tTt* = under WCP using Hylleraas-type wavefunction in the framework of Ritz variational
principle.

The study of resonance states of exotic atoms/ions are of great importance for the plasma
diagnostics purpose. Kar and co-workers [188-193] made some useful studies on the ef-
fect of WCP on the resonance 'S¢,13 P° 1 D¢ and '3P¢ states of Ps™ ion using correlated

wavefunctions by adopting complex coordinate rotation (CCR) method and stabilization
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method. It can be seen from their studies that resonance energy increases while the reso-
nance width decreases as the plasma screening pp increases. Similar kind of investigations
are reported [194,195] on muonic three-body exotic systems like pTpTpu=, dTdtpu=,d ¢t p~
etc. under WCP modeled by ESCP.

In this chapter, we present an extensive calculation of energy eigenvalues of ground states
of different three-body exotic systems using Ritz variation technique under free and clas-
sical WCP environment. In total, we have considered 22 number of three-body systems.
The trial wavefunction is expanded in explicitly correlated multi-exponent Hylleraas type
basis set. Resonance 'S¢ states of symmetric three-body exotic pY'Y negative atomic ions
(Y =p , 7, K7) and ppY positive molecular ions are studied in details under the frame-
work of stabilization method. The resonance states under consideration lie below N = 2

ionization threshold of the corresponding two—body sub—systems pY'.

3.2 The present method

In this section the trial wavefunction is constructed for variational calculation. The variation
equation of the three-body system is formulated for general angular momentum states.
The basis set expansion of the trial function is established and the method of evaluating
the basis integrals is explained in detail. For the determination of resonance parameters
(energy and width) of three body systems, the stabilization method is explained in detail

and subsequently applied to find the resonance parameters of hadronic three-body systems.

3.2.1 Wavefunction

As per the proposal of Bhatia and Temkin [30], we have considered the trial wavefunction

of the three body system as sum of the product of radial and angular functions which is

given by
=3 (D g k) 321)
k
where f’gi = ’gi(m,m,eu or r12) and Dii = Dii (0, ¢,1) are the radial and angular

functions respectively. r1, 72 and rio are the sides of the triangle formed by the three body
system, 02 is the angle between 77 and 73. 6, ¢ and 1 are the Eulerian angles [30] through
which the triangle formed by 71,72 and 12 can rotate in space. The choice of the Eulerian
angles is only the matter of convenience of the problem. We have adopted the same set
of Eulerian angles (0, ¢,1) as given by Bhatia and Temkin [30]. We can start from the
rotations of space fixed axes (X,Y, Z) through Eulerian angles 0, ¢ and v such that we can
reach at the body fixed axes (X’,Y’, Z’) as shown in figure (3.2.1). There are three steps

of the rotations which are described below:
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Figure 3.2.1: Diagram of Eulerian angles [30] connecting space fixed axes (X,Y, Z) with
the body fixed axes (X', Y’, Z").

i.

il.

iii.

Rotations are given in such a manner that 7 and 7% lie in the X’~Y’ plane (marked
by dotted line in figure 3.2.1). First rotation is given with respect to Z—axis in the
anti-clockwise direction by the angle ¢ so that X—axis (& in figure 3.2.1) coincides with
the ‘line-of-node’ (' in figure 3.2.1). The ‘line-of-node’ is the straight line where X-Y

and X'-Y’ planes intersect each other.

The second rotation is given with respect to line-of-node by an angle 6 so that we get

Z'—axis where the angle between Z and Z' becomes 6, as shown in figure (3.2.1).

The third rotation is given with respect to Z’—axis so that the axis in the direction
(F1 — 7a)

. U2
28in —

rotates through angle v in the clockwise direction and coincides on the line-

of-node which gives rise to body fixed X'—axis. Y'—axis will be in the direction perpen-

dicular to X’—axis which is not shown in figure (3.2.1).

The ranges of the Eulerian angles are : 0 <0 <7, 0 < ¢ <27 and 0 <9 < 27.

In the equation (3.2.1), L is the total angular momentum quantum number of the coupled

state of the particles of masses m1 and mo. If the individual angular momenta of the parti-

cles are l1 and [y, then according to the LS—coupling scheme, L = (I1 +l2),(l1 + 1o — 1), ...,

|l1 —Il2|. The double prime in the summation of the equation (3.2.1) signifies that the quan-

tum number k takes every alternate positive integer values (even or odd). Dfi are the real
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symmetric top functions defined as

DZJF = Ny, cos(ke) sin® 0F,

(3.2.2)
DY~ = Ny sin(ke) sin® 0F,

The parameters Ny and Fj are given by

1
(—1)* 1 (2L +1)(L+ k)2
N = d
Lk 2kE! 1 4+ Sox(vV2 —1) 472 (L — k)! an

F, = oF[L+k+1,—(L—k), k+1,sin?6/2]

where 9 F} is the hypergeometric function [156]. The real Dii functions are constructed
from the complex Wigner D-functions [30,203] which are basically eigenfunctions of total

angular momentum operator L. The D[]ijE functions obey the following identities [30]:

ODKT

k— k
o = —kD}~; =kD}* (3.2.3)

The orthogonality conditions of the Dfi functions are given below:

/ DY DE* sing df do dip = S
/ DE= DY~ sin 6 df do dip = G (3.2.4)

/D]?*D]’g/ sing df dep dip =0

3.2.2 Variational equation

The Hamiltonian of the (N + 1) particle atom can be written as

A

H=T+V (3.2.5)

where, the kinetic energy (K.E.) operator T and the potential energy (P.E.) operator V are

given by
1 N 1
N 1,
r= 2MVR0+;< QmiVRi> (3.2.6)
N 1 N N 1
V=22 Ri—r| " B R 3.2.7
;|R0—Ri| ;;lRi—le (3:2.7)
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Z is the atomic number of the atom. ﬁg and ﬁl are the position vectors of the nucleus of
mass M and i-th particle (i = 1,2,..., N) of mass m; respectively. We seek the transforma-
tion of co-ordinates <ﬁ0, §1, - R}) — (ﬁ, 71, ey rﬁ), where 7} = R; — ﬁo is the position
vector of i-th particle with respect to the nucleus and R is the position vector of center of

mass (c.m.) of the system as given by

N
L
R = 7 (MRD +) miR, ) (3.2.8)

=1

N

where My = M + > m; = Total mass of the system. The X-components of the above
i=1

equation and 7; are

1
X = U (MXO +mi X1 +...+ mNXN) and z;, = X; — Xo (3.2.9)
T

From equation (3.2.9) the following derivatives are calculated

0X _om; 0X M ox; ox;

= = =1 =-1
0X; My’ 0Xo My’ 0X; ’ 0Xo
00X i n oxr; 0 n dry O
’ 8X0 - 8X0 8X 8X0 6% ............. 8X0 axN
- MT 8X Z D
. 0 0 -
Evaluating — and — in the same manner we can rewrite v R, and Vg, as
oYy 0%y g
N
Ve, = —VR Z (3.2.10)
Vg, = ﬁ ﬁ (3.2.11)
V3 = Ve Vi = WVR +Y Y VeV, - 23 > ViV, and
i=1 j=1 i=1
— — . m;
V% = Vg,.Vg =-—5Vh+V? VRV
T
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Putting these relations into the equation (3.2.6) we get

N

A N N
T:—2MT Z 2 Z]Z v (3.2.12)
<Jj

1 1 1
Here — = — 4+ — is the reduced mass of the i-th particle. If a system of identical particles
1L; ms
e, ( )Z' idered, th mM__ - hd the K.E tor will b
i.e. m; = m (say) is considere en f; = i = —————— an e K.E. operator will be
7 y ) /‘Ll /’L (m+M) p
L NN
T = 2MT Zv - M;;W-Vw (3.2.13)
i=1 j=
1<J

It can be noted that the K.E. operator consists of two parts:

1. K.E. of the centre of mass (c.m.) given by

N | NN
=y slv o Ly,
i=1 24 Mi:lj:l

i<j

The double summation term is known as mass-polarization term which occurs due to

the motion of the nucleus having finite mass (M).

The 1st part i.e. the motion of c.m. can be separated due to the translation symmetry
of the Hamiltonian H. Thus the wavefunction of the (N+1) particle system is written as,
Viotal = Ve ¥, where U, and ¥, are the wavefunctions corresponding to the c.m. and
relative co-ordinates respectively. The time independent Schrédinger equation is given by,
H Uiotal = EtotalYtotal, Etotar being the total energy of the (N+1) particle system. Now
using the method of separation of variables and considering T em Vem. = Eemn Vem. (Eem.
being the K.E. of c.m. which moves like a free particle), the time independent Schrédinger

equation can be converted into the following form
(T} n f/) U, = (Biotal — Eoyn) U = BV, (3.2.14)

E is the relative energy of the entire N-particle system with respect to the c.m. of the

system.
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In case of three-body systems (N = 2), the total number of degrees of freedom (D.O.F) of
the system is 9. But due to the separation of the center of mass coordinates the remaining
D.O.F is reduced to 6. The expectation value of T} for the general three-body systems can

be written as

(T) = / U T, W, drs s

1 T, 1 2 e =
= - / [ervflxpr + gw:viﬂr + (vh.vm) xy} drs 13
1 1 /= 2 1 2 /o
= +§ E (VH qu) + — (VTQ\I/ > + M (Vn \Ij'r‘ VTQ \I/T) dTrl 75

where (T}.)1, (T})2 and (T})3 in Cartesian co-ordinates is given by

. A AN ) ANG) AN 1/1 1
=4 f {(a) () + (5) }d wa=g () G2
2 2 2
ov oV 1/1 1
£y B /{@2) (20)4 (%) }d cm= (D) 2

U ov U ov A
3—0/{8 0 a 8—1—88}(17';1’;2 O =

2.1
61’1 8:62 8@/1 8y2 621 6Z2 (3 7)

1
M
To simplify the writing, we have used the notation ¥ instead of ¥,. In the above three
relations (3.2.15), (3.2.16) and (3.2.17), the volume element is d7,5 ;2 = dr1dy1dz1dzadyadzs.
We now shift the coordinate system from the Cartesian (z1,y1, 21, T2, Y2, 22) to the polar

co-ordinate (1,719,612 or r12,0,¢,1) system. These two sets of coordinates are related to
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each other by the following relations [30, 38]:

T =11 cosgzﬁsin <1/1 — > + cosfsingcos [ Y —

Y1 =11 51n¢s1n

Yo = 7o |sin ¢ sin

z1 = —7ry1sin 6 cos ( 012 >

Z9 = —7rg sin 6 cos < +

To = T cosgbsm< + 912) + cos 0 sin ¢ cos

— cos 0 cos ¢ cos

— cos 0 cos ¢ cos <w —

Let us now consider the following transformation relations

ov - ov 87‘1 ov 87’2 ov 8012
Ory Oridzy | Oradwy - 91y Oy
ov ov 87“1 ov 87‘2 + 87\11%
dyi OOy B2 0y 061s Oy
OV _9Wory OV 0ry | OV 06y
82’1 87’1 82'1 87‘2 8z1 6912 8,21
ov ov 87’1 ov 87”2 ov 6912
(9:172 87’1 8952 8r2 8:62 871287@
ov . owv 67’1 owv 67’2 + 9= owv 8912
Oys  Or10ys  Oradys 9012 dyo
ov . ov 87"1 ov 87‘2 ov 8912
02y Or 0z * 877“232’2 0619 Dz

oV 09
99 Oy
ov 96
Eem
oV 96

00 0z,

oV 96
99 Oz
ov 99
90 dy2
oU 9

00 9z

ov 0¢

9¢ da1

oV 0¢
99 dyy
oV d¢
96 021
ov ¢

9¢ Oz

Y 99
0 Oy
oV 96

96 0z

Since, 72 = 22 + 32 + 27 and 73 = 23 + y3 + 23, we can write

ory z1 Orp y1 Orp 21 ory ory
0rs To 079 yo Ore 29 org 0ro

:872/2_

8r1

87’2

- 821
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ov oy

O Oy

ov Iy
oY Oy
ov oy
o 0z,
ov oY

O Oy

v oy
0 Oy
v 9y
&p 82’2

(3.2.18)

(3.2.19)

(3.2.20)

For the determination of other coefficients we will use the relations between the space fixed

axes (X,Y,Z) and the body fixed axes (X',Y’,Z).
0, ¢,1) as discussed in section (3.2.1). Bhatia and

rotation through the Eulerian triangles (

The later set of axes is formed via

Temkin [30] assumed the Eulerian angles in such a way that the rotational symmetry of

the Hamiltonian can be exploited and the six dimensional time-independent Schrédinger

equation (3.2.14) can be dissolved into a three dimensional equation where the 3 generalized

co-ordinates are r1, 79 and r12 (or 012). If we denote the unit vectors in the space fixed and

body fixed axes as (, ], k) and (7', ', k') respectively, then following Bhatia and Temkin [30]
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we can write

i/ cos ¢ sin ¢ 0 i
7| = |—cosfsing cosfcos¢ sind| |j (3.2.21)
% sinfsing —sinfcos¢ cosf| |k
The position vectors of m; and meo with respect to M are given by
Pl =11 + yﬁ + 21k in (X,Y,Z) system
015\ -~ 015\ - (3.2.22)
= 7y 8in <@Z) — ;) ' — r1 cos <¢ — ;)j’ in (X', Y’,Z) system
Ty = 1‘2% + ygj' + Zzl;‘ in (X,Y,Z) system
012\ - 012 - (3.2.23)
= rgsin <w + ;2)2' — T'9 COS <w + ;)j' in (X', Y',Z) system

According to the choice of the Eulerian angles [30], Z’ axis is perpendicular to the plane

containing 7| and 7 and we can write the following relations:

7.k = zysinfsing —y;sinfcos ¢ + z1 cosf = 0 [using (3.2.21) and (3.2.22)]
(3.2.24)
k! = xosinfsing — yasinfcosd + 2o cosf =0 [using (3.2.21) and (3.2.23)]
(3.2.25)
Now using (3.2.21) and (3.2.22) we get
7.4 = risin <¢ - 9212> =x1c08¢+yi1sing and (3.2.26)
. 0
1.5 = —ricos (w — ;) = —x1 cosfsin ¢ + yj cosf cos @ + z1 sin b (3.2.27)
Similarly, using (3.2.21) and (3.2.23) we get
5 0
7.4 = risin <1/1 + ;) =x9c08¢p + yosing and (3.2.28)
. 0
75.' = —rycos (1/} + ;2) = —xocosfsin ¢ + ys cosf cos ¢ + z9 sin 6 (3.2.29)

90 99 L9 99
0x1’ 7 Oz 0x1’ 7 0z’
0012 0012

0 0
while using (3.2.26) and (3.2.28) we find D2 o and (%Zi,...,ai.

Equations (3.2.24) and (3.2.25) are used to find the terms

For example,
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differentiating both sides of the equation (3.2.24) with respect to x; we can write

[(x1sin¢ — y1 cos @) cos O — z; sin 0] 9 + (21 cos ¢ + y1 sin @) sin 9% = —sinfsin ¢
o0x1 Oxy

Now putting the values of x1,y; and z; from equation (3.2.18), the above equation becomes

cos <¢ — 9212> (985501 + sin 6 sin <@D — 9212) 8852 = —:1 sin 6 sin ¢ (3.2.30)

Similarly, differentiating both sides of the equation (3.2.25) with respect to z; we get

6o\ 00 . . 012\ 00
Ccos <w—|— 5 )8561 + sin fsin <¢}+ 5 )c'?ml =0 (3.2.31)

Now solving the equations (3.2.30) and (3.2.31) we get

00 _ ;SiHQSind)sin <¢+ 0;)

ox1 71 8in 019

37¢ 71 sin ¢ cos (¢ + 9212>

Ox1  71sinfqo

(3.2.32)

Similarly, using equations (3.2.24) and (3.2.25) the following formulation can be done

00 ) . 012
87;1 = st sin 6 cos ¢ sin <w + 5 >
a0 1 i 012
95 = risinfn cos 6 sin (w + 2)
00 1 o 612
87372 = m81n981n¢81n (’lp — 2)
20 1 . . 012
3792 = st sin 6 cos ¢ sin (¢ 5 )
ﬁ:.;cosﬂsin 1/1—9E
822 T9 S11 912 2

(3.2.33)
%——$cos¢cos w—l—eﬁ
ayl N 71 8in 019 2
oo 1 012
87,21 ~ rysinfys tan 6 cos <¢ + 2 >
0¢ 1 : 012
671'2 " rosinfie sin ¢ cos (dj 2 >

0 = ;cosd)cos <1p — 0212>

dyz  rasinbia

Sk c
0z9 79 8in 019 tan 6
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Proceeding in the same way, using equations (3.2.26) and (3.2.28) we can extract the fol-

lowing terms

7 1 6 1
012 = —— cos ¢ cos <1/1— 12) + — cos @ sin ¢ sin

Txl 1 | <

012
o)

1 1
012 = ——sin¢cos <w — 912) — —cosfcos¢sin | P — 912)
oy 1 2 1 2
%92112 = :1 sin 0 sin (¢ - 9212>
12 = icosqﬁcos <1/) + 912) - icos¢9sin¢>sin <¢ + 012)
Oxo ) 2 T2 2
@:isin¢cos w+eﬁ +icosecosd)sin @b%—@
dyz 12 2 2 2
by 1 . 012
a@-ﬁsm@sm(dw- 5 )
oy 1 012 1 . . 012
T COS ¢ cos <¢ 2) T cos 6 sin ¢ sin <1/1 2)
— ———— cos fsin ¢ cos (w + 912)
71 sin 619 2
(3.2.34)
%—Lsinqﬁcos w—@ +icosﬁcosgbsin w—@
8@/1 - 2r1 2 2rq 2
————cos 6 cos ¢ cos <¢ + 912)
71 81n 619 2

8@& 1 . . 012 1 012
) ) S111 0 S1n (T/J ) si 0 COS U CO COS w +

oy 1 612 1 o 012
8:62—2r2cos¢cos<1/}+ 5 >—2T2cosﬁsm¢sm<w+ 5 >
———— cos fsin ¢ cos <¢ - 912)
79 51N 619 2

1 0 1 .
g;/; - 272simcbcos <w+ ;) +2—mcosecos¢sin <z/;+;2>

— #COSQCOS¢COS <w— 9212>

79 5in O19

617/) 1 . . 912 1 012
) T sSin ¢ s <w + > + ) si 0 COS ¥ cot ¢ cos (1/} >

Now using the transformations (3.2.19) and the equations (3.2.32), (3.2.33) and (3.2.34),

we can get the coefficients of different derivatives of ¥ which are given below

, owN? /o \* [orm\? [or\?
Coefficient of <(97“1> = <6xl> +<8y1) +<8z1> =1
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oV 9015\ [06012\% [0612\% 1
ffi f a2 Y12 o2y _ 2
Coeflicient o (8912> (0301 ) + (01/1 > + B2 2
0w a0 \?> [ 090\* [ 86> 1 » 012
Cocticient of (ae) <a> i (ay> " (a) e (“ 2)

: ouN\? _ (op\? | (0u\P [op)’®
Coefficient of (87/)) = (8:131> +<6y1) +<(‘921>

1 1 9 012
= — +————cot?fcos? —l-f
47“% r% sin® ;9 <1/1

ov ov (97"1 8012 67‘1 8912 87“1 8912
fh f2—— = =
Coefficient o 8’!”1 6912 0901 (9:61 ayl ayl ton 821 621

8\1! 6\1’ 61"1 80 87‘1 89 67“1 89
fhicient of 200 2% —
Coefficient of 25 50 = G2y 0z Ty oy T 92102

OUOV  Or 0Y  Or OB Om OY
Coefficient of 2 o = & 0y T 9y 0y T 02 01

oV 0¥ 0bp 00 062 00 0612 00

ffici f2 - = a
Coefficient o 0015 00 95, Oz 6y1 6y1 T 0 0z 821

OV 0¥ 91y O | Db O L P 00209 1
8912 61/) 61’1 3.%1 8@/1 6y1 821 8z1 - 27"%

Coefficient of 2

QUOV 90 DY 90 9 | 99 DY 1
fficient of 2— — — D 02 22502 b
Coefficient o 00 o~ Oxy Oz, T on dy1 Oy * 0z1 021 2r?sin? 0y,

o 1 ov 2 1 (912 ov 2
AT = A/ <8T1> %(5912> +T%Sin2912 s <”¢+> <89>

—I—{ —1—71 cot? 6 cos? <w—|—el2>} <8\D> _lovow
473 r? sin® 69 oY 72 0612 OY

ov ov
—_ 2
+ 2 5?01y cot Osin (2¢) + 012) — 20 00

cot @sin (2¢ + 012)

} At (3.2.35)
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As the non-relativistic Hamiltonian is independent on the spin operator, Bhatia and Temkin

[30] showed that the dependency of the wavefunction ¥ on the azimuthal angle ¢ can be

NG
discarded. That is why, in the above expression aiqb is set to zero. Similarly, other two K.E.
terms become

. ouN\? 1 /0T \? 1 012\ [0\
1,)2 = B — = ; 2y (22
< >2 / (81"2) + ’I“% (8012) + 7“% sin2 912 sin (@Z) > ( 89 >

Al 0o zp—@ ov 2+ia—qla—‘1’
4r3  r3sin?Oq9 o 3 8612 OV

ov oV
—————cotd 2 0 Aty 3.2.36
r% sin? 61, cot fsin (20 — b12) 55 00 Bw} Tri.r ( )
. ovov 1 ov oV 1 ov oV
s = C f1o—— — —siné —sinfjg———
(Tr)3 / {COS 12 ory Orsy 7“2 125r, ory 8912 71 St P12 Ory 0012
— sin @ ov aqj—i— ! sin0 a‘ya—qj—LCOSG 87\11 i
27” 290, ory 0 12 Org Y 11T 12 0012
1 . 012 012 O 2
rirasin? fry <¢ ) (1/1 i > < 90
1 ov ov 1
- - in 22— =——
r17r9 Sin2 4912 cot fsin w oo 61/) + {47‘17“2 o8 912
——cot? 6 (cos 2¢ + cos b )} (8\1’)2 d (3.2.37)
— — T 0 2.
2r17ro sin? 012 12 81/) 12
The expectation value of the potential is
V) = /Veff|‘1’|2 Ay (3.2.38)
where the V¢ is the effective potential of the three-body system.
The overlap term is given by,
&) = [ 0P drs (32.30)

In the above relations (3.2.35), (3.2.36), (3.2.37), (3.2.38) and (3.2.39), the volume element is

At 7 = r%drlr%drg sin #19d012 sin @dOdody. Since r19 and 615 are connected by the relation

riy =17 + 13 — 2r1rg cos O (3.2.40)
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we may also write the volume element as dr 5 = ridriredrariadriz sin0dfdedy. The

variational equation now can be written as,
AT + (V) - E<O>] =0 (3.2.41)

The symbol A signifies the variation of the parameters contained within the trial wavefunc-
tion W.

Variational equation and wavefunction of general three-body system in '3S¢states

For the spherically symmetric (135¢) state (L = 0 and k& = 0), the wavefunction (3.2.1)
becomes ¥ = ngg =f=* f, where f = f(ry,79,012 or r12) and f = f(rg,rl,ng or r12).
The upper ‘+’ sign signifies the space symmetric wavefunction i.e for singlet state (1S¢)
and the lower ‘—’ sign signifies the space anti-symmetric wavefunction i.e for triplet state
(3S°). From equations (3.2.35), (3.2.36) and (3.2.37) K.E. terms for S-state becomes

. 1 (00 \?
(T, = A T — ATy .2.42
/ (37“1) % <3¢912> i (3 )
. [0UN\2 1 (00 \?
Ve = B == = drs - 2.4
Sk / (81“2) 7 (8912> i (3.2.43)
. [ ov ov 1 ov ov 1 ov ov
)y = fro—— — —sind 0
< >3 C/ cosP12 81"1 37’2 T9 Smbzg 87“1 3912 (& sin 1290y 6’/‘2 8912
v \?
— @ COS 912 <8912> dT’I‘_i,’I‘_é (3244)

For the convenience of calculation we write the K.E. (3.2.42), (3.2.43) and (3.2.44) in terms
of 15 instead of f12. The relative radial distance is defined as, 1%, = (z1 — x2)2+(y1 — y2)2+
(21 — 22)%. Thus, by using relations in (3.2.20) and

Orig w1 —my Oria  y1—y2 Ora 21— 29
— : — , —
0z, 12 Oy 12 0z 12
Orig _ m—m Orip _ y1—y2 Oriz 21— 2

(3.2.45)

)

)
Oxa 12 0y2 r12 0z 12
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we can get

ov 0V Ir ov Orio z oV  x1—x9 OV

873?1 - 877’1871’1 (97‘12 8.731 T 87’1 T12 87“12
8\11 N 87\1187“1 8\1’ 87’12 Eai\l/ Y1 — ygal

= — =
dy1  0r10yr  Ori2 Oy1 71 0ry T2 Orio
ov oV Ory ov @ 21 (97\11 n z1 — 29 OU

82’1 87‘1 82’1 87“12 82’1 T 87"1 12 87‘12 (3 9 46)
ov 8\11 8T1 ov (97"12 . xgag 4 o — 1 ov -
8.16'2 87'1 8952 8T12 83?2 - T 87‘1 T12 87"12

OV _ WO, OV dr _yp 0¥ yp—y OV

+
Byy  Or1dys  Orig dya 110 ri2 Orig
ov . ov 87’1 ov 87"12 2’7287\1/ zZ9 — 21 ov

(922 87“1 (92:2 (97“12 (92’2 1 (97”1 12 (97“12

Now using the above six relations the K.E. terms in equations (3.2.15), (3.2.16) and (3.2.17)

can be converted into the following forms

2
- ov ov ov
T = A/ { <a7“1> (37“12) " 2(:()8(70177’12)37“1 Ir1a } i

2
ov ovr ov
_B TN 4o .
2= / { (37“2) (37‘12) + 2cos(ry, mi2) 5 dry Oriy } i s

<Tr>3 = C’/ {cos(rl,rg 8£ 8—‘1J — cos(rl,rlg)a‘ll ov

87‘1 8r2 8r1 87“12
ov Ov ov
— cos(ra, T12>8T2 aru — % Aty

Here we have defined

24,2 .2
ri+ri—r
cos (i) = 2k (3:247)

ily

where, the indices are used as (i, j, k) = (1,2,12). Now the total K.E. can be simplified as

<Tr> = <TT>1 <Tr>2 + <Tr>3
1

+
_/1 LN (RN 11 1 (0%
a 2\ M my 8r1 2\ M mo 87"2
YRR RVA I AN (o) O OV
2 mi mao 87”12 MCOS T 87’1 87’2

1 ov ov 1 ov ov
— - 4 — | d7= 3.2.48
+ - COS(TQ,T‘12)8 e D1 + e COS(”’Tn)ﬁrl 67"12] T 7% ( )
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Using U = f + f, the above expression takes the form

201 N qary (oF\" . of oF
[123Grr) ( (5) *(a 25 o

i=1

(T7)

N -
11 1 af \* [ of of of
o= 4 = +2
T3 (ml T m2> <87‘12> * (37“12) Or12 Oryz
1 of of of of ~ of of . Of of
_ AT AL A
+ M o8 (’1”1, 7“2) {37’1 87“2 + 87“1 (97’2 87“1 87“2 8?"2 87’1
1 of af  af of of of  of of
- = = = = 4= =2 4 2 2
* ma cos (Th 7"12) { (97“1 67’12 87’1 87’12 67’1 87“12 87“12 87“1
1 of af af of  of of  of of
el A T T el S T i -
* mo cos (T2’ 7"12) { 87"2 87"12 67"2 87’12 37’2 8?”12 87“12 87“2 dTrl’m
(3.2.49)
The expectation values of the potential energy and overlap term are given by
<V> = /Veff (f2 + fQ + 2ff> Aty 7 (3.2.50)
(9) = /(f2 + f? i2ff) drs 3 (3.2.51)

As a sample calculation, we now consider a simplistic trial function for the ground state
(18¢) as f = e~"17P"2 (@, B being the non-linear parameters) for free Ps™ exotic ion, where

the potential of the system is
Veff=————+— inau (3.2.52)

The masses of the particles are m; = mo = M = 1 a.u. If we put the trial wavefunction f
into the equation (3.2.49) we can get the K.E. as a function of a and 8 only. For this we
have to calculate the integrals of the type

o 2
/ <6f> A5 = o’ / e~ 2202y dryrodrorydry / sin 0dfd¢dy

Now,

T 21 27
/ sin 0d0dody = / sin 0do / dé / dp = 8
0 0 0
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af 2 2 > —2ary " —20r2 retrz
O Trﬂljf = 87« (& 7"1d7“1 (& 7“2d7“2 7‘12(17'12
7 0 0 rL—ro
00 2 r2+1T2
+ / e_zﬁrz?"Qd?”Q / e—2ar1 ridry / ?”12d7“12:|
0 0 To—7r1

1

_ 2
= 87 S50

Here we have used the following standard integrals [156],

R n_—ur n! nR n'

/0 re” dr = ol E - k+1 (3.2.53)
& n!

/0 e KT dr = W (3254)

Similarly we can do all the integrals appearing in (3.2.49), (3.2.50) and (3.2.51) to get the

following results

. B 9 a? + 32 32a3
&) = 8 K 1035 ) Ty mﬁ}

g2 [0/1 + 3032 + 30%B% + 3038 + 5 n 11
40353 (a + )’ (a+B)°

(V) =

. 1 16
& = o )

The energy eigenvalue will be expressed as

(Tr) + (V)

E= -
(5)

= E(a, B)

Now « and ( are to be varied to achieve the minimum value of E. For the sake of simplicity

in calculation let us assume that o = g which gives

11
E—2<a —16a>

If E becomes minimum w.r.t « then

dE 11 11
R 200 — — = = —
e TR T
Using this value of « the variational minimum value of energy will be, £ = —0.236328125

a.u. This is surprising to see that this energy is lying above the first ionization energy (—0.25
a.u.) i.e. the ground state energy of positronium (Ps or eTe™) atom. In the literature [204],
one can find that the lowest non-relativistic energy value of the ground state of Ps™ ion

is £ = —0.2620050702 a.u. In order to get better bound state energy eigenvalue we now
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optimize the nonlinear parameters (a, 3) using the Nelder-Mead algorithm [161]. This gives
E = —0.256574823 a.u. with optimised non-linear parameters, a = 0.13691648 a.u. and
6 = 0.52658950 a.u. So we can see that, Nelder—-Mead optimization can bring the bound
state energy very close (v~ 0.006 a.u. or 0.163 eV) to the best available non-relativistic
result [204]. The energy eigenvalue can be made better by using the basis set expansion
of the wavefunction where electron correlation is included explicitly. This is discussed in

details in the following sub—section.

3.2.3 Basis set

The trial wave function of 2S¢ state f (1,72, 712) is expanded in multi-exponent Hylleraas

type basis set

s p p p
Frirama) =Y rfFrd® el 1> Cram(Wmi(2) + > Crigmi(1)n;(2) (3.2.55)
k=1 =1

i=1 j>i
1. The powers of r1, 7o and rig satisfies (I, mx,ng) > (0,0,0).
2. s is the number of elements in the set of the powers of r1, r9 and 71o.
3. ni(j) = e Pi"i is the Slater-type orbital. p is the non-linear parameter.
4. p denotes the number of non-linear parameters.

5. C};; are the linear variational parameter.

6. The dimension of the full multi-exponent basis, N = @ X S

In our present calculations, p’s are chosen in the following two ways:

1. Double exponent: In this case, p = 2 and initially we have to choose two different
p’s i.e. p1 and pa. We consider three distinct sets of (p1,p2) initially and then by
using Nelder-Mead algorithm [161] we optimize p; and ps, so that the corresponding
bound state energy eigenvalue becomes minimum. The initial choices of non-linear
parameters (p; and pg) are done from the values of non-linear parameters in the
Slater-type orbitals [162]. This process is then repeated by increasing the number (s)
of the powers (I, mg,ng) of r1, ro and 712 respectively. The following table (3.2.1)
shows a numerical example of such optimization. From table (3.2.1) we see that, the
energy eigenvalue of the ground state of Ps™ ion using 102 terms in the basis set
is —0.262004780 a.u., which is comparable with the best available energy eigenvalue
—0.2620050702 a.u. as obtained by Kar and Ho [204], where they [204] used 500 terms
in their basis set. This shows a clear advantage of present method to achieve excellent

level of accuracy in a considerably reduced basis size.
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Table 3.2.1: Optimized values of —F, p; and ps of the ground state of Ps™ ion corresponding
to different sets (s) of powers (I, mg, ng) of r1, ro and 712 respectively and double exponent
basis (p =2). N = (p 1) » s is the total number of terms in the basis set. All the quantities
are given in a.u.

s (lk, Mg, ) N m P2 -E

3 (0,0,0) (1,0,0) (0,0,1) 9 0.12488560 0.50400779 0.259907886

7 (0,0,0) (1,0,0) (0,0,1) (2,0,0) 21  0.11555350 0.45250487 0.261831394
(1,1,0) (1,0,1) (0,0,2)

13 (0,0,0) (1,0,0) (0,0,1) (2,0,0) 39  0.12488560 0.50400779 0.261971409

(1,1,0) (1,0,1) (0,0,2) (3,0,0)

(2,1,0) (2,0,1) (1,1,1) (1,0,2)

(0,0,3)

22 (0,0,0) (1,0,0) (0,0,1) (2,0,0) 66  0.12488560 0.50400779 0.262003078

(1,1,0) (1,0,1) (0,0,2) (3,0,0)

(2,1,0) (2,0,1) (1,1,1) (1,0,2)

(0,0,3) (4,0,0) (3,1,0) (3,0,1)

(2,2,0) (2,1,1) (2,0,2) (1,1,2)

(1,0,3) (0,0,4)
34 (0,0,0 102 0.12488560 0.50400779  0.262004780
1,1,0
2,1,0) (2,0,1
0,0,3) (4,0,0

(0,0,0) (1,0,0)
(1,1,0) (1,0,1)
(2,1,0) (2,0,1)
(0,0,3) (4,0,0)
(2,2,0) (2,1,1)
(1,0,3) (0,0,4)
(4,0,1) (3,2,0)
(2,2,1) (2,1,2)
(1,0,4) (0,0,5)

1,0,1

0,0,1
0,0,2

(0,0,1) (2,0,0)
(0,0,2) (3,0,0)
(1,1,1) (1,0,2)
(3,1,0) (3,0,1)
(2,0,2) (1,1,2)
(5,0,0) (4,1,0)
(3,1,1) (3,0,2)
(2,0,3) (1,1,3)

1,0,3) (0,0,4
4,0,1) (3,2,0
2,2,1) (2,1,2
1,0,4) (0,0,5

2. Nine exponent: In this case, p = 9 and p’s are taken in a geometrical sequence [205,206]
following p; = pi—17v [i = 2 — 9]; v being the geometrical ratio of the sequence. The
higher p value is responsible for spanning the space near the nucleus whereas the lower
one spans the space far away from the nucleus. Thus, wavefunction can be squeezed
or diffused by changing the geometrical ratio v while p; is kept constant throughout.
If we take 22 distinct set of powers (i.e. s = 22 and hence, N = 990) and choose
the limiting values of p as p; = 0.06 and pg = 1.5 i.e. v = 1.4953, then the energy
eigenvalue of the ground state of Ps™ ion turns out to be —0.262 005 069 a.u. which
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agrees upto the 8-th decimal place of the lowest reported value of £ = —0.262 005 0702

a.u. available in the literature [204].

In double exponent basis set, optimization is done for a particular bound state energy level
(ground or excited) and one can get benchmark results for the bound states using explicitly
correlated wavefunction. On the other hand, for nine—exponent basis set, optimization is not
much required as the exponents are sufficient to span the entire space and in this case also
benchmark results for ground and several exited states are simultaneously obtained. For
same number of terms (V) in the basis set, the computational time for the nine—exponent
basis set is much lesser than that of the double exponent basis set. The most significant
advantage of the explicitly correlated nine exponent basis set is that it can be used in
determining the resonance states by using stabilization procedure where the geometrical

ratio v is used as a parameter to plot the stabilization diagram (discussed in section 3.2.5).

The multi-exponent Hylleraas type basis set (3.2.55) can be recast as
N
f(rira,ma) = > CiX (r1, 72, 712) (3.2.56)

i=1

The correspondence between the basis set expansion formula (3.2.55) and (3.2.56). For
s =1 and p = 2 (double-exponent) i.e. N = 3, the expanded form of equation (3.2.55) will
be

f(riyrario) = i v el [Cram (Dm(2) + Cram (1)n2(2) + Craona()ma(2)] - (3.2.57)
Now, with N = 3, equation (3.2.56) assumes the form

f(ri,re,m2) = C1.X1 + CoXo + C3X3 (3.2.58)
Comparing (3.2.57) and (3.2.58), we find

Ci = Ci, Cy=Chi2, C3=Ci2 and
Xio= o e rEmm(2), Xo=rf rd rBm(Dm(?2), Xs=r i riin(1)na(2)

We have considered equation (3.2.56) for further calculation. Following the linear variation

technique, we have solved the generalized eigenvalue equation [162]

[~

C=ESC (3.2.59)

to get the minimized energy eigenvalues (£). Here H and S are the N x N dimensional
Hamiltonian and overlap matrices respectively and C' is the IV dimensional column matrix or

column vector whose elements are the expansion coefficients or linear variational parameters
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In our present methodology, the basis functions X; and the expansion coefficients C;
are taken to be real. Thus the matrix elements H;; and S;; (4,5 = 1,2, ..., N) are symmetric.
So we only calculate the upper triangular matrix elements of H and S. Then by reflection
symmetry we form the lower triangular matrix elements which saves computational time
to calculate the integrals. It can be seen from equations (3.2.49), (3.2.50) and (3.2.51) the

integrals we need to perform are of the following types

©f10:1) = [(Ou1) (s ar
<Olf‘02f> = / (Olf) (Ozf) dr
(O1f102f) = /(Olf) (ng) dr

01 and 05 are any linear operators. To illustrate the determination of the general form of
matrix elements corresponding to each type of the integrals, we consider a simple example
with N =2 i.e. f = (C1X71 4+ CyX5. Then,

(O1f102f) = 0101/(01X1)(02X1)d7+0102/(01X1)(OzXQ)dT
+CQCl/(OlX2) (OQXl)dT+CQCQ/(OIX2) (OQXQ) dr
= 0101/(01X1) (OzXl) dT"‘;ClCQ/[(Ole) (OQXQ)
+ (OlXQ) (OgXl)] dr + %CQCl / [(Ole) (OQXQ) + (OlXQ) (OgXl)] dr

+CQCQ/(01X2) (OQXQ) dr

The four integrals corresponding to the coefficients C1C7, C1C5, CoC and CyCy are the
(11), (12), (21) and (22)-th matrix elements. Thus generally the ij-th (i,j = 1,2,...,N)

matrix element will be,

(©O111021)55 = 5 [ 01X (02,) + (01X,) (©2X)] dr (3.2.60)

N
Similarly, by taking f Z 3 X, we write

(01 flOof)i; = % / O X osz)+(olXj) (OQXi)]dT (3.2.61)

(O1flO2 )y = % / (01X) 02X)+(01Xj) (ogXi)]dT (3.2.62)
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After estimating the matrix elements of H and S, we evaluate the eigenvalues (E) and the
linear variational coefficients C1, Cy, ..., Cy from (3.2.59) by using EISPACK routine [207].

3.2.4 Basis integrals

For the calculation of each matrix element, a definite type of integral appears in the algebra

which is called here as basis—integral. The necessary basis integral is of the form [208]

r1+re
A(m,n,l;a, B) = / / / it e~ =2 dr drydrg (3.2.63)
r1=0 Jro=0 J|r1—ra|

with the conditions m >0, n > 0,1 >0 and «, 5 > 0. We can write (3.2.63) as

A<m7n7l7a7577) ( 1) (80& 8ﬂ 8'}’
r1+r2
/ / / —CY"‘l—ﬂ’f2—W’f12dr1dT2dT12 (3264)
r1=0 Jro2=0 J|r1—ra|

After evaluating the explicit form of the integral (3.2.64) we will set v = 0 to get the formula
of the actual integral (3.2.63). Now

T1+7’2 8
R e T
r1=0 Jro=0 J|ri— rz\
r1+r2
= / 5T2d7‘2/ amdrl/ e "2dris +
re=0 r1="2 (r1—r2)

o0 [ee] r1+7r2
/ eo‘”drl/ eﬁ”drg/ e ""2dry
r1=0 r2=T1 (r2—71)

1 1

@t B) @t (@tB+2)  (@+B) B+ (atht2y)
2
= @i BB @) (3.2.65)

o\ 1
0 (8’Y> (B+7)
_ 2 (1) (k) !
= <a+ﬁ)( 1) Z (k) (Oé—l—’y)l_k+1 (6+7)k+1

Here, we have used the Leibniz formula [156] for the derivative on [—th order of the
il

K — k)

product of two functions and (,i) = Proceeding in the same way we can find
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n l m n .
<8aﬁ> <;7) I(a, B,7) and <€)a()z) (;) <(‘;97> I(«, B,7) successively and then set-

ting v = 0 we obtain from equation (3.2.64)

n l

' m (k+ ) n+i—5(m+1—i—k)
A(m,n, L, ) = 2mlnll! Z Z ikl (m — i)/(n — 5)!(1 — k)!
=0 j=0 k=0

(o + 5)n+1+i J am+z+1—z—k5]+k+1 (3.2.66)

To verify the formula (3.2.66), let us perform an integral A(1,1,1;«, ) directly and then
try to match the result from the summation formula (3.2.66). In the direct manner, the

integral A(1,1,1;«, ) may be expanded as

r1+r2
A(L 1’ 1) «, B) = / / /| rirarize TanT ﬂerT‘ld?"Qd’r‘lg
r1=0 Jro=0

r1—72|

T1+72
= / rie Mldrl/ T‘QB_BTQd’FQ/ r12drio
r1=0 ro=0 (r1—r2)
00 2 r1+r2
+ / Tgeﬂrzdrg/ rlea”drl/ r12dri2
ro=0 r1=0 (7‘277’1)
00 o
= 2/ r%e‘a”drl/ r2e Pr2dr,
r1=0 ro=0

[e'e} T2
+ 2/ r%e_ﬁ”dm/ r%e_“”drl
ro=0 r1=0

[e’¢) T1
where, I; = 2/ r%ea”drl/ r%eiﬁmdm
r1=0 ro=0

o) 9 82 1 8
= 2/ rie” “"dr [/ e” rzdrz]
r1=0 ! aﬁ2 ro=0

> 2 2 27 2
= 2/ r2e—am < — S TP LB gy
S CENE 5?2 B

B 8[ 1 _ 1 _ 3 _ 6 }

a8 B a+p)’ Bla+p)t Bla+hs)
1 1 3 6

0353_a3(a+6)3_a2(a+6)4_a(a+ﬁ)5]

and similarly, I, = 8[

Putting I; and Iy in the equation (3.2.67) and simplifying we can get A(1,1,1;a,3) =
PEYEER Now, by putting m = n = [ = 1, the summation (3.2.66) yields the same result for
Q

the integral A(1,1,1;«, ). Integrals A(m,n,l;a, ) with different powers and non-linear

parameters are checked in this way.



82 3: Three—body exotic ions

3.2.5 Stabilization method for resonance states

Ritz variation principle is not applicable in case of resonance states because these states
lie within the continuum and there exists lower lying bound states of the same symmetry.
Stabilization method is used to determine the resonance parameters i.e. resonance energy
(E,) and width (I';) of a three-body exotic system (ion) X XY or XYY, where X and Y are
constituent particles with positive and negative charges respectively. If a charged particle X
(or Y') moving with a “suitable amount” of K.E., it may be captured by the XY system, a
quasi-bound state of XY + X (or V) i.e. XXY™ (or XYY™) system is temporarily formed,
which is known as “resonance state”. These resonance states having finite life-time can
decay via auto-ionization channel, X XY* — XY + X or via cascading through different
fluorescence decay channel like, X XY* — X XY (ground or lower excited state). We can
take an example from the scattering theory of e~ with H atom where the wavefunction of
the system X XY (or XYY') can be written as that of the composite system (e~ + H) i.e.
(e~ +ep™) [162],

W (7, 73) = D [FF () () £ B (5w (7)| + 32 G (71.7%) (3.2.68)
r k

where, 7] and 73 are the positions of two identical particles X (or V) with respect to the third
particle Y (or X). In the above equation (3.2.68) the ‘+’ sign stands for the singlet and ‘—’
sign stands for the triplet states. In the first sum of the equation (3.2.68), ‘j’ represents the
final atomic state of the target XY having wavefunction 1; and Fji is the asymptotic form
of the wavefunction for the outgoing particle X (or Y') after auto-ionization. This first part
of the wavefunction ¥4 (r7,73) is the “open channel” part. In the second sum of (3.2.68),
le is a square integrable correlation function and this part is the “closed channel” part of
the wavefunction Wy (71,73). It is to be noted that Xf are orthogonal to ;. Using the

Feshbach projection operator formalism [209,210] we can write
Uy =PV + QU4 (3.2.69)

P and @ are projection operators satisfying the condition, P+ Q) = I, I being the identity
operator. Comparing (3.2.68) and (3.2.69) we see that PV contains open-channel subspace
and Q¥ contains closed-channel subspace. Hence, the spectral density of states (DOS)
p(E) below the threshold of double-ionization consists of two parts : (1) DOS of open-
channel p”(E) and (2) DOS of closed-channel p@(E). p”(E) smoothly varies with energy
E. p?(E) is given by

1
pO(E) = ——Im
Y

1
Zk:(E—Ek)—HFk
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E = E), —il';, are the complex poles of the Green’s function, where E} and I'j, are the
resonance energy and width of the k-th resonance state. For an isolated resonance, Bowman
[211] showed a Lorentzian shape of p@(E) can be given as

1 r/2

pQ(E) ~ T EBT (3.2.70)

where F, and I' are the resonance energy and width. The equation (3.2.70) is similar to

the Breit—~Wigner formula for the resonance scattering cross-section [162].

We now move attention from the scattering picture to the quasi-bound state calcu-
lations where a significant work was done by Mandelshtam et.al. [212] by considering a box
problem to calculate the resonance parameters. In their work [212], they argued that the
DOS pr(F) is a function of box length L and shows a region of L where pr,(E) assumes a
Lorentzian shape. This region of L defines the Q-space. If the eigenvalues of a Hamiltonian

Ex (L) are known, the DOS is a simple count of states i.e. a histogram as given by
po(B) = 38 [Ex(L) - E] (3.2.71)
k

Here Ex (L) are the box eigenvalues of the system X XY™ or XYY™*. Ex (L) are calculated
by repeated diagonalization of the Hamiltonian for different ‘L’ values. Mandelshtam et.al.
[212] have shown that

pQ(E) = ﬁ /LW pr(E)dL (3.2.72)
mazx — tmin JL,,;,

This idea of calculating DOS p@(E) is known as ‘hard wall’ technique as in this procedure

the box length L is varied. But we are more interested in a more useful technique to

calculate p@(E) as done by Miiller et.al. [213], where ‘soft wall’ strategy has been employed

by varying the non-linear parameter v in the wavefunction. The histogram form of DOS

(3.2.71) can be expressed as
py(E) =) 0[Ek(y) — E]
k
Miller et.al. [213] shows the equation (3.2.72) can be re-written as

p?(E) = 1/Vmazpw(E)d7

Ymaz = Tmin Jy,in

min

- ¥ / " S Bk () — Bl dy (3.2.73)
ol

Ymazx — Ymin %



84 3: Three—body exotic ions

Using the relation

[sla- s@lg@ds = g(w)| T B2y
x
f(=)
the equation (3.2.73) becomes
dE
Q — k(v
pe(E) = ‘ (3.2.75)
TYmazx — Ymin Z Er(7)=E

This formula is basically an average over the basis set expansion parameter (I') correspond-
ing to a particular energy position. Instead of doing average, we select a plateau for an
energy eigenroot and calculate DOS. The graph showing the variation of the k—th energy
eigenroot versus vy produces the stabilization diagram. A specimen stabilization diagram is
shown in figure (3.2.2). These roots form flat plateaus in the vicinity of avoided crossings
which confirm the presence of the resonance states. The inverse of tangent at different

points near the stabilization plateau for each energy eigenroot gives rise to the density of
states (DOS) as

i—1

P = | B B (3270

The resonance parameters (E,,T") are obtained by Lorentzian fitting of the DOS as

A r/2
w (E - E.)? + (T/2)?

p?(E) = yo + (3.2.77)
where yp is the baseline background (basically open channel contribution), A is the total
area under the curve from the baseline, F, gives the peak position of the curve, and I’
represents the full width of the curve at half maxima. For example, the energy eigenroot
no. 25 of 'S¢ state of exotic p*p*u~ ion in the energy range -60 a.u. to -24 a.u. is depicted
in figure (3.2.2), which shows three distinct plateaus in the vicinity of -30 a.u., -26 a.u. and
-24 a.u. energies. This energy eigenroot shows one plateau around -30.2718 a.u. which
is depicted in figure 3.2.3(a) and the numerically estimated DOS [using (3.2.76)] in the
plateau region are plotted in figure 3.2.3(b). The DOSs for the full range of energies of
the 25-th eigenroot are plotted in figure (3.2.4), which shows a histogram. It clearly shows
three peaks at three different energies for first three resonances. It is also evident that
the resonances are isolated as the separation of peaks are greater than the widths of the
consecutive resonances. The next part is to consider DOS of each isolated resonance and
to fit with respective Lorentzian profile (3.2.77). The estimated DOSs [hollow black circles]
and the fitted Lorentzian [red lines] for the first resonance state are given in figure 3.2.5.
The fitting yields resonance position E, at —30.2718 a.u. and width I' = 5.963 x 1075 a.u.
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Figure 3.2.2: Stabilization diagram for eigenroot no. 25 of 'S¢ state of exotic p*p+u~ ion.
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G.P. ratio (y) in a.u. DOS p%(E)
Figure 3.2.3: Plot of DOS corresponding to lowest plateau of eigenroot no. 25 of 'S¢ state
of exotic pTpTu~ ion.

Repeated calculations of DOS near the flat plateau of each of the eigenroots are done which
result into Lorentzian fitted curves. For a particular resonance, the position and width are

chosen with respect to the best fitting parameters such as least x? fitting or correlation

R?< 1.
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Figure 3.2.4: Plot of all DOS of eigenroot no. 25 with respect to the energy eigenvalues (F)
of 1S¢ state of exotic p*Tptpu~ ion.
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Figure 3.2.5: Lorentzian fit of relevant DOS of eigen root no. 25 of 'S¢ states of exotic
ptpTp~ ion. Hollow black circles show the estimated values of DOS and the red line shows

the fitted Lorentzian.
3.3 Results and Discussions

The results of three-body exotic systems presented here are divided in two broad categories:
bound and resonance states. In the former case we will discuss on the stability of the ions
by calculating the energy eigenvalues of the ions in ground state (1S¢) under free as well as
classical WCP environment. In the later case we will discuss the resonance states of some

of those ions under only free environment.
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3.3.1 Bound state

The ground state energies of free three—body exotic XXY and XYY systems are given in
the table (3.3.1), where ‘X’ denotes unit positively charged particles like p*,d", " and et
while, ‘Y’ denotes unit negatively charged elementary particles like p~, 77, K~ and e™.

Table 3.3.1: Ground state energy eigenvalues —E (a.u.) of free three—body exotic XXY and XYY systems [X = p*,
dt,and tt, Y = p=, 7~ and K~], PsT(eTe~e™) ion and three-body molecular H;r(erere*)7 D;(d+d+e’) and
T; (tttTe™) ions.

—E(a.u.)
Tons Present Pawlak Sil Kar and Ho Bhattacharyya  Frolov Bertini
work et. al. [178] et. al. [177)  [214] et. al. [215] et. al. [216]  et. al. [171]
pTptu~ 102.223497  102.223491  102.2235 102.2235036
ptu—p~ 97.566984 97.56698459 97.56698343
dtdtp~ 109.816924  109.815698  109.8165
dtp—p~ 102.991910 102.9919106
ttttp~ 112.972830 112.971933  112.9718
ttu—p~ 104.944115 104.9441154
ptpta— 129.718073
pto—n~ 124.690674 124.69067407
dtdtn— 141.524534
dtn—m~ 133.653701
ttitr— 146.472365
tte—n— 136.951552
ptpt K=  334.575377
pt K~ K~  330.800637 330.80063677
dtdtK—  410.609734
dt*K—K~  400.176959
tHtt K- 446.122899
tTK—K~  430.623711
Ps~ 0.262005 0.2620050702
HY 0.596902 0.597136
Df 0.598211
TF 0.598702

The energy eigenvalues are determined variationally using nine-exponent (p = 9) Hylleraas
basis set consisting of total N = 990 number of terms. The energy values converged
atleast upto 6-th decimal place and those values are compared with other results from the
literature [171,177,178,188,215,216]. The comparison shows that the present method is
quite efficient to produce precise energy values of such systems. We note that among the
three-body systems listed in table (3.3.1), Hy, D and Tj do not belong to the exotic ion
category.

We extend our methodology to calculate the ground state energy eigenvalues of the same set
of three-body exotic systems under classical WCP where the effective potential is modeled
by ESCP (equation-2.2.25) as

1 1

1
Vepr(ri,ma,m2) = —Ee_“D” — Ee_“D” + @6_‘“DT12 (in a.u.) (3.3.1)
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In this expression, up is the plasma screening parameter which is the inverse of the plasma
screening length A\p (equation-2.2.6) i.e. pup = ST The first two terms in the potential
D

(3.3.1) denote the attractive screened Coulomb potential between the X and Y particles,
whereas the last term is the repulsive screened Coulomb potential between either two X or
two Y particles. The energy eigenvalues of pTu~pu=, ppTp=, dtp~p=, d*dTp=, tTu—p~
and tTtTp~ systems are given in table (3.3.2); ptn—n~, ptpTn~, dtn 7, dtd* ™,
ttn~m~ systems in table (3.3.3) and t*tTr—; pt K- K, ptpt K, d" K~ K~, d*dtK ™,
t* K=K~ and tTtt K~ systems in table (3.3.4).

Table 3.3.2: Ground state energy eigenvalues —FE (a.u.) of three-body exotic XXY and XYY systems [X = pt,dT, ¢,

Y = p~] for different screening parameters (up in a.u.) with the relative binding energies (R4 in %).

—E —-FE -E

KD ptu—p~  ptptu” Ry dfpp” drdtu~ Ry trp—p”  thttps Ry

10.0 87.855345 92.568209  5.09  93.260418  100.145956  6.87  95.205930 103.296334  7.83
92.568199% 100.144720% 103.295434%
92.56820 100.1456° 103.2953°

50.0 54.839746  60.038615  8.66  59.825553  67.257235 11.05 61.198210  70.280415 12.92
60.038611% 67.255863% 70.279521¢
60.0386° 67.2567° 70.2793°

100.0  25.826355 30.782620  16.10  29.756288  36.948814 19.47  31.198210  39.591867 21.2
30.782618% 36.947245% 39.591120%
30.7825 36.9481° 39.5905°

150.0  8.446984  11.937001  29.24  10.982746  16.485717 33.38  11.945982  18.532941 35.54
11.937011¢ 16.484151¢ 18.532441¢
11.9369° 16.4848° 18.5315°

170.0  4.297395  6.944875 38.12  6.216664 10.706357 41.93  6.968302  12.460505 44.08

190.0  1.581640  3.296125 52.01  2.858609 6.191216 53.82  3.390177  7.621487 55.52

200.0  0.731816  1.960682 62.67 1.678362 4.390282 61.77 2.097041  5.646489 62.86
1.960682¢ 4.389327% 5.646211%
1.9603° 4.3895% 5.64520

210.0  0.207350  0.948810 78.14  0.816355 2.886918 71.72  1.120501  3.960122 71.70
0.948810% 2.886181¢
0.9471° 2.8861°

215.0 0.064944 0.565957 88.52
217.0 0.030274 0.436440 93.06
219.0 0.008277 0.320819 97.42

220.0  0.001736  0.268351 99.35  0.260874 1.678541 84.46  0.450726  2.558335 82.38
0.268355% 1.678029% 2.558159%
1.6768° 2.5569°

220.2 0.000738 0.258291 99.17
220.3 0.000273 0.253317 99.89
220.36  0.000005 0.250349 99.99
220.37  -0.000039

223.0 0.133212 0.150990 1.373618 89.00
0.1332237
224.0 0.095989 0.119785 1.277921 90.63
0.096009¢
225.0 0.063015 0.091167 1.185209 92.31  0.227221 1.963501 88.43
0.063032¢
226.0 0.034623 0.065044 1.095491 94.06
0.0346427
227.0 0.011481 0.058442 1.008779 94.2
0.011503¢

227.6 0.000821
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Continuation of Table (3.3.2)
-E —-E -E
1D ptp—p=  ptptu- Ry dtp—p~ dtdtpu- RY ttu—p™  thttu R}
0.000871%
227.65 0.000093
227.66 -0.000049
228.0 0.041017 0.925084 95.56
229.0 0.026588 0.844421 96.85
230.0 0.015117 0.766808 98.02 0.073756  1.439475 94.88
0.766510%
231.0 0.006487 0.692261 99.06 1.343207
232.0 0.000422 0.620805 99.93
232.08 0.000035 0.615223 99.99
232.09 -0.000013
233.0 0.028768  1.159259 97.52
234.0 0.016915  1.071598 98.42
235.0 0.425236 0.007890  0.986826 99.20
0.425125%
236.0 0.001462  0.904956 99.84
236.2 0.000453  0.888931 99.95
236.29 0.000026  0.881759 99.99
236.3 -0.000020
236.5 0.338356
0.338250%
238.0 0.258924
0.258842%
240.0 0.165098 0.606836
0.1650492 0.606762%
242.0 0.086017 0.475709
0.085997% 0.4756477
243.0 0.052549
0.0525422
244.0 0.023686
0.0237049
244.5 0.011245
0.011305°
244.8 0.004596
0.004663%
245.0 0.000590 0.302169
0.000670% 0.3021649
245.03 0.000113
245.04 -0.000069
248.0 0.157711
0.157936%
250.0 0.079315
0.079473%
252.0 0.017483
0.017562%
252.5 0.005217
0.005378%
252.7 0.000837
0.001049%
252.74 0.000008
252.75 -0.000196

@ [178], b [177]
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Table 3.3.3: Ground state energy eigenvalues —E (a.u.) of three-body exotic XXY and XYY systems [X = pt,d*t, ¢+
, Y = 7] for different screening parameters (up in a.u.) with the relative binding energies (R% in %).

-FE —F -FE

1735} pta—m~ pTpta— R7 dtrm—n~ dtdtn— Ry ttn—m~ ttttn— RT
50.0 80.425360 85.969490  6.45  88.937428 97.405083  8.69  92.081757 102.223361  9.92
100.0 47.215697  52.927045 10.79  54.588414  63.309187  13.77  57.341339  67.754111 15.37
150.0 23.821049  28.803607 17.33  29.617686  37.546979  21.19 31.826161  41.400552  23.13
200.0 8.925715  12.402317 28.03 12.869611 19.006120 32.29  14.437058  22.075746  34.60
210.0 6.862148 9.969063  31.16

230.0 3.583539 5.904747  39.31  6.322564  11.005377  42.55

250.0 1.387016 2.883109  51.89  3.290509 6.888817  52.23  4.153681 8.995895 53.83
260.0 0.677872 1.757214  61.42  2.154059 5.184217  58.45  2.870325 7.076785 59.44
270.0 0.220759 0.888919  75.16  1.262464 3.711794  65.99  1.829890 5.381642 65.99
275.0 0.085564 0.553326  84.52

280.0 0.011735 0.286065  95.89  0.609687 2.470156  75.32 1.026418 3.908086 73.74
281.0 0.003820 0.241133  98.41

281.2 0.002338 0.232497  98.99

281.4 0.001015 0.223979  99.55

281.5 0.000612 0.219764  99.72

281.6 0.000002 0.215579  99.99

281.61  -0.000058

283.0 0.160262

285.0 0.091848

287.0 0.037260

288.0 0.015642

289.0 0.000179

289.02 0.000007

289.03 -0.000090

290.0 0.187206 1.459767  87.17  0.453008 2.654741 82.93
295.0 0.055832 1.042335  94.64

298.0 0.027442 0.820496  96.65

299.0 0.017139 0.751392  97.72

300.0 0.009212 0.684736  98.65  0.114300 1.621863 92.95
301.0 0.003686 0.620544  99.41

302.0 0.000611 0.558837  99.89

302.4 0.000053 0.534855  99.99

302.45 0.000006 0.531886  99.99

302.46 -0.000002

305.0 0.388858 0.028253 1.188937 97.62
306.0 0.017897 1.109122 98.39
307.0 0.009856 1.031583 99.04
308.0 0.004158 0.956329 99.56
309.0 0.000847 0.883372 99.90
309.5 0.000081 0.847758 99.99
309.58 0.000006 0.842114 99.99
309.59 -0.000003

310.0 0.157682 0.812723

311.0 0.119531

312.0 0.084133

313.0 0.051501

314.0 0.029496

315.0 0.005910

315.2 0.001680

315.3 0.001361
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Continuation of Table (3.3.3)

91

—-F -k —-F

[735) pTa—m~ pTpta— R7 dtrm—n— dtdtn— Ry ttn—m— ttttn— RT
315.37 0.000153

315.38 -0.000014

320.0 0.236205
321.0 0.191857
322.0 0.149967
323.0 0.116501
324.0 0.082026
325.0 0.050882
326.0 0.023476
327.0 0.000776
327.04 0.000012
327.05 -0.000176

Table 3.3.4: Ground state energy eigenvalues —FE (a.u.) of three-body exotic XXY and XYY systems [X = pt,d+t, ¢+
, Y = K] for different screening parameters (up in a.u.) with the relative binding energies (R¥ in %).

—-E —-FE -E

o ptTK-K— pTptTK— RE dtK-K— dtdtK— RE ttK— K~ tHet K- RE
100.0  239.838364  244.007205 1.71  307.459282  318.599460  3.49  337.295789  353.626696  4.62
200.0  166.075945 170.608044  2.66  229.055514  241.066693  4.98  257.247701 274.688669  6.35
300.0  107.891316 112.326102 3.95  164.095730 176.332809  6.94  189.854114  207.722505  8.60
400.0 63.670079  67.522047  5.70  111.501363 123.127272  9.44  134.225608 151.556582 11.43
500.0 31.977129  34.866702 829  70.209125  80.428582  12.71  89.439333  105.257705  15.02
600.0 11.579834  13.284046  12.83  39.237733  47.399557  17.22  54.615579  68.060983  19.75
700.0 1.450568 1.951378  25.66  17.708389  23.354972  24.17  28.946063  39.334553  26.41
710.0 0.970778 1.362893  28.77

720.0 0.585947 0.874168  32.97

730.0 0.296183 0.486795  39.16

740.0 0.101628 0.203732  50.12

745.0 0.040922 0.102705  60.15

750.0 0.005884 0.031387  81.25

752.0 0.000367 0.011356  96.77

752.2 0.000190 0.010504  98.19

752.4 0.000068 0.008791  99.22

752.6 0.000006 0.007123  99.92

752.66  0.000001 0.006631  99.99

752.67  -0.0000002

753.0 0.003917

754.0 0.002306

754.1 0.001775

754.2 0.001257

754.3 0.000753

754.4 0.000263

754.45 0.000023

754.46 -0.000025

800.0 4.852758 7.762306  37.483  11.705996  18.566747  36.95
850.0 1.472341 3.032857 51.45 6.045429 11.044957  45.26
870.0 0.668722 1.715585 61.02

880.0 0.383635 1.183266 67.58

890.0 0.176330 0.737658 76.09

900.0 0.047548 0.381782 87.54 2.263549 5.393579  58.03
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Continuation of Table (3.3.4)

—-E —-E -E

o pTK- K~ pTpT K~ RE dtK—K— dtdtK— RE tTK— K~ tHtt K— RE
905.0 0.013001 0.238701 94.55

906.0 0.008420 0.212937 96.04

907.0 0.004550 0.188131 97.58

908.0 0.001333 0.164286 99.19

908.4 0.000214 0.155018 99.86

908.48 0.000001 0.153183 99.99

908.49 -0.000025

910.0 0.119486

912.0 0.078536

913.0 0.059501

914.0 0.041417

916.0 0.025423

917.0 0.013630

918.0 0.003757

918.4 0.000367

918.44 0.000047

918.45 -0.000032

920.0 1.262584 3.657489  65.48
930.0 0.869294 2.903244  70.06
940.0 0.545767 2.225926  75.48
950.0 0.289334 1.626773  82.21
960.0 0.095004 1.107561  91.42
970.0 0.025565 0.670780  96.19
975.0 0.002600 0.484293  99.45
975.9 0.000172 0.453034  99.96
975.97 0.000002 0.450633  99.99
975.98 -0.000022

980.0 0.319666

985.0 0.177313

990.0 0.057524

993.0 0.022217

994.0 0.008063

994.6 0.000920

994.68 0.000033

994.69 -0.000076

It can be seen from the tables (3.3.2)—(3.3.4) that, if pp increases, the energy eigenvalues
of all the exotic systems increases gradually towards the limit of destabilization. Figures
(3.3.1) to (3.3.3) show the nature of variation of the ground state energies of XXY and
XYY systems with respect to pup. It is also evident from the tables (3.3.2)—(3.3.4) that the
energy eigenvalues of XYY systems are higher than that of the XXY systems at any arbitrary
screening parameter pp. The amount of boundness of the XYY systems with respect to

XXY systems can be examined effectively by introducing a dimensionless quantity, called
Exxy — Exyy

_ Exxy _
and Fxyy are the ground state energies of XXY and XYY systems respectively. In the
tables (3.3.2) to (3.3.4), the values of RY show that XYY systems destabilizes more rapidly

compared to the XXY systems. The variations of R}/( with respect to up are also shown in

relative binding energy (R}/() which is defined as R}/( = x 100, where Ex xy
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Figure 3.3.1: The variation of ground state (1S¢) energy eigenvalue E (in a.u.) of exotic (a)
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Figure 3.3.3: The variation of ground state (1S¢) energy eigenvalue E (in a.u.) of exotic (a)
XXK~ ions and (b) XK ™K~ ions [X : pT,d",tT], with respect to the screening parameter

up (in a.u.).
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figures (3.3.4) to (3.3.6). It is clear from the figures that RY increases slowly upto a certain
value of up and after that R}/( increases rapidly upto 100% until the XYY systems become
unbound.

The energy eigenvalues of exotic Ps™(ete~e™) ion and non-exotic Hy (pTpTe™),
D3 (dtd*e™) and TF (t7tTe™) ions are given in table (3.3.5) for different values of up.

Table 3.3.5: Ground state energy eigenvalues —F (a.u.) of three-body Ps™ (ete~e™), Hf (pTpte™),
DF (d*d*e™) and TJ (t*t*e™) ions for different screening parameters up (a.u.).

-

755 Ps™(ete"e™) Hi(ptpte™) DJ(dtdte™) TF(tttte )

0.1 0.173618 0.503099 0.504402 0.504889
0.1736181600¢ 0.503330°

0.2 0.106409
0.1064096775%

0.3 0.057553

0.4 0.024698

0.5 0.005965 0.226676 0.227817 0.228241
0.0059656643*

0.55 0.001421

0.56  0.000871

0.57 0.000481

0.58  0.000191

0.59  0.000029

0.594 0.000001

0.595 -0.000002

0.7 0.135199 0.136214 0.136579
0.135561°

1.0 0.044832 0.045025 0.045288

1.2 0.011923 0.012187 0.012308
0.012287°

1.25 0.006808
0.007201°

1.29 0.003672
0.003989°

1.3 0.003222 0.003296

1.33 0.001339

1.34 0.000882
0.001190°

1.35 0.000476 0.000609 0.000657
0.000750°

1.36 0.000118 0.000236 0.000279
0.000400°

1.363 0.000019
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Continuation of Table (3.3.5)

-

pp  Ps (efemem) Hy(ptpter) Di(dfdter) Ty(tftte)

1.364 -0.000019
1.367 0.000004

1.368 -0.000027 0.000011
1.369 -0.000020
a [188], b [171]

We now proceed to calculate borromean window (BW) of the relevant three-body systems.
Table (3.3.6) displays the critical screening parameters (u$,) of the three-body systems
along with their two-body sub-systems. The u$, values of the two-body sub-systems (XY)
are estimated following the work of Gomes et.al. [217]. It is evident from table (3.3.6)
that p%, for the two-body sub-systems (XY) lie between the 41, of XXY and XYY systems
(X :ptdt,tt and YV @ po,m K] ice. (0H)xxy > (H)xy > (15)xyy. Thus all
the XXY systems possess borromean window (BW) whereas XYY systems do not have
BW, as shown in the last column of the table (3.3.6). The values of BW for the XXY
systems, keeping Y fixed, show that, as the mass of X increases the BW also increases e.g
(BW)iw > (BW )ddp > (BW )ppu-

Table 3.3.6: Critical screening parameters (u$,) and borromean windows (BW) of the three-body
XXY and XYY systems [X=pT,d",t", et , Y=p=, 77, K, e"]. uf, of the two-body systems (XY)

are taken from [217].

Two-body w5 Three-body “h BW
sub—system system
ptu~ 221.26 prptu~ 227.65 6.39
227.66%
ptu~p~ 220.36 0
pta— 283.07 pTpta~ 289.02 5.95
pta T 281.6 0
pT K~ 753.69 ptpT K~ 754.45 0.76
pTK~K~ 752.66 0
AN 233.05 drdTu~ 245.03  11.98
245.03¢
dtup” 232.08 0
drm~ 302.67 drdtn~ 315.37 12,70
dtn—m~ 302.45 0
dTK~ 910.58 dtdTK— 918.44 7.86
dtTK-K~ 908.48 0
tTp 237.26 AN AN 252.74 1548
252.75%
ttu~p~ 236.29 0

tto— 309.80 ttetn— 327.04 17.24
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Continuation of Table (3.3.6)
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Two—body “h Three—body 15 BW
sub—system system
tto—m~ 309.58 0
tT K- 978.31 tHt K- 994.68  16.37
ttK— K~ 975.97 0
pte (H) 11899 ptpte (HF) 1.363 0.1731
1.365°
1.3734¢
dte” 1.1903 dtdte~(DJ) 1.367  0.1767
tte~ 1.1904 tttte (Ty)  1.368  0.1776
ete™(Ps) 0.5953 ete e (Ps™)  0.594 0

@ [178], ® [171] and © [218]

To compare the BWs of XXY systems we introduce a dimensionless quantity called relative
c o c
(1D)xxy — (1pH)xy % 100%. The

(1H)xxy
estimated RBWs for different mass relation parameters (g,,) are given in table (3.3.7) and

the variation of RBW with respect to ¢, is shown in figure (3.3.7).

borromean window (RBW), which is defined as RBW =

16

14 4

12 4 \
10 4

Relative borromean window (in %)

T 1
0.0 01

02 03

Mass relation parameter (q_)

T
0.4

1
05 06

—T
0.7 0.8

Figure 3.3.7: The variation of relative borromean window (RBW) with respect to the mass

relation parameters (gy,).
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Table 3.3.7: Relative borromean window (RBW) and the mass relation parameter (g,,) of the
three-body exotic XXY and XYY systems [X=p™*,d*,tT, et , Y=p~, 77, K™, e7].

Three-body ¢m RBW | Three-body ¢m RBW
system system

T 26.58497 0 dtdTK~ 0.26321 0.86
ttr—n— 20.12551 0 tHtt K- 0.17575 1.71
AN 17.75169 0 prpta™ 0.14875 2.09
dXn—m~ 13.43849 0 pTptu~ 0.11261 2.86
ptu~ ™ 8.88025 0 dtdtn~ 0.06879 4.19
prr—m~ 6.72258 0 drdtu~ 0.05633 5.10
tTK~ K~ 5.68979 0 ttetn— 0.04968 6.19
dT*K- K~ 3.79927 0 tTtt 0.03762 6.50
ptK-K~ 1.90062 0| ptpte (HF) 0.00054 12.70
ete~e (Ps7) 1.00000 0| dtdte=(D3) 0.00027 12.95
ptpt K~ 0.52615 0.08 | tttte (TF) 0.00018 13.01

Both the table (3.3.7) and figure (3.3.7) show that, RBW = 0 for ¢,,, > 1 and RBW increases
rapidly as gy, tends to zero. For example, from table (3.3.7) one can find that RBW = 0.08%
at gm = 0.52615 (for p*p* K~ system), which is small as compared to the highest estimated
RBW = 13.01% (for T§ system) at gn, = 0.00018. Hence, we have chosen systems in the
range 0 < ¢, < 0.5, to get a smooth variation of RBW with respect to ¢,,. It is well
established that negative ions are less stable than the positive ions e.g. H~, He™ etc. ions
are less stable than H™, He™ etc. We have also found that the binding energies of XYY
systems (g, > 1) are less than that of the XXY systems (¢, < 1) for free case. As we
put those exotic systems in classical WCP and increase the screening parameter up, XYY
systems destabilize more rapidly than XXY systems and its two—body sub—systems (XY).

This is the reason behind the non—possessing of the borromean bindings of the XYY ions.

3.3.2 Resonance state

We now extend our study to estimate the resonance parameters (resonance energy and
width) of three-body exotic p*p™Y and p™YY [V : u~, 77, K] ions in the free environ-
ment ¢.e. all interaction potentials among the particles are purely Coulombic as given in
equation (3.2.52). The energy eigenvalues of 'S¢ states of ptptY and pTYY ions are cal-
culated using nine—exponent (i.e. p = 9) Hylleraas type basis set containing N = 675
terms. For 200 different geometrical progression ratios () in the basis set expansion, the
Hamiltonian matrix has been repeatedly diagonalized to obtain energies corresponding to
different eigenroots. The plot of each energy eigenroot versus v produces the stabilization

diagram from which we estimate the resonance parameters of pTp™Y and pTYY ions.
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A portion of the stabilization diagram for 'S¢ states of exotic p*p* ™ ion is given in figure

(3.3.8). In this diagram, we have plotted first 40 eigenroots of 'S¢ symmetry for 200 differ-
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Figure 3.3.8: Stabilization diagram for the resonance 'S¢ states of exotic p*p*u~ ion in

free environment.

ent values of v ranging from 0.63058 a.u. to 0.82353 a.u. From figure (3.3.8), one can see

that there exist two classes of states:

i. Only one energy level below the first ionization threshold (n = 1) of p™ ™ is formed at
—92.920408 a.u. due to ground state (1s2) configuration. This level remains invariant
with the variation of 7. The energy eigenvalue of this level is —102.223 503 which is
consistent with the value presented in table (3.3.1) for ground state of pTp™pu~ using

990 terms in the nine-exponent Hylleraas type basis set.

ii. Roots lying above n = 1 but below n = 2 ionization threshold of p™u~ are sensitive
with the variation of « and give rise to flat plateaus in the vicinity of avoided crossings
of the energy eigenroots for some particular energy value. Such behaviour is a clear

signature of resonance states.

Similar classes of states are also observed for other exotic systems: pTu~pu~, ptpTn—,
pta— 7, ptpT K~ and p"K~K~. An enlarged view of a portion of the stabilization di-
agram (figure 3.3.8) of 'S¢ state of exotic p*p*p~ ion in the energy range -40.0 a.u. to
-23.23 a.u. is given in figure (3.3.9).

From a closer look at figure (3.3.9), we see that, for a short range of v, each
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Figure 3.3.9: Enlarged view of the stabilization diagram for the resonance 'S¢ states of

exotic pTpTu~ ion below n = 2 ionization threshold of p*p~.
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Figure 3.3.10: Calculated density (hollow black circles) and the fitted Lorentzian (solid
line in red) for the resonance 'S¢ states of exotic p*p* ™ ion having (a) Resonance energy
—FE, = 30.27180(a.u.) and width I' = 5.963 x 107°(a.u.) and (b) Resonance energy —FE, =
26.64933(a.u.) and width I' = 1.03 x 10~%(a.u.).

eigenroot becomes almost flat in the vicinity of avoided crossings in the neighborhood of
a particular resonance state. The density of states p?(E) is calculated by using equation
(3.2.76) and then fitted by the Lorentzian profile given in the equation (3.2.77). Among
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different fitting curves for each eigenroot corresponding to a particular resonance state, the
fitting curve which gives least x? value and where the square of correlation (R? < 1) leads to
the desired resonance energy (F,) and width (T'), as described in the methodology section.
For example, figure (3.3.10) shows fitted Lorentzians of the first two resonance 'S¢ states
of ptpTu~ ion corresponding to energy eigenroot numbers 23 and 28 respectively which
give least x? value and square of correlation R? < 1 in the fitting process. Table (3.3.8)
shows all the resonance energies (F,. in a.u.) and widths (' in a.u.) of 'S¢ states of exotic
pTYY and pTpTY ions [Y = pu~, 7, K~| below n = 2 ionization threshold of p™Y atom.
The results have been compared with those available in literature [219,220] for p*YY and
pTptY [Y = =, 7] ions. The comparison shows that resonance energies and widths are
in very good agreement with the available results [219,220]. To the best of our knowledge
the present calculated resonance energies and widths of p" K=K~ and pTpT K~ ions are
given for the first time in the literature. Table (3.3.8) shows that the widths of the negative
ions (pTYY) are higher than the corresponding three-body positive counterpart (pTp*Y),
which indicates that the resonance states of the p*p™Y ions are more long lived against

auto-ionization than the p™YY ions.
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Doubly excited states of two—electron atoms

The topic of doubly excited states (DESs) in two-electron atoms has been attracting signif-
icant attention since the early days of quantum chemical research as is still relevant in the
present days, from both theoretical and experimental perspectives. Following the ground-
breaking discovery of the two-electron one-photon peak by Madden and Codling [42, 43|
while measuring the photo-absorption spectra of helium atom placed in the field of syn-
chrotron radiation, the DESs of two-electron atoms are always in the focus of researcher in
the field of atomic structure calculation. Precise knowledge of the structural characteristics
of DESs of different two-electron atoms is essential for analyzing astrophysical data, diag-
nosing lines seen in the solar corona, detecting high temperature discharges and performing
laboratory plasma diagnostics [49,51,221,222]. In this chapter, we give a detailed account of
the works on DESs for the two-electron systems embedded in classical plasma environment.
We investigate the structural properties of high lying doubly excited F¢ states of ‘free’ two-
electron systems by solving the Scrodinger equation using Ritz variation principle. This
methodology is further extended to estimate the structural properties of the atoms placed
within classical weakly coupled plasma (WCP) where the potential is modeled by exponen-
tial screened Coulomb potential (ESCP) (1.0.1). Under such plasma environment we have
also estimated the transition energies of different dipole allowed transitions between various
DESs.

4.1 Literature review

The complexity of the estimations of the structural properties of two-electron systems under
WCP environment increases a notch higher than that of one-electron systems because of the
presence of the non-central Coulombic repulsion potential modified by ESCP. The investi-
gation of the effect of WCP on the ground state energy level (1s2;1 S¢) of He-like systems
was first introduced by Rogers [223] using radially correlated basis. Lam and Varshni [224]
reported decrease of the ionization energy (known as ionization potential depression or IPD)
of ground state of He atom with respect to the increase in plasma screening strength up
(equation (1.0.2)). They [224] also found the value of critical screening at which the ground
state energy crosses the first ionization threshold i.e. the energy of He™(1s). A large number
of spectral data (energy, stability or critical parameter, transition probabilities, oscillator
strengths, static and dynamic multipolar polarizabilities etc.) for ground and singly excited
states of two-electron atoms under weakly coupled plasma have been generated by different
workers over the past decades [225-237]. These studies show that, like the one-electron
systems, the increase in up lessens the number of bound states and pushes the two-electron
energy levels towards the continuum. From the radiative transition point of view, Ray and

Mukherjee [227] showed that for He-like carbon the transition energy for principal quantum
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number conserving transitions (An = 0) increases with the increase of pp whereas for prin-
cipal quantum number non-conserving transitions (An # 0) transition energy decreases as
up decreases.

From the beginning of this century, many researchers have estimated the energy eigenvalues,
transition energies, multi-pole polarizabilities etc. structural properties of doubly excited
metastable bound P¢, D° F¢ and G° states of two-electron systems (He, Li*, Be?T, H™)
under WCP environment [238-244]. In these works several quantum-chemical approxima-
tion techniques like Ritz variation technique, B-spline method using Hylleraas-CI functions
etc. are employed. Similar to the ground and singly excited states, the energy eigenval-
ues of metastable bound DESs increase with the increase of pup resulting in reduction of
the number of metastable-bound states under second ionization threshold. Level crossing
phenomena of some certain DESs have been observed for the transition P¢ — D as up
increases [242]. Saha et al. [242] reported a mixture of both red and blue shift of the spec-
tral lines for the transitions between various DESs. In a recent article Zhou et al. [244]
described the variation of some geometric quantities of He-atom such as (r), (ria), (r<),
(r<), (cosf12) and (A12) for the 13P¢ and 13D° states, with respect to up.

Resonance parameters (energy and width) of doubly excited 'S¢ state was first
calculated analytically by Wang and Winkler [245] for H™ ion under plasma environment.
They modeled the plasma medium by Debye-Laughton potential which reduces to ESCP
or Debye plasma potential by adjusting the parameters of that potential. Subsequently,
Ho and co-workers published a series of papers [204,214, 238,239, 246-256] where they es-
timated the variation of resonance parameters of different doubly excited 135¢, 13P°, 1D€,
L3pe 13p° L3Fe and 13GO states of two-electron systems like H—, H—, He, Lit, C*t, 05+
and Ne®t using stabilization and complex co-ordinate rotation (CCR) techniques, under
the WCP environment modeled by ESCP. They have shown that, as pup increases, reso-
nance energy increases while resonance widths may increase or decrease depending upon
the configurations of DESs. Other workers have also estimated the variation of resonance
parameters of two-electron systems under Debye plasma environment where they have used
different quantum-chemical techniques like time-dependent harmonic perturbation [257],
stabilization method using explicitly correlated wave functions [258,259], close-coupling ap-
proximation [260-262] etc. Besides the variations in the resonance parameters with respect
to up, transformation of Feshbach resonances to shape resonance was also observed [252,262]
for screening parameter pp greater than the critical value (upc) of screening parameter at
which the resonance energies crosses the one-electron threshold.

There are some relativistic calculations available in literature on DES of two-electron sys-
tems embedded in WCP [263-266]. Das et al. [263] used relativistic Fock-space multirefer-
ence coupled-cluster theory to compute the transition energies and oscillator strengths of the
dipole-allowed (E1) 'Sy —! Py transition of C**, A1M'* and Ar'®* ions at different plasma
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screening pp. Xie et. al. [264] also studied the influence of the plasma on the magnetic-
dipole (M 1) and magnetic-quadrupole (M2) transition probabilities and oscillator strengths
of the transitions between various configurations of C** using the multi-configuration Dirac-
Hartree-Fock method. Chen et. al. [265] compares the relativistic Flexible Atomic Code
(FAC) computations and multiconfiguration Dirac-Fock (MCDF') method in predicting the
variation of the transition energies for the 1s%(1S) — lsnp(!P)[n = 2,3] E1 transitions
with respect to up for C*, Nt Ar'®t and Kr®** jons. Using MCDF method Ma et.
al. [266] found that in the dielectronic recombination (DR) process, the total radiative rates
and Auger rates of the intermediate two-electronic states decrease monotonically with in-
creasing the plasma screening pup with an exception of Auger rate first increases and then
decreases for the 2p?(1S¢) state with the increase of up. In their work [266], both the
blueshift and redshift phenomena are observed for the resonance energies with increasing
HUD-

Mukherjee and group investigated [267-270] the structural modification of two-electron sys-
tems under SCP described by ion-sphere potential (1.0.3) using different quantum-chemical
approximation techniques like time-dependent perturbation theory, time dependent Hatree-
Fock (HF) theory and Rayleigh-Ritz variation principle with Hylleraas-type correlated wave-
function. The IPD, pressure ionization, level-crossing phenomena etc. with respect to the
IS-radius are the main findings of those studies. Belkhiri et al. [271] computed shifts of
binding energies of different charge states of Al (Al''* to AI"*) and transition line shifts
of Be-like iron (Fe??T) and titenium atom by using different atomic packages like Los Al-
mos Cowan Atomic Structure (CATS) code in HF or Hatree-Fock-Slater form, FAC and
MARITA codes within ion-sphere potential. A series of theoretical works have been per-
formed [272-276] in the relativistic framework using MCDF method, GRASP2K code in-
cluding correlations via configuration-interaction, FAC etc. The SCP effect was considered
through self-consistent ion-sphere potential or average atom ion-sphere potential to incor-
porate the effects of both temperature and density of the plasma medium. In those works
the shift of Heg transition line of CI'> ion (in the X-ray region) was estimated to verify
available experimental data. Chen [273] and Singh et.al. [275] reported “red-shift” of He,
and Heg lines for the He-like C1'5*, Ar'6+ Ti20+ and Fe?** ions with respect to the in-
crease in plasma density. In a very recent article Chandra et.al. [277] reported the energies
and probabilities of 2p? (3P 1 2) — 152p(1 Py 1 2) satellite transition lines for the C**, Ne®t,
A" and Ar'®t ions within the IS-model where the energy eigenvalues are computed by
both non-relativistic variation technique using correlated Hylleraas-type basis and relativis-
tic MCDF method using modified GRASP2K code. While the above studies are focused on
the radiative transitions, Belkhiri et.al. [278] estimated the variation of auto-ionization rates
as a function of plasma density under the ion-sphere model potential for the non-radiative
transitions between different charge states of Al i.e. for the transitions Al''* — A2+
A0+ S AT A S A0+ and A1BT —AIPT, using FAC and GIPPER codes.
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A large number of investigations [204, 241-245, 247,249, 250, 253, 256, 258] have been car-
ried out for the determination of various structural properties of DES of He-like systems in
plasma environments for S, P and D states. The same applies to higher angular momentum
F€ states are quite limited [239,240]. In these works the authors used CI-type basis functions
to calculate energies of metastable bound 3F¢ states [239,240] and the energy and width
of 13F¢ resonance states below n = 3 ionization threshold [239] of He-atom placed within
classical WCP environment modeled by ESCP. The authors simplified their calculations
by approximating the screened electron-electron repulsion potential term by Taylor series
expansion [239,240]. In this chapter, we have extensively studied the structural properties
of 13F¢ states of He-atom under pure Coulomb potential (free atom) and ESCP (plasma
embedded atom) using trial wavefunction expanded in multi-exponent Hylleraas-type basis
set. Energies of the metastable bound “3F¢ states are calculated using Ritz variation prin-
ciple for different screening conditions of the potential. “Soft wall” strategy [206,213,279]
of the stabilization method [212] is used to determine the resonance parameters of 3F¢
states of He-atom for various screening parameters of ESCP. We have calculated the matrix
elements for both the attractive and repulsive parts of ESCP analytically by retaining the

exact form of the potential terms.

4.2 The present method

In this section we will construct the wavefunction for the unnatural even parity F¢ state of
two-electron systems, followed by the general variational equation and the necessary basis

integrals to estimate the structural properties of the two-electron systems.

4.2.1 Wavefunction

The DES 3F¢ of two electron systems can arise from the configurations such as npn’ f[n >
2 and n/ > 4], ndn'dln >3 and n' >4 for 'Fén,n’ >3 for 3F¢, ndn’gn >3 and n’ >
5] ete. (indicated in table-1.0.1). We are going to construct the trial wavefunction by taking
two basic pf and dd configurations explicitly and all other higher configurations will be
incorporated through different powers of 719 in the trial wavefunction. The general form of

the wavefunction of 13F¢ state of two-electron systems, is given by
U = \I/pf + W44 (421)

where, ¥, r and ¥ 44 are the wavefunctions representing the pf and dd configurations, respec-
tively. We introduce the coupled angular function YLllj’\l} where L = total angular momentum
quantum number, M = total magnetic quantum number which is considered to be zero in

the present case, I; and lo = individual angular momentum quantum numbers. Equation
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(4.2.1) can then be written as
U= [f (r1,m2,712) Y;jbl +g(r1,72,712) bez + exchange (4.2.2)

where f (r1,7r2,712) and g (r1,72,712) are the radial parts of pf and dd configurations re-
spectively. 71 and ry are the distances of two electrons from the nucleus and rqo is the
inter-electronic distance. The + sign in equation (4.2.2) stands for either singlet or triplet

state. The coupled angular function arising out of pf configuration can be written as,

1
3,1 - _
b= 5 [3(Dy 1 (2) — w3 ' (D)yi (2)] (4.2.3)
while the same for dd configuration is
1 _ _ _ _
Y = o [B0w @) -t 0B) 20t @) - 2 ()] (124)

where, y"(7)[i = 1, 2] represents the spherical harmonics for the uncoupled states. In terms
of individual angular coordinates (61, ¢1) and (02, ¢2) of two electrons, ‘y’ can be written
as [158]

3 .
yi'1) =7 5 sin 01101
+1 21 9 iy
y3 (1) =7F @sm{% (5cos” 6y — 1) e
)
wp(1) =/ 15— (Beos® 01 — 1) (4.2.5)
+1 15 . +igy
y; (1) =F 3. sin 6 cos f1e
15 .
+2 . +
yp (1) = 397 5 2 gyt

Similarly, ¥ (2), ¥3(2),99(2), ¥5(2) and y32(2) can be written by replacing (61, ¢1) by
(62, ¢2) in equation (4.2.5). Equations (4.2.3) and (4.2.4) can now be recast as

ngl = 31\6;? (5 cos? 01 — 1) sin 0y sin Oy sin (¢2 — ¢1) (4.2.6)
15¢
and Yg%bQ — 27T\/ZE 1 sin 0 sin 65 cos(p1 — ¢2) — cos By cos b | X

sin (91 sin (92 sin(gi)l — d)Q) (427)
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Let us now consider following relations between the polar angles (01, ¢1,602,¢2) and the
Eulerian angles (6, ¢,v) [30]

sin 0 sin s sin(¢po — ¢1) = sin 12 cos §

sin 0 sin 0 cos(p2 — ¢1) + cos b1 cos B = cos b1 (4.2.8)

cosf; = —sinf cos <@ZJ—9212>, cos @y = —sin 6 cos <¢+9212)

Using these transformation relations, equations (4.2.6) and (4.2.7) becomes,

31 ) (5(:0839—30089) 5, . 9

Y3b = N |—sinfqy 5 + 3 sin 015 cos 012 sin” 6 cos 6 cos 21)

5 . 2 .. 92 .
+ 5 sin 012 sin” 6 cos 0 sin 21) (4.2.9)
5cos® f — 3 cos b 5
Y?sz = M [— sin 012 cos 01 ( 5 ) + 3 sin 619 sin? 6 cos 6 cos 21 (4.2.10)
3VTi 157
where, N = Vi and M = o are the normalization constants of Y;’bl and Y3262.

167 87v/10 ) ;

Using equation (3.2.2) we can get real angular momentum Wigner functions Dg, D§+ and

D§ ~ as follows

o Hcos®d — 3cosb

DY —
3 2
V15
D§+ =5 cos 2¢ sin® 0 cos 0 (4.2.11)
V15
D3~ = - sin 2¢ sin® 6 cos 0

. [ - . .
Here we have not written the common factor 3.2 in Dg, D§+ and Dg . Using equation
T

(4.2.11), the equations (4.2.9) and (4.2.10) can be modified as

5 V15
Y?Sbl = N [— sin 019D + sin 2912D§+ + e (1 — cos 26;2) Dg_] (4.2.12)
5
Yor = M [_ sin f19 cos 619 DS + ‘3[ sin 912D§+] (4.2.13)

On substitution of Y?:bl and Y32762 into the equation (4.2.2) we get

V1
> sin 2912D§+ + ?5 (1 — cos26;2) Dg_]

U = Nf [— sin 019 DY +
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5
+ Mg |—sin 615 cos Glng + \/gsin 912D§+ + exchange (4.2.14)

To find the exchange term we will consider the following operations [30] of exchange operator

€12 on f (r1,72,712), g (r1,72,712) and DY (0, ¢,4) as

c1of (r1,m2,712) = f(r2,7m1,712)
6129(7“1,7“2,7’12) = (7’2,7’1,7’12)

g
Dt (0.6.0) = £(-1)""DE*(0.0,¢)
Now the equation (4.2.14) becomes,

V15

1
V15 sin 2912D§+ + 5 (1 — cos26;2) Dg_]

U = Nf [— sin B9 DY +

5
+ Mg [— sin 612 cos Glng + \/;sin 912D§+]

\/E sin 2912(—1)5D§+ + \/61»5 (1 — COS 2912) (—1)5D§_]

+ Nf [— sin f19(—1)3DY +

+ Mg [— sin 019 cos 912(—1)3Dg + \/gsin 912(—1)5D§+]

- N [—sin@lz (f:Ff> DY+ AL <f$f> D§++‘/§5(1 — c0os2010) (f$f) Dg—]

_ o . _
+ M [— sin f12 cos 012 (9 F g) Dg + \/;sm 012 (9 F g) D§+] (4.2.15)

Following the general form of the wavefunction (3.2.1) prescribed by Bhatia and Temkin [30],
we can write W for 13F¢ state (L = 3 and k = 0, +2) into the following form

U = fIDY + f2r DI + f2- D2 (4.2.16)

where

5T = \/6T5 (f F f) sin 26012 + % (9 F g)sin b2 (4.2.17)
15 .
3?_ = \/(: <f:Ff> (1 — cos2612)
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Here we have ignored the common factor N in equatlon 4 2.15), as it will not make any

difference to the variational calculation and used — \ / . Upto this point it is not clear

that which of the F sign within the parentheses of f3, and f3 signifies the singlet and
triplet states. In this regard Bhatia and Temkin [30] provided a very useful formula where

the exchange operator acts on f]LdE functions as given below,

£ (=1)MF T (r1, 0, m12) (42.18)
+ (—1)ETRFLFE (1 1o, 710) o

I (ro,r1,m12) = €125 (11,79, 712) =

7 (royr1,m12) = €125 (11,79, 712) =

The upper ‘+’ sign and the lower ‘—’ sign signify the singlet and triplet states respectively.
Thus the exchange terms of the three radial functions f?? , :?Jr and f??* of 13F¢ state now

become,

f9 (ra,71,m12) = £(=1)*T0fD (11,70, 712) = F 15 (r1,72,712)
F55 (o1, ri2) = £(=1)°P2£57F (r1,r2,m12) = FF57 (r1,72,712) (4.2.19)

f3 (ro,ri,ri2) = £(=1)32H 27 (0 ro, m10) = 265 (1,72, 712)

Thus, f:? and f32Jr are anti-symmetric for singlet case whereas f32_ is symmetric for sin-
glet case. This guides us to write the correct forms of f3, 32+ and f32_ from equation
(4.2.17), which is consistent with the Pauli’s exclusion principle. The equation (4.2.17) is

now modified as,

/10
f?? = —Fisinf5 — 7G1 sin 615 cos 012

V1 /
32+ 75}71 sin 2912 + %Gl sin 012 (4'2'20)
_ V15
f3 = TFQ(l — COS 2(912)

where, F1 = (f F f), F,=(f+ f) and G1 = (¢ F g)- The upper sign corresponds to the
singlet state and the lower sign to the triplet state.

4.2.2 Variational equation

In this subsection we will construct the variational equation of '3F¢ states of two-electron
systems by following the steps as described in section (3.2.2). In the present case, the three
particles are two electrons (mj; = ms =1 a.u.) and the nucleus which is infinitely heavy

with respect to the electrons. Here the nucleus will be static and the mass polarization

1
term will not appear. Thus, in equations (3.2.35), (3.2.36) and (3.2.37) we put A= B = 3
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and C' = 0 to write the general variational equation (3.2.41) of two-electron systems as:
A / ’ 67\11 ’ + l + l ov ’
87‘1 87'2 ’I”% ’I”% 8912
912 1 012 8\11 2
* {7“1 sin 912 sin <¢ - ) U5 3 sin 912 sin (1/) > } ( 00

012 2 012 0w\ ?
t* 0 - t* 0 el Il ews
+ {rl sin 012 o veos <¢+ 7“2 sin? 912 cor rees <¢ >} <8¢)
N 1 1 ov + i i ov ov
4 B 2 ) 0612 0P
ov ov
t 0 sin (2 0 —————cotfsin(2y — 60 —_—
+ {7"1 sin? 61 cot fsin (24 + 612) + T% sin? 612 cot§sin (2¢ 12)} 00 o
+2(Vigg — B B b = 0 (1:221)

We now put ¥ of equation (4.2.16) with D—functions given by the equation (4.2.11) and
perform integrations over the Eulerian angles (6, ¢, ). This modifies the variational equa-
tion (4.2.21) to take the following form:

afg 8f2+ 2 anf 2
1 1 faN?  [af2\? o2\’
<%+T§> [(3912> +<3912) +<3912)
1 1 2 \2 11 _ofF af
() [0 T (- ) [ 50 - 750
o (7}%+7}%> [3(79) +2( §+)2+2(f§‘)2]+\/§(:08912<12 >f3f+

sin” 012 sin? 01 r{

+

1
2
!
2

15 1 1 _ _
v (5 B v B [ (5 (5] o

(4.2.22)

where dr = r% r% sin 012 dry dry df12. Using the explicit forms of f??, 32+ and f32* from

equation (4.2.20), the variational equation (4.2.22) becomes

3

] 1\ 0 2 oF 10 . OFy
+ 2 <% + 7“%) sin 619 cos 619 [(3 cos” 019 — ) Fi— 9019 + —sin? 012 F 6012]

10/1 1 OF, OFy\ 40 1\ .,
— |- 30 0 - == - 012 F F:
+ 3 (r% r%) sin” 01z cos O ( 39 12 13912> 3 <r% r%) S P12

1 1 5 11 23 5 20
+ 2 <r% + r%) [(2 cos* 015 — gcos 2019 + 5 ) F12 + <—2 sin? 015 + gsm2 912) FQQ}

2 2
A / {sin2 912 <1 + §COS2 912) ’VSFl‘ + gSiIl4 912’V5FQ‘
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1 2 1 1 1
+ —Osin 012 <2 + cos? 012) ‘VsGl’ + 10 (2 + 2> [(cos 2015 — 4 cos 019 + ) Gz]

7 S
+ ? (7}% - 7%) sin 612 cos 012 <COS 2012 + ) Glgg;
+ ? 705111 012 cos bz (Vo F1.V,G1)
(e d) e 9

8 /10 /1 1 40 /10 /1 1 . 9
+ g 7 (T% + %> 008912( — COS 912) F1G1 — E 7 (T‘% — T‘%) 008012 sin 912FQG1

+ 2(Vepr — E) [sin2 612 (1 - gcos2 912) F2 4 gsin4 019 F2

1 16 /1
+ 7Osin2912 <2+00s2012) G2 + ; 70sm 012 cos 0121 G4 }d =0 (4.2.23)
where,
2 oUN\? [OU\? 11 U \
VJU| = =— — S+ 5 ) (= 4.2.24
‘ ‘ (8T1> + (87“2) + <T‘% + 7‘%) (8912> ( )

is called the s-part of the variational equation which can be derived from (3.2.42), (3.2.43)
1
and (3.2.44) with A = B = 5’0 = 0 and multiplying each term by a factor ‘2. The

2
expression for ‘VSU ) in terms of (ry,r2,712) can be formulated from the expression of
kinetic energy term for 13S¢ state (3.2.48) with m; = mgo = 1, M — oo and multiplying

each term by a factor ‘2’ which will give the following form,

2 oU \ 2 oU \ 2 ouU oU oU
‘VSU‘ = (6’/‘1> +(8’l‘2> +2(8T12> +2COS(T1,T12)ar1 67"12

ou oU
87" 87“12

+ 2cos(re,m12) =— (4.2.25)

2 2 2
ry +1rig — 175

2 1 T12

2 2 2
ry +rig— 19

where cos (11, r12) = and cos (r,712) = . Thus using (4.2.25) we

2719112
2 2 2

can write s-parts ‘VsFl} and ‘VSFQ‘ for pf terms and ’VsGl‘ for dd terms. In equation

(4.2.23) the s-part VF;.VG; for pf-dd mixing terms is defined as,

0F 0G1  0F) 0G1 1 1\ 0F 0G;
sF1.V:G1 = 4+ = | == 4.2.2
V ! V Gl 87‘1 87“1 + 87‘2 87‘2 + ( 2 + 2> 8(912 8912 ( 6)

1
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To find V,F1.VGy in (r1,72,712) let us write,

(vs (Fy +Gy) \2 - \vsaf + ]vsalf 4OV VG (4.2.27)

Using (4.2.24), L.H.S of the above equation (4.2.27) can be expanded as follows:

2 (OF  9G1\? K [(OF  9Gi\’ OF | 9G1\’
verron = (Gre) +(Gn o) 2 (ons o)

oFy n 0G1 oFy n 0G4
87”1 87“1 ' (97"12 87"12
oF oG F

1, 9G1) 0F, n 0G1
Org oro orig ori2

+ 2cos(r1,ri2) <

+ 2cos(r2,7‘12)<
B 5 > [0F 0G, OF G, _0F oG
= |V.B| +[v.a| 42 [87“1 5t B ane T 2 o
o0F, 0G1 OF E)Gl)

1
+ §COS(T1,7“12) (

87’1 87’12 87’12 aTl

1 OF, 0G, OF, 8G1>}

+ §cos(r2,r12) <

4.2.2
8?”2 87’12 87’12 87"2 ( 8)

Comparing (4.2.27) and (4.2.28),

0F1 0G1  0F 0Gy 5 0F, 0G,
8r1 87’1 87‘2 87“2 87”12 87"12
1 0F, 0G1 ~ 0F 0G1
+ 5 COS(’I“l, 7“12) <87’1 87“12 87“12 67’1 >
v Leostraria) <8F1 0G, | OF 8G1>
2 ’ 6’/‘2 8T12 81"12 81"2

VsF1.VGr =

(4.2.29)

Using I = (fFf), Fo = (f+f) and G1 = (¢ T §) the variational equation (4.2.23) assumes
the following final form,

A /{2(Tpf+Tdd+Tpfdd)
+ o2V —E§'29(2 2 in? > F
eff ) 5 Sin” 012 f7+ f7) F2sin” 012 1+3COSQ912 If
10 5 - -
+ - sin® 015 <3 + cos? 012> (92 + 92 F 2gg)

16 /10 . Fe ~ 7
T 751112912005912<fg+fg:ng:Ff9)

} dr =0 (4.2.30)
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where, T}, ¢, Tqq and T, rqq are the K.E. parts corresponding to the pf, dd and mixed pf —dd

configurations respectively and given by,
4 or\® (of\" ror\® (of\
T, = —sin?6 — — — —
pf = 3 S 012 {<6r1> +<8r1> +(8r2> +<8r2>

~ 0\ 2
of 8f  of of of \? of of of
:!:2 (67"1 87"1 t o 87“2 87"2) + 2 { (8?”12) + (87’12) + 287“12 87‘12}

<8f8f of of _ of of 8f'6f>

+ cos 7‘1, 7‘12

87“1 aTlg aTl 8r12 T arl 87"12 T 87‘1 87‘12
of of , of of _of of _ of of )]

+ cos 7‘2, rlz

87“2 Orio 87“2 Orio - Org 0712 + 877"287“12

of of , of of of of
ié)rl 87“1 87“2 87”2) + 487”12 6r12

+ cos(ry, 7 of of 8f of + cos(r2, r12) ﬁ of —i—if of
L 12 8r1 aTlg 6r1 87‘12 2,112 87‘2 87‘12 87‘2 87‘12

of | ;of
r? ! (faﬁz " f3T12> *
of 1 10 - Of of
—1) N R _
(5 cos b2 (f8T12 8r12> + (r% r%) 3 sin® 015 cos 012 - (far12 f(%u)

( > [(8— — oS 912> (f2+f2) :|:2ff <?1) —50084012+200s2012>]

—% sin® 015 (: - :2> (f2 - f2> (4.2.31)

2
2 1

+ sin? 012 [2

T2

2
+ < 5 + 2) gsm %019 cos912E

o 96 2 2 ~ N\ 2
9 + 79 + @ + %
87’1 aTl 87“2 87“2

09 95 g 0g dg 05 \*_, 99 9§
2 2 2
T (8’/“1 67“1 t o 87‘2 87“2 + 81"12 + 8’/“12 + 8’/“12 87“12
0dg 09 09 03 _ 909 dg __ 03 Og
87’1 87“12 (97“1 87”12 87”1 87’12 (97"1 87“12

dg g | 0g 0g _ dg 0g _ 0g Og
+ COS(TQ,TH) (81"2 87’12 + 3r2 87“12 T 8’1“2 6’/“12 T 67“2 (97“12

1 1 1 g g
+£ — + 2) sin? 61 cos 012 <cos 2015 + 5) nr <g 99 +9g 99 99 Fg 99 >
1 2

Tig = %sinz 012 <COS 012 + )

+ cos(r1,712) <

7 T T 3 192 87‘12 87“12 + 987”12 gaT‘lg
5 /(1 1 25 N -

+= <2 + = <cos2 2015 — 4 cos” b1 + ) (92 +7F 299) (4.2.32)
7T\r{ 13 3
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and

8 10 ., of 0g  Of 05 _ of 05 _ Of g

Tpfdd N 3 7 St 012 €08 912 [((97‘1 87"1 o 87“1 87‘1 T o 8’/“1 67"1 T o 31"1 8r1>
df 0Og of 9 _ Of 8 _ Of g

+ <8r2 87‘2 o 87“2 (9’/“2 T o 81"2 8’1“2 T o (97‘2 87"2)
af o af 0g af 0g

i ( [ 9y n f 03 f 99

of g
67‘12 8’/“12 87“12 67‘12 T 67’12 8’1“12 + 8’1“12 67’12

1 of dg  Of 93 _ Of 95 _ Of ag

+2 COS(Tl’Tm) { <8r1 8’1“12 + 8’1“1 (97’12 ¥ 8’/“1 (97“12 + 67“1 87“12)
dg of 05 of 09 of _ 0y of

+ <8r1 67’12 + 8r1 37‘12 T 57‘1 87"12 + 87”1 87‘12) }

1 of dg 9f 95 _ Of 95 _ Of g
+2 COS(T27T12) { (87“2 87’12 + 8’1“2 87”12 :F 87’2 aT12 :F 87“2 6T12>
dg of 95 df dg Of 8 Of
+ <8r2 8r12 + 8r2 87"12 :F 37‘2 87‘12 :F 87"2 81‘12) }]
0/1 1\ . 11 rry (Of  _Of
+ - (r% + r%) sin? 019 <3 cos? 015 — 1) (

+ F o7 3F~8f
T12 937“12 g37“12 gale 7

1 /10 /1 1 r1T9 dg ~ 0g ag = Jg
- = 1 _
3\ 7 <r% + 2) sin” 015 (13 cos® 01 — 5) — <f8r12 +f8r12 Ff Ff
L0 001

3

(9?”12 87’12
12> sin 0127"17"2 |:(f ag F ag
1
9g _ <9f of . of
L f +
$f 8 12 6 > ( 9%, 12 Ty g

87‘12

87‘12
(97"12 87"12 87“12

(97"12
4 f10/1 1 ) o
s (ﬁJrT%) cos b2 (5 — cos® b12) (f9+f93Ff93Ff9)
20 /10
_i_i

1 1 . 9 = g+ f
. 7<r%—r%>cosﬁusln ng(fg—fgifgifg>

(4.2.33)
4.2.3 Basis set

The trial radial functions f (r1,79,712) and g (r1,72,712) are expanded in multi-exponent
Hylleraas type basis set as

lk+3 mk—i-l nk
7‘177“2,7“12 E

P11 p1
Z Cknnz Th + Z Z Ckz]nz 77] ] (4 2. 34)
=1 j>i

p2 P2
Z Dku{z {z + Z Z Dkz]§2 fj ](4'2'35)

lp+2 mk+2 nk
7”17 T2, 7”12 E L]

=1 j>1
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The characteristics of different parameters used in the above two equations (4.2.34) and
(4.2.35) are described below

1. (lk,mk,nk) Z (0,0,0).

2. s1 and so are the numbers of elements in the sets of the powers of r1, o and r1o for

pf and dd configurations respectively.

3. mi(j) = e P and &(j) = e ¥"i. where p; and v; are the non-linear parameters for

pf and dd configurations respectively.

4. p; and ps denote the number of non-linear parameters for pf and dd configurations

respectively.

5. Ckij and Dy, are the linear variational parameters for pf and dd configurations re-

spectively.

6. The dimensions of the multi-exponent basis of pf and dd configurations are N; =

p1(p1+1) p2(p2+1)
2 2

x s1 and No = X so respectively. Hence the total dimension of the

wavefunction ¥ is N = N1 + Ny

The non-linear parameters p; and v; are selected as described in subsection 3.2.3. The

equations (4.2.34) and (4.2.35) can be rewritten as:

Ny
f(rira,ma) = > CiXy (r1, 72, 712) (4.2.36)
i=1
No
g(r1,ra,m12) = DY (r1,72,712) (4.2.37)
i=1

It is evident from the equation (4.2.30) that the necessary integrals for the calculation of
matrix elements of the Hamiltonian matrix H and overlap matrix S in the generalized

eigenvalue equation (3.2.59) are of the following forms:
(O1F|0sG) = / (O1F) (05G) dr (4.2.38)

where the functions F' and G are replaced by f, f , g and g, as required. Using the integral

(4.2.38), the general form of matrix elements, where no mixing of pf and dd configurations
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takes place, may be written as:
(©O111021)55 = 5 [ 01X (02,) + (01X,) (O2Xy)] dr

(011102f)i; = 5 / (01%:) (0:%;) + (01%;) (0:%:) | ar
(O1f|O2f)ij = [OIX (025(]») +(01X)) (02)()] dr

l\')M—t

(4.2.39)
[(01Y5) (02Y)) + (01Y)) (O:2Y5)] dr

(0) (05) + (015) (0:7)]
|

(01%) (07;) +(01)) (O::) | dr
Other relevant general forms of the matrix elements where the mixing of pf and dd config-

l\D\H

<Olg|02g>m -

\\\\

(019]029)i5 =
)

l\D\H [\D\r—t

(019|029)i5 =

urations has been considered, are given by

(01110295 = 5 [ (01 (07 dr
(01£]0s§)ij = ;/ ((’)15(1) ((’)gffj) dr

(4.2.40)
(O1f1020)ij = ;/(OlXi) ((’)gffj) dr

<Olf‘02g>ij = ;/ ((91)27;) (O2Y;)dr

To visualize how the matrix looks like under the basis set expansion technique, let us take a
sample calculation with Ny = No =2 d.e. f=C1X1+C3X9 and g = D1Y] + DsY5. Hence,

we can write the Hamiltonian matrix H as

Hyy Hip | Hi3 Hus

- Hy Hio | Hyg Hoa
- H3y Hszp | H33 Hsy
Hy Hyo | His Hyg

In this matrix Hy1, H12, H21 and Hoo contain only pf terms, Hss, H34, Hy3 and Hyy contain
only dd terms and His, H14, Hos, Hoy, H31, H3o, Hy1 and Hys contain pf — dd mixed terms.

Finally we solve the generalized eigenvalue equation [162]

[

C=ESC (4.2.41)

where H is the Hamiltonian matrix, S is the overlap matrix, C is the column vector and E

is the energy eigenvalue.
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4.2.4 Basis integrals
The integrals appearing in the present calculation are of two types:

(i) The first type of the integrals is given by

r1+r2
A(m,n,l;a, B) = / / / il oe = B2 drodir o (4.2.42)
r1=0 Jre=0J|

r1—ra|

with the conditions: m > 0, n > 0,1 > 0 and «, 8 > 0. This integral is evaluated as
described previously in equation (3.2.66).

(ii) Another type of integral is of the form

o0 [e’e] r1+72
A(-1,m,l;a, B) = / rlle_a”drl/ T‘gLe_’Bdez/ rlodris
0 0 \

ri—ra|

es] 1 r1+re
= / rlle_a”drl/ rgne_ﬂmdrg/ T‘ll2d7‘12
0 0 rL—ro

o0 r2 r1+72
+ / rﬁ"e_ﬁmdrz/ rl_le_a”drl/ rl12dr12
0 0 ro—r1

= L1+ (4.2.43)

where I and I» are given by

00 1 r1+r2
I, = / rl_leo”ldrl/ Tgneﬁmdrg/ rlodris
0 0 ri—ro

1 oo a1
= D / rl_le_arldrl/ e P2 dr, [(rl + ) — (ry — rl)lﬂ}
0 0

(4.2.44)

00 T2 r1+re
I, = / rgneﬁwdrg/ rllea”drl/ rlodris
0 0 ro—1ry

1 oo o
= ) / rg‘e_ﬂmdrg/ rtem 1 dr, [(7"1 + )T — (ry — rp) !
0 0

(4.2.45)

For convenience, we describe the evaluation of I5 first. Let us take [ + 1 = n and use

the binomial expansion to get the following relation

M \

Tn—?i—lT,ZH-l (n — Odd)

(ritr2)" = (2 =m)” n—%—l(%+m2 L

=0
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n—2
7
n! - ,
=92 n—2i—1_2i+1 _
Lom—2i-Dli+nre (n = even)
(4.2.46)
For even [ i.e. odd n, equation (4.2.45) becomes
n—1
T 2 - n! > m+n—2i—1 —Brgd "2 21 —ari g
2 n;(n—zi—l)!(ziﬂ)!/() "2 ¢ ’"2/0 e an
(4.2.47)
Using the standard integral [156]
R !
_ n! rx— !
/0 rte”dr = ol - Z Ll yn— k+1
equation (4.2.47) can be written as
n—1
Lo 2 ~ nl(m+n—2i—1)! 1
2 n &= (2i+1)(n — 2i — 1)l 2+ grmin=2
T 2
~ *ZZ lmt+n—j—1) L (4.2.48)
2z+1 Y(n—2i — )2 — j)! adt(a + B)m i -
When [ is odd i.e. n is even, then Is will be given by,
L2
2 nl(m+n—2i—1)! 1
L = = Z ( ; ) [ (2i+1gmtn—2i
nzo(2z+1)(n—2z—1).a g
n—2 2
_ 22:2 nllm+n—j—1)! 1 (4.2.49)
— = 22—}—1 (n—2i—1)1(2i — ) ad T (v + g)ymtn—i o

Following the similar procedure we formulate I for two different cases like, even [,

I - 2(m+n)!ln(a+ﬁ>

ﬁ ﬁm+n+1

(0%
n—1_
L2 nl(m + 2i +1)! 1
n._tn (n —2i — 1)(2i 4 1)! qn—2i~1pm+2i+2
S +Z (m+2i+ Dinl(m +n —j — D 1
nois %o (m+2i+1— )12+ 1)!(n—2i—1)! (a+ g)ymtr—ipitl
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9 m+n—1 (m+n)‘ 1 (4 2 50)
n 4 (mtn—j) (et By g -
and odd [,
n—2
|- 2 & nl(m+2i+1)! 1
1 — n pars (22 + 1) (n — 92— 1) an—Qi—lﬁm—‘rQi—l—Q
n—2
2 7 m+2i+1 nl(m + 2+ D)+ — j— 1) .
ni 22+1 W(n —2i — D)!(m+2i +1— ) gt (o + g)m+tn—i
(4.2.51)

4.3 Results and Discussions

In the first phase, we estimate the energy eigenvalues of metastable bound “3F¢ states of
several two-electron systems (Z = 2 — 18) under ‘free’ environment by sake of considering
trial wavefunction consisting of only the pf-part. A slow convergence pattern of the energy
eigenvalues of the metastable bound states (MBSs) is observed. In the next phase, the
dd-part is included in the trial wavefunction. Similarly, the effect of the mixing of pf and
dd-parts in the trial wavefunction is also demonstrated in case of the resonance 3F¢ states
of free He atom.

In the second part of this section we have studied the variation of different structural prop-
erties of 13F€ states of two-electron systems embedded under classical WCP environment.
The variation of transition energies for the dipole allowed transitions 3F¢ —13 D° are
studied with respect to screening lengths of classical WCP in a simplistic manner by only
considering pf-part in the trial wavefunction. Then we have taken more appropriate trial
wavefunction consisted of both pf and dd-parts for He atom embedded in classical WCP and
done an extensive study on the variation of different structural properties of both metastable

bound and resonance “3F¢ states with respect to different plasma screening lengths.

4.3.1 Structural properties under free environment

The energy eigenvalues of 13F¢ states of He atom are estimated by considering only the
most dominant configuration pf-part of the wavefunction (4.2.34). The radial function
f(r1,72,712) is expanded using nine-exponent (p = 9) Hylleraas basis set with N = 900.
Figure (4.3.1) shows the stabilization diagram of the first 40 energy eigenroots with respect
to 288 different values of 7, where 7; is the common ratio in the geometrical sequence

following p; = p;—171. There are two different classes of states in the figure:

1. Below He™(2p) threshold energy —0.5 a.u., the energy eigenroots are insensitive to



124 4: Doubly excited states of two—electron atoms

022
He'(3p) #r_%
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Figure 4.3.1: Stabilization diagram of 3F¢ states of He atom upto He ™ (3p) ionization thresh-
old of energy —0.2222 a.u.

the variation in ;. These are metastable bound 3F¢ states.

2. Above He™'(2p) threshold the energy of each eigenroot increases as ; is increased.
These eigenroots produce flat plateaus in the vicinity of avoided crossings which shows

a clear signature of resonance states of 3F¢ symmetry.

The investigation on the convergence of energy eigenvalues with respect to the size of the
wavefunction of the metastable bound 3F¢ states of He atom are given in table (4.3.1).

Table 4.3.1: Energy eigenvalues (—E in a.u.) of metastable bound 13F¢ states having configurations
2pnf [n =4 — 20] of free He atom for basis size N = 450(s; = 10), 675(s; = 15) and 900(s; = 20).

e 3pe
State N —F State N —F
2p4f 450 0.5319942932 2p4f 450  0.5319856206
675 0.5319943001 675 0.5319856301
900 0.5319943002 900 0.5319856694
0.5319954369509“ 0.5319913263465
2p5f 450  0.5203849389 2p5f 450  0.5203783809

675 0.5203849437 675 0.5203784120
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Continuation of Table (4.3.1)

1Fe SFG
State N —F State N —FE
900 0.5203849438 900 0.5203784183
0.5203856710486° 0.5203828592839¢
2p6f 450 0.5141127585 2p6f 450 0.5141083122
675 0.5141127614 675 0.5141083351
900 0.5141127621 900 0.5141083381
0.5141132181781¢ 0.5141114291180
2p7f 450  0.5103454370 2p7f 450  0.5103423957
675 0.5103454391 675 0.5103424102
900 0.5103454396 900 0.5103424135
0.510345738040° 0.510344564686%
2p8f 450  0.5079073308 2p8f 450  0.5079052020
675 0.5079073438 675 0.5079052108
900 0.5079073441 900 0.5079052145
0.50790754830° 0.5079067461¢
2p9f 450  0.5062390572 2p9f 450  0.5062379263
675 0.5062395124 675  0.5062379456
900 0.5062395140 900 0.5062379673
0.50623965811° 0.506239088¢
2p10f 450 0.5050424416 2p10f 450 0.5050473631
675 0.5050486254 675  0.5050474167
900 0.5050486314 900 0.5050474726
0.50504873915° 0.50504832108°
2pl1f 450 0.5041085253 2pl11f 450 0.5041654011
675 0.5041686197 675 0.5041670098
900 0.5041687782 900 0.5041677606
0.504168863147° 0.50416854777°
2pl12f 450 0.5033383724 2p12f 450 0.5034782360
675 0.5034979961 675 0.5034899203
900 0.5035003593 900 0.5034985413
0.503500444342° 0.50350020079°
2p13f 450 0.5026656389 2p13f 450 0.5029345287
675 0.5029675061 675  0.5029593264
900  0.5029805595 900 0.5029758865
0.502980780358° 0.50298058847°
2pl4f 450  0.5020002734 2pl4f 450 0.5024906614
675 0.5025467159 675  0.5025275941
900 0.5025670113 900  0.5025579394
0.502568796718° 0.50256864290°
2p15f 450  0.4979800866 2p15f 450  0.5020901684
675 0.5020136499 675 0.50219931652
900 0.5022266858 900 0.50221121909

125
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Continuation of Table (4.3.1)

1Fe SFG
State N —F State N —FE
0.502236675558° 0.50223655040°
2pl6f 450 0.4886154512 2p16f 450  0.5017092551
675 0.5016587221 675 0.5018079826
900 0.5019354674 900 0.5018829299
0.5019650343034° 0.50196493112°
2p17f 450  0.4710085902 2p17f 450  0.5013595350
675 0.5003490984 675 0.5013856792
900 0.5016927483 900 0.5014888818
0.501740032588" 0.50173994653"
op18f 450 0.4401811708 2p18f 450 0.5006619355
675 0.4973037549 675 0.5009365421
900 0.5014930654 900 0.5010619401
0.5015515739° 0.5015515014°
2p19f 450 0.3887485157 2p19f 450  0.4991539664
675 0.4920110819 675  0.5001065942
900 0.5007156652 900 0.5007815172
0.501392° 0.5013921°
2p20f 450  0.3040516778 2p20f 450  0.4980315374
675 0.4833901370 675 0.4981659745
900 0.5006178973 900  0.4987499987

a [240],° [280]

The lowest bound energy values of the 'F¢ states are estimated using three different sets of
the limiting values of nine-exponents (p1, pg) as (0.13,4.0), (0.1,4.0) and (0.01,4.0), whereas

the same for 3F¢

states are estimated using four different sets of (p1,p9) as (0.25,4.0),
(0.1,4.0), (0.05,4.0) and (0.01,4.0). Table (4.3.1) shows that the convergence of energy
eigenvalues decreases from lower to upper metastable bound !3F¢ states. The energy values
are compared with the available results in literature [240,280] as shown in table (4.3.1). It
can be seen from the table (4.3.1) that, the energy eigenvalues obtained by Kar et. al. [240]

and Eiglsperger et. al. [280] are more negative than our present calculated values.

The energy eigenvalues and effective quantum number (n*) of metastable bound
L3¢ states of LiT to Ar'ST (Z = 3—18) are given in the table (4.3.2). The effective quantum

numbers (n*) are calculated from the equation from the quantum defect theory [281]

(7 (5 s

where, E is the energy of the state below complete ionization and /N; is the inner electron

E=--
2

quantum number. In the present case INV; = 2. Our results are compared with those available
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in literature [282] which is also reflected in the table (4.3.2). The comparison shows similar
features as that of the He atom. However, for some of the states, no such data are available
in literature for comparison.

Table 4.3.2: Energy eigenvalues (—F in a.u.) and effective quantum numbers (n*) of metastable
bound 13F¢ states having configurations 2pnf [n = 4 — 20] of Li* to Ar'®* (Z = 3 — 18) ions.

lFe 3Fe
Ton State -FE n* -BE n*
Lit 2paf  1.252511 3.960419 1.252420 3.961833
1.252515231764%  3.960353617514%  1.252450638234*  3.961357068025%
2p5f  1.206292 4.960108 1.206227 4.962092
1.20629449566*  4.96003141641° 1.206251595683%  4.961340665488“
2p6f  1.181305 5.959935 1.181262 5.962212
1.181306379 5.959861923¢ 1.1812794195¢ 5.96128922690*
2p7f  1.166288 6.959901 1.166260 6.962262
1.1662896* 6.95976635% 1.1662720* 6.96125015*
2p8f  1.156566 7.959856 1.156546 7.962379
2p9f  1.149904 8.961495 1.149899 8.962394
2pl10f 1.145151 9.962462 1.145151 9.962462
2pllf 1.141650 10.959932 1.141642 10.962566
2pl2f 1.138982 11.959977 1.138976 11.962544
2p13f 1.136908 12.959719 1.136903 12.962441
2pl4f 1.135263 13.959756 1.135259 13.962477
2pl15f  1.133936 14.960407 1.133933 14.962919
2pl6f  1.132852 15.959705 1.132849 15.962754
2pl17f  1.131953 16.960119 1.131951 16.962558
2p18f 1.131200 17.960530 1.131199 17.961979
2p19f  1.130563 18.960966 1.130558 18.969493
2p20f 1.130111 19.781629 1.130038 19.924430
Be?t 2p4f  2.285835 3.967789 2.285581 3.969553
2.285840435960*  3.967751130897*  2.285639440599%  3.969146875345%
2p5f  2.182357 4.967582 2.182182 4.969967
2.182359664331% 4.967545627247¢  2.182228822190%  4.969328681292¢
2p6f  2.126366 5.967482 2.126253 5.970152
2.1263673969“ 5.96744929071¢  2.126285925% 5.9693738957¢
2p7f  2.092697 6.967443 2.092622 6.970263
2.0926982¢ 6.96739779¢ 2.0926454% 6.9693829¢
2p8f  2.070889 7.967404 2.070837 7.970328
2p9f  2.055960 8.967418 2.055923 8.970384
2pl10f  2.045295 9.967383 2.045268 9.970355
2pllf 2.037412 10.967327 2.037390 10.970553
2pl2f 2.031421 11.967302 2.031404 11.970541

2pl13f 2.026761 12.967465 2.026748 12.970616



128

Continuation of Table (4.3.2)
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1F6 3Fe
Ton State -FE n* -E n*
2pl4af  2.023067 13.967243 2.023056 13.970575
2pl15f  2.020087 14.967481 2.020078 14.970835
2pl6f  2.017650 15.967389 2.017643 15.970556
2pl7f  2.015631 16.967305 2.015625 16.970563
2p18f 2.013939 17.967616 2.013934 17.970839
2pl19f  2.012508 18.967597 2.012503 18.971390
2p20f 2.011286 19.968077 2.011282 19.971616
B3t 2p4f  3.631775 3.973172 3.631307 3.975008
3.63178147087*  3.97314696448“  3.631390336345%  3.974681092280*
2p5f  3.448482 4.973017 3.448167 4.975440
3.44848492847*  4.97299437381%  3.44823320775%  4.97493037865%
2p6f  3.349239 5.972957 3.349037 5.975650
3.349240870* 5.972932525% 3.349084879¢ 5.975011116°
2p7f  3.289536 6.972917 3.289402 6.975759
3.2895368“ 6.9729005 3.2894359¢ 6.9750395%
2p8f  3.250851 7.972906 3.250759 7.975822
2p9f  3.224363 8.972896 3.224297 8.975878
2pl10f  3.205425 9.973543 3.205376 9.976583
2pllf 3.189685 11.120984 3.189641 11.124768
2pl2f 3.178997 12.171951 3.178965 12.175559
2pl13f 3.170688 13.232561 3.170662 13.236328
2pl4f  3.164094 14.305068 3.164070 14.309461
2pl5f  3.158758 15.394183 3.158735 15.399430
2pl6f  3.154394 16.497405 3.154373 16.503302
2pl7f  3.150779 17.616189 3.150760 17.622684
2p18f 3.147739 18.756824 3.147734 18.758887
2pl19f 3.145161 19.919983 3.145124 19.938287
2p20f  3.142965 21.102377 3.142716 21.250158
ct 2p4f  5.290270 3.977107 5.289558 3.978900
5.29027795753%  3.97708682340%  5.289661360120%  3.978639250204*
2p5f  5.004636 4.976980 5.004162 4.979319
5.00463919882%  4.97696418412%  5.00424519430%  4.97890824179¢
2p6f  4.849907 5.976937 4.849606 5.979510
4.849908858% 5.976921310¢ 4.849665342% 5.979002189¢
2p7f  4.756793 6.976915 4.756594 6.979620
4.75679392¢ 6.9769022¢ 4.75663661* 6.979040226°
2p8f  4.696445 7.976907 4.696308 7.979690
2p9f  4.655116 8.976907 4.655019 8.979715
2p10f  4.625579 9.976920 4.625508 9.979742
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Continuation of Table (4.3.2)

1F6 3Fe
Ton State -FE n* -E n*
2pllf 4.603741 10.976902 4.603687 10.979760
2pl2f 4.587141 11.976881 4.587099 11.979768
2pl13f  4.574225 12.977167 4.574192 12.980053
2pl4f  4.563980 13.977609 4.563954 13.980450
2pl5f  4.555713 14.978790 4.555691 14.981748
2pl6f  4.548938 15.982028 4.548919 15.985132
2pl7f  4.543310 16.988730 4.543294 16.991869
2p18f 4.538579 18.000291 4.538565 18.003558
2p19f  4.534542 19.023099 4.534529 19.026680
2p20f  4.531002 20.079835 4.530991 20.083399
N5+ 2p4f  7.261297 3.980066 7.260319 3.981780
7.26130514460%  3.98005218186%  7.26043935330%  3.981569320540*
2p5f  6.850806 4.979961 6.850162 4.982172
6.85080960411%  4.97994902415%  6.85025899833*  4.981839016900*
2p6f  6.628362 5.979929 6.627954 5.982354
6.628363930* 5.979917697% 6.628024153% 5.9819369788“
2p7f  6.494464 6.979916 6.494196 6.982449
6.4944651¢ 6.9799055% 6.4942457¢ 6.98197886*
2p8f  6.407668 7.979909 6.407483 7.982521
2p9f  6.348211 8.980044 6.348079 8.982700
2pl10f  6.305718 9.980115 6.305621 9.982795
2pllf  6.274294 10.980322 6.274221 10.983007
2pl12f  6.250405 11.980607 6.250348 11.983331
2p13f 6.230878 13.038673 6.230827 13.041814
2pldf 6.216116 14.055261 6.216075 14.058425
2pl5f  6.204192 15.076329 6.204159 15.079471
2pl6f  6.194429 16.101480 6.194401 16.104728
2pl7f  6.186279 17.138800 6.186257 17.141878
2p18f 6.179393 18.191342 6.179374 18.194520
2p19f  6.173492 19.266428 6.173476 19.269607
2p20f 6.168348 20.377538 6.168335 20.380595
o5+ 2p4f  9.544842 3.982365 9.543587 3.983983
9.54485107280%  3.98235280803%  9.54371957137*  3.983812014932*
2p5f  8.986986 4.982273 8.986164 4.984349
8.98698988676%  4.98226347983%  8.98627272866%  4.984074551558%
2p6f  8.684600 5.982251 8.684082 5.984515
8.684602473* 5.982239697¢ 8.684160333 5.9841724017¢
2p7f  8.502546 6.982246 8.502206 6.984609
8.50254794¢ 6.98223230¢ 8.5022626% 6.98421535%
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1F6 3Fe
Ton State -FE n* -E n*
2p8f  8.384518 7.982239 8.384284 7.984669
2p9f  8.303666 8.982246 8.303499 8.984717
2pl0f  8.245861 9.982475 8.245738 9.984973
2pllf 8.203121 10.982612 8.203028 10.985127
2pl2f 8.170624 11.982929 8.170552 11.985458
2pl13f 8.145344 12.983282 8.145287 12.985829
2pl4f 8.125210 13.988255 8.125164 13.990825
2plbf  8.107893 15.069069 8.107851 15.072002
2pl6f  8.094587 16.094123 8.094553 16.097016
2pl7f  8.083519 17.127359 8.083490 17.130333
2p18f 8.074224 18.168157 8.074199 18.171217
2p19f  8.066230 19.233382 8.066213 19.235851
2p20f  8.059229 20.338356 8.059188 20.345399
F7+ 2p4f  12.140900 3.984194 12.139356 3.985721
12.14090927076%  3.98418501875% 12.13950016801*  3.985578204205%
2p5f 11.413173 4.984113 11.412168 4.986059
11.41317664739%  4.98410609294“ 11.41228577247*  4.985830437001¢
2p6f  11.018620 5.984096 11.017988 5.986213
11.018622523 5.984087511¢ 11.018073607* 5.9859262493“
2p7f  10.781034 6.984122 10.780619 6.986332
10.7810413% 6.9840831¢ 10.7806871¢ 6.985969246“
2p8f  10.626979 7.984215 10.626684 7.986562
2p9f  10.521423 8.984534 10.521219 8.986847
2pl10f  10.445916 9.985718 10.445777 9.987881
2p11f 10.389938 10.990131 10.389834 10.992289
2pl2f 10.347096 12.003409 10.347009 12.005761
2p13f 10.313940 13.014067 10.313879 13.016168
2pl4f  10.287695 14.024516 10.287646 14.026629
2pl15f  10.266389 15.044133 10.266342 15.046635
2pl6f  10.248509 16.096286 10.248468 16.098959
2pl7f  10.233047 17.209515 10.232999 17.213339
2p18f 10.211977 19.181068 10.211908 19.188680
2p19f 10.186256 22.856023 10.186170 22.872085
2p20f 10.177034 24.798841 10.176961 24.816255
Ne8+ 2p4f  15.049466 3.985684 15.047626 3.987123
15.04947593532¢  3.98567656525% 15.04778041165%  3.987002559633“
2p5f  14.129364 4.985612 14.128172 4.987436
14.12936788309%  4.98560578775% 14.12829797405%  4.987243469809“
2p6f  13.630421 5.985596 13.629671 5.987583



4: Doubly excited states of two—electron atoms

Continuation of Table (4.3.2)

1Fe 3Fe
Ton State -F n* -F n*
13.630422927¢ 5.985590933¢ 13.629763942% 5.9873363597%
2p7f  13.329943 6.985595 13.329452 6.987662
13.32994444% 6.98558854% 13.3295192% 6.98737884¢
2p8f  13.135092 7.985630 13.134756 7.987743
2p9f  13.001597 8.985661 13.001357 8.987812
2p10f  12.906154 9.985783 12.905978 9.987948
2pl1f  12.835548 10.986268 12.835416 10.988429
2pl12f  12.781773 11.988858 12.781669 11.991071
2p13f  12.739992 12.990598 12.739911 12.992790
2plaf  12.706857 13.992406 12.706793 13.994571
2p15f  12.680121 14.994961 12.680068 14.997167
2p16f  12.658004 16.010079 12.657957 16.012461
2p17f  12.639445 17.042215 12.639406 17.044599
2p18f  12.622479 18.184305 12.622428 18.188092
2p19f  12.604086 19.725651 12.604043 19.729727
2p20f  12.592190 20.959726 12.592141 20.965299
Na®t  2pdf  18.270539 3.986919 18.268398 3.988277
18.27054868630%  3.98691334478%  18.26856003131¢  3.988174230763°
2p5f  17.135558 4.986855 17.134175 4.988571
17.13556233814%  4.98684914338%  17.13430934555%  4.988403784836*
2p6f  16.520001 5.986841 16.519134 5.988703
16.520002960° 5.986837049% 16.519231389% 5.9884933851¢
2p7f  16.149256 6.986839 16.148688 6.988777
16.14925691¢ 6.98683603% 16.14875893% 6.98853510°
2p8f  15.908826 7.986843 15.908437 7.988826
2p9f  15.744092 8.986848 15.743816 8.988852
2p10f  15.626317 9.986856 15.626114 9.988879
2p11f  15.539211 10.986875 15.539057 10.988918
2p12f  15.472528 11.994720 15.472856 11.989063
2p13f  15.420942 12.998155 15.421353 12.989138
2pl4f  15.379978 14.003405 15.380494 13.989257
2p15f  15.346841 15.012883 15.347535 14.989455
2p16f  15.319621 16.028399 15.320534 15.990935
2p17f  15.296921 17.053775 15.297692 17.015664
2p18f  15.277685 18.096176 15.278779 18.031692
2p19f  15.261007 19.173631 15.260964 19.176663
2p20f  15.246294 20.303240 15.246355 20.298136
Mgt 2pdf  21.804116 3.987960 21.801669 3.989243

21.80412595849“

3.98795494500°

21.80183895368*

3.989154246319¢
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Continuation of Table (4.3.2)

1F6 3Fe
Ton State -F n* -F n*
2p5f  20.431755 4.987900 20.430180 4.989517
20.43175918580%  4.98789617386%  20.43031995723%  4.989372864234%
2p6f  19.687360 5.987890 19.686374 5.989640
19.687362146° 5.987886177% 19.686476020% 5.9894590800%
op7f  19.238977 6.987890 19.238332 6.989710
19.23897839% 6.98788616% 19.23840642% 6.989499690%
2p8f  18.948178 7.987902 18.947737 7.989761
2p9f  18.748924 8.987912 18.748610 8.989797
2p10f  18.606463 9.987931 18.606232 9.989834
2pl1f  18.501095 10.987975 18.500921 10.989883
2pl2f  18.420940 11.988576 18.420806 11.990484
2p13f  18.358596 12.988978 18.358489 12.990916
2pl4f  18.308896 13.994956 18.308811 13.996882
2p15f  18.267538 15.037822 18.267466 15.039846
2p16f  18.232922 16.116563 18.232876 16.118155
2p17f  18.204634 17.194470 18.204563 17.197454
2pl18f 18.181584 18.253195 18.181526 18.256111
2p19f  18.161895 19.331296 18.161838 19.334700
2p20f  18.144794 20.441013 18.144739 20.444896
A" 2pdf 25.650197 3.988848 25.647442 3.990063
2p5f  24.017954 4.988793 24.016185 4.990319
2p6f  23.132498 5.988785 23.131391 5.990436
op7f  22.599107 6.988786 22.598384 6.990501
2p8f  22.253153 7.988813 22.252658 7.990566
2p9f  22.016098 8.988837 22.015745 8.990618
2p10f  21.846601 9.988900 21.846342 9.990694
opllf  21.721220 10.989122 21.721025 10.990919
2pl2f  21.625579 11.993058 21.625427 11.994879
2p13f  21.551393 12.994549 21.551273 12.996378
opl4f  21.492519 13.996722 21.492424 13.998532
2p15f  21.445031 14.999273 21.444953 15.001102
2p16f  21.406172 16.002219 21.406106 16.004098
2p17f  21.373949 17.006348 21.373892 17.008295
2pl18f  21.346587 18.025782 21.346539 18.027734
2p19f  21.323359 19.051988 21.323317 19.054005
2p20f  21.302666 20.130941 21.302629 20.133038
Si'?* 2paf  29.808779 3.989615 29.805714 3.990768
op5f  27.894154 4.989564 27.892189 4.991009

2p6f  26.855415 5.989556 26.854187 5.991118
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Continuation of Table (4.3.2)

1Fc 3Fe

Ton State -F n* -F n*
2p7f  26.229645 6.989560 26.228843 6.991181
2p8f  25.823763 7.989567 25.823215 7.991221
2p9f  25.545631 8.989574 25.545241 8.991251
2p10f  25.346763 9.989584 25.346476 9.991278
2pllf  25.199667 10.989620 25.199451 10.991316
2pl2f  25.087774 11.990110 25.087606 11.991824
2p13f  25.000743 12.990352 25.000611 12.992064
2pl4f  24.931698 13.990664 24.931592 13.992382
2p15f  24.876004 14.991052 24.875918 14.992767
2p16f  24.830405 15.992084 24.830333 15.993826
2p17f  24.792037 17.010200 24.791975 17.012006
2p18f  24.759949 18.029525 24.759899 18.031259
2p19f  24.730700 19.138353 24.730647 19.140552
2p20f  24.706440 20.231656 24.706399 20.233665

P13t 2pdf  34.279865 3.990284 34.276486 3.991379
2p5f  32.060355 4.990236 32.058194 4.991607
2p6f  30.856109 5.990230 30.854760 5.991710
2p7f  30.130594 6.990231 30.129713 6.991767
2p8f  29.659995 7.990235 29.659393 7.991802
2p9f  29.337504 8.990243 29.337076 8.991831
2p10f  29.106914 9.990249 29.106599 9.991852
2pllf 28.936353 10.990264 28.936115 10.991876
2pl2f  28.806642 11.990433 28.806457 11.992060
2p13f 28.705727 12.990535 28.705581 12.992168
2pl4f  28.625668 13.990657 28.625552 13.992278
2p15f  28.561089 14.990823 28.560995 14.992439
2p16f  28.508229 15.991303 28.508151 15.992931
2p17f  28.464302 16.994948 28.464236 16.996601
2p18f  28.426749 18.021466 28.426693 18.023139
2p19f  28.395128 19.047073 28.395079 19.048800
2p20f  28.366136 20.159605 28.366097 20.161235

ST opaf  39.063452 3.990872 39.059758 3.991916
2p5f  36.516557 4.990827 36.514199 4.992130
2p6f  35.134583 5.990821 35.133111 5.992229
2p7f  34.301950 6.990823 34.300989 6.992283
2p8f  33.761851 7.990826 33.761195 7.992314
2p9f  33.391724 8.990828 33.391257 8.992337
2p10f  33.127066 9.990830 33.126723 9.992351
2pl1f 32.931304 10.990831 32.931044 10.992365
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Continuation of Table (4.3.2)

1F6 3Fe

Ton State -F n* -F n*
2pl2f  32.782444 11.990841 32.782244 11.992373
2p13f  32.666619 12.990845 32.666462 12.992376
2plaf  32.574731 13.990845 32.574604 13.992391
2p15f  32.500609 14.990873 32.500506 14.992416
2pl6f  32.439946 15.991035 32.439860 15.992598
2p17f  32.389652 16.991738 32.389581 16.993286
2pl18f  32.346881 18.008851 32.346819 18.010461
2p19f  32.310679 19.029190 32.310626 19.030814
2p20f  32.278212 20.108901 32.278167 20.110527

CI'5T  2paf  44.159541 3.991393 44.155530 3.992389
2p5f 41.262760 4.991351 41.260203 4.992593
2p6f  39.690835 5.991345 39.689240 5.992686
op7f  38.743714 6.991348 38.742674 6.992737
2p8f  38.129331 7.991352 38.128620 7.992770
2p9f  37.708279 8.991378 37.707774 8.992812
2pl0f  37.407184 9.991480 37.406812 9.992929
2pl1f 37.184473 10.991578 37.184192 10.993036
opl2f  37.015107 11.991786 37.014891 11.993241
2p13f  36.883273 12.992484 36.883102 12.993949
opl4f  36.778449 13.995845 36.778312 13.997313
2p15f  36.694092 14.997323 36.693981 14.998786
2p16f  36.625059 15.999056 36.624966 16.000544
2p17f  36.567812 17.001815 36.567733 17.003332
2p18f  36.519640 18.009615 36.519572 18.011167
2p19f  36.478161 19.037881 36.478103 19.039445
2p20f  36.442081 20.091848 36.442022 20.093717

Ar'®t  2paf  49.568131 3.991858 49.563803 3.992810
2p5f  46.298963 4.991818 46.296208 4.993004
2p6f  44.524864 5.991814 44.523147 5.993092
2p7f  43.455887 6.991816 43.454767 6.993141
2p8f  42.762436 7.991821 42.761671 7.993173
2p9f  42.287194 8.991830 42.286649 8.993201
2p10f  41.947327 9.991958 41.946927 9.993339
2pl11f  41.695944 10.992045 41.695642 10.993433
2pl12f  41.504770 11.992248 41.504538 11.993633
2pl13f  41.356011 12.992546 41.355828 12.993935
oplaf  41.237637 13.996279 41.237489 13.997683
2p15f  41.142415 14.997749 41.142295 14.999150

2pl6f  41.064482 15.999591 41.064383 16.000994
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Continuation of Table (4.3.2)

1F6 3Fe
Ton State -FE n* -E n*
2pl7f  40.999872 17.002176 40.999787 17.003622
2p18f  40.945690 18.006010 40.945617 18.007484
2p19f  40.898984 19.030762 40.898919 19.032313
2p20f  40.858603 20.073679 40.858545 20.075302

@ [282]

For the determination of the resonance parameters i.e. energy (E,) and width (T') of 3F¢
states below He™ (3p) threshold of free He atom, we have used stabilization method. The
resonance parameters are estimated by calculating density of states (DOS) p@(E) from
equation (3.2.76) and fitting those p?(E) by Lorentzian profile given in equation (3.2.77).
E, and T for first four 3F¢ states below He™ (3p) energy threshold are given in table (4.3.3)
and compared with the results available in literature [281,283-286]. The comparison shows
that the present calculated E, values are slightly more positive than the one obtained in
previous works [281,283-286]. Thus the trial wavefunction containing only pf terms fails
to achieve the desired accuracy.

The reason behind the loss of precision in both the metastable bound and the resonance state
calculations is due to the non-inclusion of the dd-part (¥44) explicitly in the wavefunction
(4.2.1), as the mere basis-set expansion of ¥, ¢ cannot include the dd-configuration in the
radial part explicitly. Thus, for the further analysis we will use the general wavefunction
(4.2.1) of F° states where both pf and dd parts are expanded in Hylleraas basis-set. The
variational upper-bound of energy eigenvalues of the metastable bound 3F¢ states having

configurations 2pnf[n > 4] are estimated using following two techniques:

1. In the first method we have taken double exponent basis set expansions (4.2.34) and
(4.2.35), with p; = pa = 2 which implies that we have considered two sets of non-linear
parameters (p1,p2) and (v1,v2) for pf and dd—configurations, respectively. These non-
linear parameters are optimized using Nelder-Mead algorithm [161]. The details of the
optimization procedure is described in the subsection 3.2.3. Table (4.3.4) shows the
optimized energy eigenvalues and non-linear parameters for 2pn f[n = 4 — 6] configu-
rations of 3F¢ states of He atom for different basis size (N). For further improvement
of our present results, we have fixed the optimized non-linear parameters pi, p2, 11
and vy for the highest value of N as given in the table (4.3.4) and then increased N
to achieve the desired level of accuracy in the energy eigenvalues. The 2nd and 3rd
columns of table (4.3.5) show the energy eigenvalues of 3F¢(2pnf;n = 4 — 9) states
for N = 750 and N = 900 terms in the basis set respectively. The energy eigenvalues
of 2pnf(n = 4 — 6) are converged upto 11-th decimal place whereas the same for

2pnf(n = 7 — 9) states show convergence upto 8-th decimal place. The process of
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Table 4.3.3: Positions (—E, in a.u.) and widths (" in a.u.) of first four resonance states of
(*F¢) below He™ (3p) threshold. The notation P[—@Q)] stands for P x 1079,

Present work

Other works

States —FE, r —FE, r

3Fe(1) 0.26607  8.34[-5] 0.31069*  1.98[-3]*
0.3111° 2.131[-3]°
0.310725¢  1.95 [-3]°
0.309915¢
0.310749¢

3Fe(2) 0.24801 4.30[-5] 0.262825%  4.5[-4]
0.2628°  4.77[-4]°
0.26283¢  4.4[-4]°
0.26264¢
0.262598¢

3Fe(3) 0.24426  6.12[-7] 0.25826%  1.68[-4]*
0.2583° 1.83[-4]%
0.258275¢  1.5[-4]°
0.258205%
0.258199¢

3Fe(4) 0.23434 1.57[-5] 0.246805%  2.1[-4]
0.2468° 2.27[-4]°
0.246715¢
0.246653¢

@ [283], © [284], © [285], ¢ [286] and © [281]

diagonalization using double—-exponent basis is quite involving and time consuming

because, in this process, one have to pick a particular energy-root (or configuration)

to optimize at a lower basis and then carry out further calculation at a higher basis,

say for example, N = 750 or 900.

2. Asan alternative to the previous method, one-shot diagonalization using nine-exponent

basis (p1 = p2 = 9) is used to estimate the energy eigenvalues of metastable bound

3F¢ states. Two types of nine-exponent basis sets have been considered — symmet-

ric and asymmetric. In symmetric basis, the number of powers of (r1,r2,712) in the

basis set expansions (4.2.34) and (4.2.35), are equal i.e. s; = sg, while for the later
case s1 > sa2(= 2) is considered. The 4-th and 5-th columns of table (4.3.5) show the
convergence behavior of the energy eigenvalues of 3F¢(2pn f, n = 4—18) states for sym-
metric basis corresponding to N = 900(s; = s = 10) and N = 1530(s; = s2 = 17)
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Table 4.3.5: Energy eigenvalues (—F in a.u.) of metastable bound 3F¢ (2pnf,n > 4) states for different choice of basis sets using different

number of terms in the basis sets.

Configuration

Double Exponent

Nine Exponent

Symmetric Basis

Asymmetric Basis

2p4f
2p5 f
2p6 f
2p7f
2p8 f
2p9 f
2p10f
2p1lf
opl2f
2p13f
oplaf
2pl5f
2pl6f
2p17f
2p18f
2p19f
2p20f
2p21f
2p22f

N =750

N =900

N =900

N =1530

N =1350

N =1530

0.5319913263468
0.5203828592813
0.5141114291154
0.5103445646194
0.5079067459561
0.5062390860001

0.5319913263485
0.5203828592853
0.5141114291191
0.5103445656885
0.5079067462723
0.5062390884513

0.5319913258284
0.5203828589216
0.5141114286873
0.5103445628175
0.5079066925246
0.5062386665548
0.5050451459782
0.5041441160851
0.5034118118494
0.5028320754932
0.5022960514768
0.5012313201500
0.5007079126835
0.5004688559343
0.5003084861460

0.5319913263513
0.5203828613614
0.5141114291166
0.5103445646815
0.5079067606712
0.5062390870716
0.5050483116213
0.5041683759270
0.5034990626971
0.5029766752202
0.5025584256797
0.5022112271052
0.5018827805313
0.5014894480147
0.5005964256713

0.5319913261595
0.5203828591643
0.5141114290354
0.5103445646439
0.5079067461492
0.5062390885034
0.5050483206789
0.5041685601914
0.5035001039946
0.5029778169414
0.5025686165973
0.5022365435680
0.5019648269563
0.5017168163780
0.5015196531527
0.5013095900752
0.5012392360422
0.5010961347848
0.5009902068174

0.53199132616450
0.52038285929302
0.51411142927528
0.51034456470790
0.50790674627610
0.50623908868559
0.50504832666688
0.50416856783908
0.50350020569843
0.50298059371759
0.50256887024567
0.50223659253604
0.50196521180896
0.50174013288428
0.50155210736964
0.50139603567465
0.50126368214833
0.50115434103934
0.50105114035136
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respectively. Similarly the last two columns of table (4.3.5) show the convergence be-
havior of the energy eigenvalues of 3F¢(2pnf,n = 4 — 22) states for asymmetric basis
corresponding to N = 1350(s; = 28,59 = 2) and N = 1530(s; = 32, s9 = 2) respec-
tively. It is clear from the table (4.3.5) that the asymmetric nine-exponent basis with

N = 1530 yields lower variational energy eigenvalues for most of the configurations.

The lowest energy eigenvalues obtained in the present work along with those available in
literature [240, 280, 281, 286] are given in table (4.3.6). The values of effective quantum
number n* are also given in table (4.3.6).

Table 4.3.6: Comparison of energy eigenvalues (—F in a.u.) and effective quantum number (n*) of
metastable bound 2pnf 3F°¢ [n = 4 — 22| states of helium.

Present work Other works
n —F n* —F n*
4 0.5319913263513  3.9534 0.5319913263465°  3.953382897¢
0.531968 3.95483¢
0.531985"

0.53199132514
5 0.5203828613614  4.9528 0.5203828592839°  4.953382897¢

0.520367¢ 4.95477%
0.520375°
0.5203828583¢

6 0.5141114292752  5.9525 0.5141114291180¢  5.952501354¢
0.514101° 5.95476%
0.514105°

0.51411142844
7 0.5103445647079  6.9523 0.510344564686¢  6.95230621¢
0.510344564224

8 0.5079067462761  7.9522 0.5079067461¢ 7.9521782¢
0.50790674595¢
9 0.5062390886855  8.9521 0.506239088¢ 8.952090¢

0.50623908834¢
10 0.5050483266668  9.9520 0.50504832108¢
11 0.5041685678390  10.9520 0.50416854777¢
12 0.5035002056984  11.9519 0.50350020079¢
13 0.5029805937175  12.9519 0.50298058847¢
14 0.5025688702456  13.9513 0.50256864290%
15 0.5022365925360 14.9517 0.50223655040%
16 0.5019652118089  15.9507 0.50196493112¢
17 0.5017401328842  16.9509 0.50173994653¢
18 0.5015521073696  17.9483 0.5015515014¢
19 0.5013960356746  18.9250 0.5013921¢
20 0.5012636821483  19.8914
21 0.5011543410393  20.8122
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Continuation of Table (4.3.6)

Present work Other works
n —-F n* —-F n*
22 0.5010511403513  21.8099
@ [281], b [286], © [240], ¢ [280]

Kar and Ho [240] used 2200 terms in their wavefunction expanded in purely exponential
correlated basis set to obtain the energy eigenvalues for 3F¢(2pnf,n = 4 — 9) states. The
only calculation available for 3F¢(2pn.f,n = 10— 19) states is due to Eiglsperger et. al. [280]
where they considered 16,000 terms in the wavefunction expanded in Coulomb-Sturmenium
basis set. A comparison with other theoretical results as shown in table (4.3.6) reveals that
the present energy eigenvalues are lowest yet obtained. It is remarkable that the energy
eigenvalues using only 900 terms in the symmetric double exponent basis set are better than
those available in the literature. Therefore, one obvious benefit of the current approach is
the significant decrease in the number of terms in the basis set. The explicit inclusion
of the dd configuration, expanded in the Hylleraas basis set, is what makes the current
wavefunction a much more improved one as compared to the ones used by other workers.
For instance, the energy value of the 2p4f(3F¢) state as calculated by using 900 terms in
the nine-exponent wavefunction without dd configuration is —0.53198567 a.u. as given in
table (4.3.1), while the energy improves to —0.53199132 a.u. for the same state upon the
inclusion of dd configuration. Thus, the inclusion of the dd configuration contributes 0.001%
to the energy value of the 2p4 f(3F¢) state. This contribution decreases as we move towards
the He™ (2p) threshold, e.g. it decreases to 0.0002% for the 2p9f state.

The accuracy of the wavefunction is tested by estimating the expectation values
of inter-electronic angles < 615 >, different one and two-particle moments like (r1), <r%>,
(r12) and (r},) and the virial factor (§) defined as,

Vv
E=1- ’2<<T>>' (4.3.2)
where, (V') and (T') are the expectation values of potential and kinetic energies respectively.
All the mentioned expectation values are quoted in table (4.3.7). It can be seen from
table (4.3.7) that the moments (r1), (r?), (ri2) and (r%,) gradually increase as we move
towards the higher excited states. The angle (f12) is estimated approximately by taking
cosine inverse of (cos #12) and expressed in degrees. Table (4.3.7) shows that (f12) decreases
very slowly from 2p4f to 2p22f states. It is well known fact that for a perfectly central
potential, ¢ = 0. From the second column of table (4.3.7) it can be seen that, ¢ ~ 10~
for 2p4f configuration and the values of £ increases gradually for the higher excited states.
This indicates that, the nature of the overall potential of the two-electron atom remains

nearly central as we investigate the lower states and the potential gradually looses its central
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nature as the higher excited states are considered.

For the investigations on the resonance 3F¢ states of He-atom, we have diagonalized the

Table 4.3.7: The virial-factor £, expectation values of inter-electronic angles (in degree),
different one and two-particle moments of metastable bound 2pnf 3F¢ [n = 4 — 22] states
of He below He™(2p) threshold. The notation P[+Q)] stands for P x 10¥®?. All values are
given in atomic units.

n 3 (r1) (r1) (r12) (r3s) (012)
4 128 [11] 996 [+0] 1.73 [+2] 1.77 [+1] 3.47 [+2] 90.761
5 11] 166 [+1] 542 [+2]  3.09 [+1] 1.08 [+3] 90.388
6 687 [11] 248 [+1] 1.26 [+3] 4.72 [+1] 2.53 [+3] 90.223
7
8
9

[
| | | | |
4.35 [[12]  3.45 [+1] 2.50 [+3] 6.66 [+1] 5.00 [+3] 90.140
3.56 [-10]  4.57 [+1] 4.45 [+3] 8.89 [+1] 8.89 [+3] 90.094
1.62 [10] 584 [+1] 7.33 [+3] 1.14 [+2] 1.47 [+4] 90.065
10 1.12[-09] 7.25 [+1] 1.14 [+4] 143 [+2] 2.28 [+4] 90.048
11 230 [-09] 882 [+1] 1.69 [+4] 1.74 [+2] 3.39 [+4] 90.036
12 459 [-08] 1.05[+2] 2.43 [+4] 2.08 [+2] 4.85 [+4] 90.027
13 1.03[-07] 1.24 [+2] 3.37 [+4] 246 [+2] 6.74 [+4] 90.021
14 243 [-07] 1.44 [+2] 4.57 [+4] 2.86 [+2] 9.13 [+4] 90.017
15 2.52[-07] 1.66 [+2] 6.05 [+4] 3.29 [+2] 1.21 [+5] 90.014
16 3.76 [-06] 1.89 [+2] 7.88 [+4] 3.76 [+2] 1.8 [+5] 90.011
17 1.88[-05] 214 [+2] 1.01 [+5] 4.25 [+2] 2.02 [+5]  90.009
18 143 [-05] 241 [+2] 1.28 [+5] 4.79 [+2] 2.56 [+5]  90.008
19 259 [-04] 2.66 [+2] 1.59 [+5] 5.30 [+2] 3.19 [+5]  90.008
20 1.51 [-03] 3.11[+2] 2.32 [+5] 6.19 [+2] 4.65 [+5] 90.014
21 1.13 [-04] 3.55 [+2] 2.81 [+5] 7.07 [+2] 5.61 [+5] 90.006
22 9.03 [-04] 3.90 [+2] 3.65 [+5] 7.78 [+2] 7.30 [+5] 90.009

Hamiltonian matrix 1840 times using symmetric nine-exponent Hylleraas basis set with
N = 1530 for different values of v, ranging from 0.456 to 0.732 keeping 72 constant at 0.6,
where 71 and 72 are the common ratios in the geometrical sequences p; = p;—171 (pf—part)
and v; = v;_172 (dd—part), respectively. The highest value of the p sequence i.e. pg is fixed
at 8.0 while p; of any set differs from that of the previous one by 0.001. The plot of each
energy eigenroot versus 7; produces the stabilization diagram. A portion of the stabilization
diagram in the energy range -0.325 a.u. to-0.225 a.u. is given in figure (4.3.2) where one can
see flat plateaus in the vicinity of avoided crossings which signify the existence of resonance
states. For instance, it is evident from figure (4.3.2) that the resonance positions are in the
vicinity of —0.310 a.u., —0.264 a.u., —0.258 a.u. ... etc.

The determination of the actual resonance parameters is a two-step process. First,
we take an energy eigenroot and numerically estimate the spectral DOS p@(E) following
equation (3.2.76) at different energies. For a better understanding we consider the energy
eigen root no. 13 in the energy range -0.330 a.u. to -0.300 a.u. where one of the plateaus
lies around -0.310 a.u. as depicted in figure—4.3.3(a) and the numerically estimated DOS
at the corresponding energies are plotted in figure-4.3.3(b). The figure—4.3.3(b) shows a
peak of the DOS right at the center of the platue (following the red line) which locates
the resonance energy position.  As one root may produce plateau at different energies,

corresponding peaks of DOS will occur at those points. The DOS peaks of root no. 13
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Figure 4.3.2: Enlarged view of stabilization diagram for 3F¢ states of He atom in the

energy range -0.325 a.u. to -0.225 a.u. which shows several resonance states below He™ (3p)
threshold.

in the full range of energy is given in figure (4.3.4). It clearly shows three peaks at three
different energies for first three resonances. It is also evident that the resonances are isolated
as the separation of peaks are greater than the widths of the consecutive resonances. The
next part is to consider DOS of each isolated resonance and to fit it with Lorentzian profile
[equation (3.2.77)] to extract the desired position and width of the resonance in energy
scale. As an example, the estimated DOSs [hollow black circles] and the fitted Lorentzian
[red lines] for the second and third resonances (figure—4.3.4) of root no. 13 are shown in
figure (4.3.5). The fitting to the first curve yields resonance position E, at —0.26284 a.u.
and width I' = 0.00045 a.u. Similar fitting for the second curve yields resonance position
E, at —0.25826 a.u. and width I' = 0.00017 a.u. Repeated calculations of DOS near the
flat plateau of each of the eigenroots for the resonance state and subsequent Lorentzians
are carried out for a particular resonance. The position and width of a particular resonance
state is chosen with respect to the best fitting parameters, as discussed in section (3.2.5).

In table (4.3.8), the convergence behavior of first twelve 3F¢ resonance states below
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Figure 4.3.3: Plot of DOS corresponding to lowest platue of eigen root no. 13 of 3F¢ state

of He-atom.
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Figure 4.3.5: Plot of DOSs of second and third resonance states originated from energy
eigenroot no. 13 of 3F¢ state of He atom below He™ (3p) threshold.

He™ (3p) threshold are shown.

Table 4.3.8: Convergence behavior for the position (—FE, in a.u.) and width (T in a.u.) of 3F¢
resonance states below He™ (3p) threshold. The notation P[+£Q] stands for P x 10%<.

State N —FE, T
1 900 0.31077 1.98 [-3
1530 0.31075 1.98 [-3]
2 900 0.26284 4.5 [4
1530 0.26284 4.5 [-4
3 900 0.25827 1.7 [4
1530 0.25826 1.7 [4
4 900 0.24681 2.1 [4
1530 0.24680 2.4 [4
5 900 0.24439 1.1 [4
[-4
[-9
[-1
[-4
[-4
[-5
[-5

1530 0.24438 1.2 |-
6 900  0.24130 8.5 |-
1530 0.24130 6.9 [-11]
7 900 0.23871 1.2 |-
1530 0.23871 1.1 |-
8 900 0.23730 7.0 |-
1530 0.23730 7.0 |-
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Continuation of Table (4.3.8)

State N —F, T
9 900 0.23559 5.3 [-11]
1530 0.23560 3.1 [-12]
10 900  0.23403 8.0 [-5]
1530 0.23404 6.0 [-5]
11 900 0.23315 4.0 [-5]
1530 0.23315 4.0 [-5]
12 900 0.23207 5.8 [-9]
1530 0.23210 5.6 [-10]
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It is clear from table (4.3.8) that the values of resonance parameters (E,,I") are converged

upto at least 4th decimal place when the numbers of terms (N) in the wavefunction are
increased from 900 to 1530. Resonance energy (E,) and width (T) of first 19 number of 3F®
states below He™ (3p) threshold using 1530 terms in the Hylleraas basis set are summarized

in table (4.3.9).

Table 4.3.9: Positions (—FE, in a.u.), widths (T in a.u.), effective quantum number (n*), the energy

gap between the threshold and resonance energy values (e,.), relative energies (R.) and relative

widths (Rr) of resonance states of (*F¢) below He™ (3p) threshold. Present results are compared
with the available theoretical estimates. The notation P[+(Q)] stands for P x 109,

Other works

Class States -E. T n* € R, Rr

—E, r

1 031075 1.98 [-3] 2.37654 0.08853 0.31069¢  1.98 [-3]*
0.3111° 2.131 [-3)°
0.310725¢  1.95 [-3]°
0.3099154
0.310749°¢

2 0.26284 4.5 [-4] 3.50854 0.04062 2.18 4.40 0.262825% 4.5 [-4]°
0.2628° 4.77 [-4]°
0.26283° 4.4 [-4]°
0.262644
0.262598¢

A 3 0.24680 2.4 [-4] 4.51039 0.02458 1.65 1.87 0.246805% 2.1 [-4]°

0.2468° 2.27 [-4]°
0.246715¢
0.2466534

4 0.23871 1.1[-4] 5.50686 0.01649 1.49 2.18 0.238705% 1.1 [-4]
0.2386454
0.238597¢

5 0.23404 6.0 [-5]  6.50455 0.01182 1.39 1.83 0.234035® 6.6 [-5]°
0.233963¢

6 023110 4.0 [-5] 7.50469 0.00878 1.34 1.50
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Continuation of Table (4.3.9)

Other works

Class States -E,. T n* € R, Rr
—FE, r
7 0.22914 3.0 [-5] 8.50162 0.00692 1.26 1.33
8 0.22754 7.0 [-5] 9.69661 0.00532 1.30 0.42
1 0.25826 1.7 [-4] 3.72483  0.03604 0.25826 1.68 [-4]*

[
0.2583° 1.83 [-
0.258275¢ 1.5 [-4]°
0.258205%
0.258199¢

2 0.24438 1.2 [-4] 4.75031 0.02216 1.62 1.42 0.244385% 1.1 [-4]°
0.2444° 1.14 [-4)°

0.2443454
b 0.244341¢
3 023730 7.0[-5] 5.75859 0.01508 1.47 1.71 0.237295® 6.6 [-5]°
0.2372654
0.237255¢
4 023315 4.0[5] 6.76424 0.01093 1.38 1.75 0.233155°
0.233113¢
5 023051 3.0[-5 7.76723 0.00829 1.32 1.34
0.22885 1.7 [-4]  8.68562 0.00663 1.25 0.18
1 024130 6.9 [-11] 5.11942 0.01908 0.2413%
0.2413° 1.61 [-11]°
0.241244
0.241293¢
a 2 0.23560 3.1[-12] 6.11354 0.01338 1.43 2226 0.2356%
0.2355354
0.235563¢
3 0.23211 56[10] 7.11468 0.00988 1.35 0.01 0.2321¢
0.22982 4.3 [-9] 811226 0.00759 1.31 0.13
5 022824 1.9[-8  9.14566 0.00598 1.27 0.23

a [283], b [284], © [285], @ [286], [281]

The present calculated resonance parameters are compared with the results available in the
literature [281,283-286]. The comparison shows excellent agreement between the present
resonance parameters below He™ (3p) threshold with other works. Moreover, it has been
found that the effect of the inclusion of dd configurations varies from 14% to 3% for the
energy positions of first six resonances. For instance, the energy position of the first reso-
nance below He™(3p) threshold excluding dd configurations is —0.26607 a.u. (table 4.3.3)
while the same using the mixed (pf and dd) wavefunction (equation 4.2.1) is —0.31077 a.u.
(table 4.3.9). The resonance energy of 3p4f(3F¢) state lies above the 3d?(*F¢) state, and



4: Doubly excited states of two—electron atoms 147

for this reason, we may infer that it is not possible to include dd configuration by just
increasing the powers of r12 in the pf configuration. This insight will be useful while calcu-
lating the resonance parameters of such higher symmetry states in future. It is worthwhile
to mention that Ho and Bhatia [36] constructed the general D° wavefunction as a combi-
nation of pd and df configurations and opined that such mixing is necessary to facilitate
better convergence of energy of metastable bound 2pnd states. However, Bhattacharyya
et. al. [287] showed that sufficient accuracy of the enery eigenvalues of 2pnd states may be
achieved by considering only pd configurations. Moreover it appears from the calculation
of Saha et. al. [288] that the parameters of the resonances of D° below He™ (3p) threshold
estimated using only pd configurations are more or less in agreement with those estimated
using general D wavefunction of Ho and Bhatia [36]. Thus in contrast to the D states,
the mixing of pf and dd configurations in the F¢ wavefunction (4.2.1) not only leads to the
better convergence of the metastable bound states, but also extremely necessary to get a
complete picture about the accurate structure of resonance states above He™t (2p) threshold

for the even parity F' state of He atom.

As the individual angular momenta do not commute with the two-electron Hamil-
tonian, the labels denoting them may only act as an indicator of the dominant contributions
to various excited states. The 3F¢ resonances below He™ (3p) threshold can arise from three
possible dominant configurations: 3dnd [n > 3|, 3pnf [n > 4] and 3dng [n > 5]. Bachau
et. al. [284] estimated the percentage contribution of the major configurations to few lower
lying resonances of this symmetry by projecting the closed channel wavefunction expanded
in hydrogenic basis. The resonances estimated in the present work are categorized in three
classes as A, B and C for the dominant configurations 3dnd [n > 3|, 3pnf [n > 4] and 3dng
[n > 5] respectively by comparing with the previous results [283,284]. Such classification

are supported by systematic estimation of the following parameters:
i. Effective quantum number (n*), given in equation (4.3.1).

ii. Energy difference, [e.(n) = Ey, — E,, between the threshold energy (Ey,) and the

estimated resonance energy (E,) of n—th resonance state.

-1
iii. Energy difference ratio R, = M
er(n)
) ) ) I'(n—1) . )
iv. Width ratio Rr = Ty I'(n) being the width of n—th resonance state.
n

It is noticeable that

1. For 3dnd [n > 3] (class A) and 3pnf [n > 4] (class B) states, n* < n, while for 3dng
[n > 5] (class C) states, n* > n.

2. In general, the resonances of class A are broader than class B for the same outer

electron principle quantum number (n). The width of the resonance states gradually



148 4: Doubly excited states of two—electron atoms

decreases for higher excited states for both class A and class B. The present method
determines extremely narrow width of the class C resonances. In fact, Kar and Ho
[283] also reported the positions of first three dg resonances without any estimate of
widths. The only estimate of width of the 3d5g state is of the order of nano—eV [284].
Thus the higher members of the dg series should have much lesser width making its

determination extremely challenging.

3. As the dg resonances (class C) show apparently very feeble width, these states may
de-excite to lower lying 3d4f (3D°) states via dipole transition. We, therefore, pre-
dict the transition energies of 269 meV, 424 meV, 519 meV, 606 meV and 625 meV
corresponding to the transition 3dng(’F¢) — 3d4f(®*D°) [n = 5 — 9] respectively.
The energy eigenvalue of the 3d4f(*D°) state is taken as —0.25118 a.u. [288]. The
conversion factor la.u. = 27.21138 eV has been used [289].

4. For the 3dnd (class A) and 3pnf (class B) states, although the effective quantum
numbers and R, shows more or less a systematic pattern (gradual decrements for
higher excited states), Rr shows an irregularity for few states as is evident from table
(4.3.9). Such inconsistency for Rr may be resolved with more accurate parameters
calculated with larger number of terms in the basis set. This kind of analysis based
on R, and Rr was done earlier by Bylicki et. al. [290,291] in case of high-lying 1S,

Ipe 1pe 1D? and 'F¢ resonances of negative hydrogen ion.

The expectation values of repulsive potential (V}.), attractive potential (—V,), their ratio

(Vr)
(—Va)
below He™ (3p) threshold are listed in table (4.3.10). For this purpose, we have to construct

n = , < 019 >, (r1), <r%>, (r12) and <7"%2> for different 3F¢ resonances states of He
the resonance wavefunction appropriately. We have chosen v, value for a particular energy
eigenroot at which the corresponding spectral DOS reaches its maxima. The finding on the

expectations are as follows:

1. Table (4.3.10) shows that for each class of states, n gradually decreases as the res-
onance states come closer to the He'(3p) threshold. Thus the repulsive part of the
potential decreases in comparison to the attractive part of the potential. For instance,
in case of class A, n ~ 15% for the first state and n ~ 2.5% for the eighth state. Sim-
ilarly for class B, n ~ 11.2% for the first state and 1 ~ 3.3% for the sixth state. This

in turn supports the fact of gradual decreasing nature of width of the resonances.

2. On the other hand (r1) and (ri2) increases for the energetically higher excited states
for each class of states. It shows that the system becomes more and more diffuse for
higher excited states, in fact it appears that the electrons are moving away from each

other as well as from the nucleus.
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Table 4.3.10: The expectation values of repulsive potential (V;), attractive potential (—V,)
[their ratio n = %], inter-electronic angles < 612 >(in degree) and different one and
two-particle moments e.g. (r1), (r?), (r12), (ri,) for different *F¢ resonances states of He
below He™ (3p) threshold. The notation P[+Q)] stands for P x 10¥%. All values are given

in atomic units.

Class  States (Vr) (=Va) n (r1) <r%> (r12) <r%2> (012)
1 110 [1] 754 [1] 146 [-1] 6.84 [40] 6.56 [+1] 1.08 [+1] 1.46 [+2]  97.776

2 6672 5981 112[1] 107 [+1] 1.61[+2] 1.83[+1] 3.77 [+2] 103.335

3 4342 539[1] 803[2 1.65[+1] 4.39[+2 294 [+1] 9.73 [+2] 104.469

A 4 299[2] 5.09[1] 5882 239 [+1] 1.02[+3] 442 [+1] 219 [+3] 105.469
5 2182 491 [1] 444 [2] 328 [+1] 2.05[+3] 6.21 [+1] 4.32[+3] 105.932

6 1.66 [-2] 479 [1]  3.46 [-2] 4.33 [+1] 3.69 [+3] 8.30 [+1] 7.71 [+3] 106.243

7 1.30 2] 472 [-1] 276 [-2] 554 [+1] 6.19 [+3] 1.07 [+2] 1.28 [+4] 106.413

8  LI11[-2] 468[1] 237[2 6.97[+1] 1.03[+4] 1.34 [+2] 205 [+4]  89.384

1 6.50 [-2] 5.84 [[1] 1.1 [1] 111 [+1] 171 [+2] 1.74 [+1] 3.34 [+2]  89.435

2 41202 531[1] 7.76 2] 175 [+1] 5.05[+2] 2.97 [+1] 9.93 [+2]  88.397

B 3 2852 5.04[1] 5662 253[+1] 1.17[+3] 453 [+1] 2.31[+3]  87.902
4 209[2] 488[1] 4282 348 [+1] 233 [+3] 641 [+1] 461 [+3]  87.667

5 159 [-2] 477 [1]  3.34[-2) 457 [+1] 416 [+3] 858 [+1] 827 [+3]  87.424

6 163 [-2] 478 [[1] 3.41[-2] 534 [+1] 6.16 [+3] 1.02 [+2] 1.23 [+4]  90.249

1 407 2] 5.24 [[1] 777 [2] 167 [+1] 4.45 [+2] 273 [+1] 817 [+2]  79.635

2 2832 499 [1] 5.65[-2 251 [+1] 1.14[+3] 437 [+1] 216 [+3]  78.277

C 3 2062 4.85[1] 4.26[2] 3.52[+1] 241 [+3] 6.37 [+1] 4.62 [+3]  77.478
4 158 [-2] 475 1] 3.31[-2] 4.68 [+1] 4.42 [+3] 8.68 [+1] 856 [+3]  77.139

5 1.26 2]  4.69 [1]  2.68 [2] 5.99 [+1] 7.46 [+3] 1.13 [+2] 1.46 [+4]  76.877

3. From the last column of the table (4.3.10), it can be seen that the inter-electronic
angle < #19 > increases for the upper excited states of class A, while it decreases for
the upper excited states of class B and class C. To be specific, < 612 > varies in the
range 97° to 106°, 89° to 87° and 79° to 76" for class A, class B and class C states

respectively.

Thus along with the quantities n*, €, R, and Rr as mentioned in table (4.3.9), the properties
listed in table (4.3.10) are also significant for classification of the resonance states below
He™ (3p) threshold.

Let us now consider the resonance states above He™ (3p) threshold. A portion of
the stabilization diagram in the energy range -0.225 a.u. to -0.125 a.u. i.e. lying between
He™ (3p) and He't (4p) thresholds is depicted in figure (4.3.6). Figure (4.3.6) clearly reveals
that presence of several resonances in this energy regime. Resonance energy (E,) and width
(T') of first thirty 3F° resonance states below He™ (4p) threshold are summarized in table
(4.3.11). The 3F¢ resonances below He™ (4p) threshold can arise from 4dnd [n > 4], 4pnf
[n > 4], 4fnf [n > 4], 4ddng [n > 5] and 4fnh [n > 6] dominant configurations. Different

) , < bia >, (r1), (r}), (ri2) and
(=Va)
<7“%2> of the respective resonance states are also given in table (4.3.11) with a view to

structural parameters like n*, (V;), (=V,), n =

classifying them according to the dominant configurations. In contrast to the resonance
states below He™ (3p), any systemic trend of the structural parameters are hardly found for
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Figure 4.3.6: Stabilization plot for 3F¢ states of He atom in the energy range -0.225 a.u. to
-0.125 a.u. showing a series of resonance states below He™ (4p) threshold.

the resonance states below He™ (4p) threshold. Thus we have listed the resonances according
to their energy values (from lower to higher), without classifying them on the basis of the
dominant configurations. The Resonance energies (E,) and widths (I') of the resonance
states lying between He™ (4p — 7p) thresholds are given in table (4.3.12).

Table 4.3.12: Positions (—E, in a.u.), widths (T in a.u.), effective quantum number (n*) for different
3F€ resonances states of He below He™ (5p), He™ (6p) and He™ (7p) threshold. The notation P[+Q)]

stands for P x 1079, All values are given in atomic units.

Below He™ (5p) Below He™ (6p) Below He™ (7p)
States —F,. r n* —E, r n* —E, r n*
1 0.12385 6.2 [-5]  3.37676 0.07941 6.0 [-5]  4.57825 0.05346 2.5 [-4]  6.28851
2 0.12187 1.5 [-5]  3.45568 0.07723 4.3 [4] 4.80298 0.05297 2.6 [-4]  6.41403
3 0.12058 2.3 [4]  3.51017 0.07604 3.8 [-4]  4.94052 0.05104 3.3 [4]  6.99328
4 0.11920 3.8 [4] 3.57142  0.07557 1.3 [-4] 4.99819 0.05082 3.8 [-4] 7.06976
5 0.11898 2.5 [-4] 3.58149 0.07445 3.0 [-4] 5.14420 0.05024 1.0 [-4] 7.28408
6 0.11760 5.1 [-4] 3.64662 0.07292 2.8 [-4] 5.36604 0.05005 1.4 [-4] 7.35864
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Continuation of Table (4.3.12)

Below He™ (5p) Below He™ (6p) Below He™ (7p)

States —FE, r n* —E, r n* —E, T n*
7 0.11656 6.5 [-4] 3.69812 0.07175 7.1 [-4] 5.55650 0.04859 1.2 [-4] 8.01995
8 0.11427 6.7 [-5] 3.81968 0.06709 7.4 [-4] 6.58395 0.04686 1.5 [-4] 9.09566
9 0.11312 6.7 [-4] 3.88543 0.06686 3.0 [-4] 6.65059 0.04516 1.6 [-4] 10.72893
10 0.11224 3.5 [-4] 3.93810 0.06494 2.1 [-4] 7.29929 0.04290 1.7 [-4] 15.49066
11 0.11085 5.5 [-4] 4.02584 0.06438 2.9 [-4] 7.52733

12 0.10926 7.0 [-4] 4.13378 0.06263 1.3 [-4] 8.40695

13 0.10822 1.3 [-4] 4.20926 0.06228 2.6 [-4] 8.62296

14 0.10638 1.2 [-4] 4.35359 0.06139 8.0 [-5] 9.25731

15 0.10539 2.6 [-4] 4.43765 0.06007 5.2 [4] 10.52404

16 0.10394 2.6 [-4] 4.57007 0.05819 7.0 [-4] 13.77655

17 0.10227 2.0 [-4] 4.73832  0.05717 3.6 [-4] 17.59841

18 0.10191 2.2 [-4] 477709  0.05564 1.2 [-4] 76.94837

19 0.10008 8.4 [-5] 4.99002

20 0.09803  2.1[-4]  5.26651

21 0.09753 8.8 [-5] 5.34064

22 0.09572 2.5 [-4]  5.63901

23 0.09285 2.0 [-4] 6.23831

24 0.00044 3.3 [-4]  6.91880

25 0.08871 1.4 [-4] 7.57706

26 0.08775 8.7 [-5] 8.03167

27 0.08691 1.1 [-4] 8.50578

28 0.085845 6.8 [-5] 9.24895

29 0.085052 1.2 [-4]  9.94840

30 0.084614 1.9 [-4] 10.40989

31 0.083472 7.6 [-5] 12.00038

32 0.082917 1.4 [-4] 13.09232

33 0.08171 2.1 [4] 17.09963

So far, we have studied resonance parameters and different expectation values of *F¢ states
of free He atom. To get a proper visualization of the resonance states, we estimate the two
particle radial probability density p(r1,7r2). As an example, we discuss the classes of states

A, B and C in this light. Two particle radial probability density is defined as

r1+72 s 2 2
p(r1,re) :/ 7“12d?”12/ / / W% sin 0dfdpdy (4.3.3)
r =0 J =0 Jy=0

12=|r1~ra|

U is defined in equation (4.2.16). For the 3F¢ resonance states of He having configurations
3d? (class A), 3pdf (class B) and 3d5g (class C) lying below He™ (3p) threshold, p(r1,72) are
plotted in figure (4.3.7). The density plot for 3d? configuration exhibits similar behavior as

the two-electron ground state [292] showing a maximum along the symmetry line r; = ro.
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Table 4.3.11: Positions (—F, in a.u.), widths (I" in a.u.), effective quantum number (n*),
the ratio between expectation values of repulsive potential (V;), attractive potential (—V,)
iy = (Vo)

= <_Va>
moments e.g. (r1), (r?), (ri2), (r{,) for different *F¢ resonances states of He below He™ (4p)
threshold. The notation P[+Q] stands for P x 10%?. All values are given in atomic units.

|, inter-electronic angles < 012 >(in degree) and different one and two-particle

States —FE, r n* n (r1) (r?) (r12) (r?y) (012)
1 0.22207 1.8 [4]  2.26956 3.28 [[2] 5.73 [+1] 7.72 [+3] 1.0 [+2] 154 [+4]  89.085
2 02187 2.1 [4] 231001 4.02 [2] 476 [+1] 547 [+3] 9.02 [+1] 1.09 [+4]  89.448
3 021389 3.1 [4] 237169 476 [2] 4.02 [+1] 3.98 [+3] 7.56 [+1] 7.96 [+3]  90.454
4 0.20705 3.7 [-4]  2.46857 5.50 [-2] 3.40 [+1] 2.91 [+3] 6.20 [+1] 5.79 [+3]  88.530
5 019788 5.3 [4] 261927 6.33[-2] 292 [+1] 219 [+3] 5.34 [+1] 4.38 [+3]  89.512
6 0.18903 5.4 [4] 279443 1.04 [1] 1.67 [+1] 7.5 [+2] 295 [+1] 158 [+3] 104.178
7 0.18404 2.4 [-4] 291012 864 [-2] 221 [+1] 1.33 [+3] 3.96 [+1] 268 [+3]  94.377
8 017834 1.2 [-3]  3.06167 1.27 [[1] 1.49 [+1] 5.32 [+2] 2.39 [+1] 107 [+3]  91.943
9 0.16668 9.2 [4]  3.46354 9.77 2] 1.99 [+1] 1.06 [+3] 3.42 [+1] 211 [+3]  89.631
10 0.15878 6.0 [-5]  3.84729 1.10[1] 1.82 [+1] 6.79 [+2] 3.06 [+1] 1.45 [+3] 100.183
11 0.15778 2.6 [-4]  3.90553 1.07 [[1] 179 [+1] 5.09 [+2] 3.15 [+1] 1.23 [+3] 110.336
12 0.15224 5.9 [4] 428431 1.08[1] 204 [+1] 8.34[+2] 3.34 [+1] 1.67 [+3]  90.229
13 0.1476 3.0 [4] 470360 1.24 [1] 1.81 [+1] 457 [+2] 283 [+1] 918 [+2]  90.594
14 0.14685 1.2 [4] 478364 1.02 [-1] 221 [+1] 9.99 [+2] 3.76 [+1] 2.05 [+3]  93.799
15 0.1455 4.0 [-5]  4.93864 9.21 [2] 224 [+1] 7.48 [+2] 3.88 [+1] 170 [+3] 103.584
16 0.14514 9.0 [-5]  4.98259 1.19 [1] 1.93 [+1] 5.33 [+2] 293 [+1] 101 [+3]  85.276
17 0.1434 5.0 [4] 521286 9.03 [1] 2.19 [+1] 101 [+3] 3.82 [+1] 211 [+3]  95.959
18 0.14075 4.4 [-4]  5.63436  9.13 [-2] 2.55 [+1] 1.08 [+3] 4.30 [+1] 221 [+3]  92.365
19 0.13998 2.4 [4] 577735 9.49[2] 258 [+1] 1.06 [+3] 4.26 [+1] 2.08 [+3]  88.699
20 013925 1.7 [-4] 592348 7.72 [-2] 2.97 [+1] 147 [+3] 5.40 [+1] 3.35 [+3] 109571
21 0.13877 3.6 [4]  6.02584 8382 280 [+1] 1.31 [+3] 4.88 [+1] 279 [+3]  97.637
22 0.13747 9.0 [-5]  6.33215 7.27 [2] 3.48 [+1] 248 [+3] 6.8 [+1] 4.91 [+3]  88.794
23 0.13564 5.0 [-5]  6.85510 597 [-2] 3.97 [+1] 275 [+3] 747 [+1] 6.24 [+3] 115556
25 0.13314 8.0 [5  7.83741 6.02[-2] 452 [+1] 3.91 [+3] 815 [+1] 7.88 [+3]  92.945
26 0.13154 1.0 [4] 874371 539 [-2] 554 [+1] 6.14 [+3] 1.01 [+2] 1.23 [+4]  89.327
27 0.13032 2.0 [-4]  9.69458 554 [-2] 6.19 [+1] 8.14 [+3] 1.14 [+2] 1.63 [+4]  88.458
28 0.12878 2.9 [4] 11.50109 4.97 [2] 7.26 [+1] 1.16 [+4] 1.35 [+2] 2.32 [+4]  89.766
29 012766 2.1 [-4] 1371021 4.86 [-2] 7.24 [+1] 1.18 [+4] 1.35 [+2] 2.35 [+4]  88.858
30 0.12588 1.8 [4] 23.83656 5.90 [-2] 576 [+1] 8.03 [+3] 1.07 [+2] 1.62 [+4]  96.553

In contrast, the density plot for 3p4f configuration exhibits a lesser probability density
along the symmetry line. In fact the maximum probability density appears at two different
regions on the either sides of the symmetry line. In case of 3dbg state the probability
density vanishes along the symmetry line and therefore two distinct regions having finite
probability density are observed. Thus the structures of two particle radial probability

densities for three classes of states below He™t (3p) are quite distinct.

4.3.2 Structural properties under classical weakly coupled plasma

For the investigation on the effect of classical weakly coupled plasma (WCP) on the metastable
bound 2pn f(n = 4—6) 13F¢ states of two electron systems— He, Lit and Be?*, the effective
potential is modeled by exponential screened Coulomb potential (ESCP) as given in equa-
tion (3.3.1). In the begining, we start with only the pf part in the wavefunction (4.2.16).

The wavefunction is expanded in nine-exponent (p; = 9) Hylleraas basis set. The energy
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Figure 4.3.7: Two particle radial probability density p(r,72) for three 3F¢ resonance states
of He atom with the dominant 3d? (left), 3p4f (middle) and 3d5g (right) configurations.

eigenvalues of 2pnf(n = 4 — 6) L3F¢ states of He atom for Ny = 675 are given in the table
(4.3.13) for different values of plasma screening length Ap (1.0.2) ranging from 100 a.u. to
10 a.u. The present estimated energy eigenvalues are compared with some data available in
literature [240,283]. The comparison reveals that except for the 2p4 f state at Ap = 100 a.u.,
the calculated energy eigenvalues are lowest yet obtained which establishes the efficiency of
the present method as well as the completeness of the wavefunction only on pf—part in case
of metastable bound 3F¢ states. The last two columns of table (4.3.13) show the energy
eigenvalues of 2s and 2p states of He™ for the whole range of Ap. The energy eigenvalues of
2s and 2p are calculated by solving the variational equation of one-electron systems given

by

af\2 1(l+1 ¢ b
5/{(&) + (7'2 ) _piz - }dr:O (4.3.4)

‘I’ being the angular momentum of the one-electron state. The radial function f(r) is

expanded in terms of exponential basis set as
fr)y=> Cieh (4.3.5)
i

We have used 101 (i = 100) terms in the basis set and the exponents are taken in a
geometrical sequence p; = p;_17, 7 is the geometrical ratio. The energy eigenvalues (F) are
determined by solving the generalized eigenvalue equation (3.2.59). It is found from table
(4.3.13) that 2s and 2p energies are different from each other for each A\p which is a direct

consequence of non-Coulomb central potential (3.3.1) and the 2s state remains more bound
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Table 4.3.13: Variation of energy eigenvalues (—FE in a.u.) for the 2pnf[n = 4 — 6] L3F¢

states of He and 2s, 2p states of He™ with respect to the screening length Ap (a.u.).

1 Fe 3Fe
AD 2p4 f 2p5f 2p6 f 2p4Af 2p5 f 2p6 f HeT(2s) Het(2p)
100 0.503055 0.492022 0.486401 0.503047 0.492017 0.486397  0.480296  0.480247
0.502956% 0.491928%  0.4863145% 0.502952% 0.4919255%  0.486313%
0.50306068" 0.503052113%
90 0.499965 0.489058 0.483572 0.499957 0.489052 0.483569  0.478143  0.478083
80 0.496136 0.485400 0.480100 0.496128 0.485394 0.480097  0.475462  0.475386
70 0.491267 0.480775 0.475736 0.491259 0.480770 0.475733  0.472031  0.471932
0.491074 0.4805995%  0.4755835% 0.4910705% 0.480597%  0.4755805%
60 0.484869 0.474742 0.470087 0.484862 0.474737 0.470085  0.467484  0.467350
50 0.476090 0.466543 0.462494 0.476083 0.466539 0.462493  0.461173  0.460981
0.4757375%  0.4662415%  0.4622235% 0.4757335% 0.466237%  0.462197%
0.476090624° 0.476087092b
40 0.463300 0.454773 0.451782 0.463293 0.454770 0.451781  0.451823  0.451525
0.462784% 0.454351% 0.46278% 0.454334
30 0.442973 0.436545 0.435913 0.442968 0.436543 0.435913  0.436545  0.436025
0.4421585% 0.4421485%
20 0.406087 0.405856 0.405709 0.406086 0.405856 0.405709  0.407104  0.405970
0.4060876° 0.4060871°
10 0.322848 0.322699 0.321485 0.322848 0.322699 0.321485  0.327085  0.322761

@ [283], ® [240]

than 2p state as A\p decreases i.e., as effect of plasma increases.

From table (4.3.13) it can also be seen that, as Ap decreases the energies of
2pnf (13F°, n = 4 — 6) states are pushed towards the continuum which is the outcome of
the fact that ESCP becomes more and more positive with respect to the decrease in Ap. It
is worthwhile to mention that 'F¢ states are more bound than 3F¢ states for each configura-
tions but at a very low value of Ap, both 'F¢ and F¢ states become nearly degenerate. For
example, from table (4.3.13), it can be seen that the energy eigenvalue of 2p4f (1F¢) state
remains more bound than 2pdf (3F¢) state in the range Ap = 100 a.u. to Ap = 20 a.u. At
Ap = 10 a.u., both the states become (almost) degenerate with energy value —0.322848 a.u.
At these low values of Ap, plasma screening increases and the two-electron energy levels
become greatly affected by the continuum embedded states through configuration interac-
tions. Another interesting feature to be noted from table (4.3.13) is that, at a definite low
value of A\p, 2pnf (V3F¢, n = 4 — 6) states cross the energy threshold value of He™(2s) but
they still remain below the Het(2p) threshold. For example, at Ap = 40 a.u., 2p6f (1F¢)
state energetically just crosses He™(2s) threshold energy but lies below He™t (2p) threshold.
This particular value of A\p decreases for the lower states like 2p5f and 2p4f of 'F¢ symme-

try. Identical behavior is observed for 3F¢ states also. At sufficiently low values of Ap (i.e.
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high screening), the energy values of He atom come very close to the one-electron (He™)
continuum and tend to merge into the 2p threshold of the respective one-electron (He™)
system. In tables (4.3.14) and (4.3.15) the energy values of 2pnf (}3F¢ n =4 — 6) states
of Lit and Be?T are given respectively, along with their respective one-electron 2s and 2p
threshold energies. All the features observed in case of He atom are also noted for Li™ and

Be? T ions.

Table 4.3.14: Variation of energy eigenvalues (—FE in a.u.) for the 2pnf[n = 4 — 6] 13F®

states of LiT and 2s, 2p states of Li®* with respect to the screening length (Ap in a.u.).

1Fe SFe
Ap 24 f 25 f 206 f 2p4 f 2p5 f 2p6 f Li®T(2s) Li**(2p)
100 1.203600 1.158000 1.133734 1.203510 1.157937 1.133693 1.095298  1.095248
90  1.198297 1.152835 1.128727 1.198207 1.152772 1.128687 1.092033 1.091973

80 1.191703 1.146433 1.122542 1.191614 1.146371 1.122503 1.087964  1.087887
70 1.183284  1.138288 1.114706 1.183195 1.138227 1.114668 1.082748 1.082648
60 1.172159 1.127578  1.104457 1.172071  1.127517 1.104420 1.075823 1.075687
50 1.156775 1.112862 1.090478 1.156688 1.112803 1.090442 1.066182  1.065987
40 1.134107 1.091381 1.070283 1.134022 1.091326 1.070251 1.051840 1051537
30 1.097393 1.057098 1.038579 1.097312  1.057048 1.038553 1.028251 1.027719
20 1.027813 0.993914  0.982019 1.027745 0.993879  0.982008 0.982227  0.981057

10 0.848931  0.846906  0.844900 0.848912  0.845428 0.841774 0.852947  0.848554

Table 4.3.15: Variation of energy eigenvalues (—F in a.u.) for the 2pnf[n = 4 — 6] L3F¢

states of Be?T and 2s, 2p states of Be3T with respect to the screening length (Ap in a.u.).

lFe SFe
AD 2paf 25 f 2p6 f A f 25 f 26 f Be®T(2s)  Be*t(2p)
100 2.216939  2.114095  2.058854 2.216686 2.113923 2.058745 1.960298  1.960249
90  2.216938 2.114095 2.051646 2.209165 2.106546 2.051536  1.955923  1.955862
80 2200052 2.097554  2.042712 2.199800 2.097382 2.042603  1.950465  1.950388
70 2.188072 2.085861 2.031351 2.187821 2.085691 2.031243  1.943464  1.943364
60 2172202 2.070428 2.016417 2.171952 2.070259 2.016311 1.934159  1.934022
50  2.150179 2.049114  1.995905 2.150086 2.048951 1.995806  1.921186  1.920990
40 2117577 2.017784  1.965994 2.117332 2.017621 1.965895 1.901848  1.901543
30 2.064350 1.967188 1.918278 2.064110 1.967033 1.918192 1.869937  1.869400
20  1.961936 1.871780 1.830341 1.961713 1.871646 1.830273 1.807292  1.806102
10 1.685196 1.628246 1.623064 1.685048 1.628199 1.619216 1.628414  1.623879

In order to have a comparative study on the modification of doubly excited energy levels of
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two—electron systems, we have displayed the energy level diagram containing three different
DESs - 2pdp (P€), 2p4d (D) and 2p4f (F°) of He-atom along with 2s and 2p states of He™
ion for A\p = 100, 50, 30 and 20 a.u. in figure (4.3.8). We have taken the energy values of

~0.406 5 rom
— 2p4d (DY)
-0.408- | — 2p4p(F?)
25
2
-0.41- P
T -0.44-
8
=
o
¢ _0.46-
[11]
-0.48
_0.5 _
100 50 30 20

Screening length Ap(a.u.)

Figure 4.3.8: Energy positions of 2p4f (3F¢), 2p4d (?D°) and 2pdp (3P¢) states of He atom
and 2s, 2p energy levels of He™ ion for A\p = 100, 50, 30 and 20 a.u.

2pdp (3P¢) and 2p4d (3D°) states of He atom embedded in classical WCP environment from
literature [293,294]. We note that the energy relationship between the DESs is Fopsp >
Eopsq > Eoapap. Figure (4.3.8) also shows the removal of I-degeneracy between 2s and 2p
states of He™ ion at low values of A\p where the energy of 2s is lower than 2p state. It
is interesting to note from figure (4.3.8) that, down to Ap = 30 a.u. the three DESs are
energetically lower than both Het(2s) and Het(2p) thresholds. At Ap = 20 a.u., the 2p4f
level crosses the Het(2s) threshold whereas 2p4d and 2pdp levels remain below He™(2s)
threshold. Hence, at a low value of A\p, the 2pdf (3F¢) level of He merges to the one-

electron (He™) continuum.

Tables (4.3.16)—(4.3.18) show the energies of 2pnf (13F¢) — 2pmd (3D°) dipole
transitions [n = 4 — 6; m = 3 — 6] for He, Li* and Be?* respectively, as a function of \p.
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Table 4.3.16: Absolute values of the 2pnf(13F¢) — 2pn’d(1:3D°)[n = 4 — 6; n/ = 3 — 6] transition energies (in meV)
of He atom under WCP.

Screening length (Ap) in a.u.
Transition 100 90 80 70 60 50 40 30 20
Tpe ., 1po
2pAf — 2p3d 854.25 851.72 848.21 843.20 835.57 823.21 801.09 754.79  623.78
— 2p4d 71.70 72.01 72.44 73.01 73.81 75.06 76.97 79.81 77.62
— 2pbd*  264.68 360.44 381.82 413.23
s 2p6d*  433.29

2p5f — 2p3d 1154.46  1148.52  1140.35 1128.69 1111.15 1082.97 1033.10 929.71  630.08
— 2p4d 371.91 368.81 364.58 358.50 349.40 334.82 308.98 254.73  83.92
— 2pbd*  35.53 63.63 89.69 127.74
— 2p6d*  133.06

2p6f — 2p3d  1307.43  1297.78  1284.57 1265.82 1237.82 1193.17 1114.51 946.91 634.08
— 2p4d  524.89 518.07 508.80 495.63 476.06 445.02 390.38 271.94  87.92
— 2pbd  188.50 85.62 54.53 9.39
— 2p6d  19.89
3pe — 3o
2p4f — 2p3d 734.25 732.05 729.02 724.65 718.03 707.29 688.04 647.69  532.15
— 2p4d 21.93 22.59 23.48 24.75 26.60 29.49 34.28 42.84 55.08
— 2pbd*  288.62 284.67 279.28 271.66
— 2p6d*  445.89

2p5f — 2p3d 1034.40 1028.79  1021.08 1010.07 993.54 966.98 919.97 822.52  538.40
— 2p4d 322.07 319.32 315.55 310.17 302.12 289.18 266.21 217.67 61.33
— 2pbd 11.53 12.07 12.79 13.77
— 2p6d*  145.74

206f — 2p3d  1187.31 1177.99 1165.24 1147.14 1120.14 1077.10 1001.31 839.68 542.41
—2pdd  474.99  468.52  459.71  447.24 42872  399.29  347.55  234.83 65.34
—2p5d  164.44  161.26  156.95  150.84
— 2p6d 717

* pf level lies energetically lower than the pd level

Table 4.3.17: Absolute values of the 2pnf(1:3F¢) — 2pn/d(13D°)[n = 4 — 6; n/ = 3 — 6] transition energies (in meV)
of Lit ion under WCP.

Screening length (Ap) in a.u.
Transition 100 90 80 70 60 50 40 30 20
Tpe _, 1Ipo
2pdf — 2p3d  3229.53  3226.99 3223.50 3218.43 3210.71 3198.09 3175.37 3127.69  2997.69
— 2p4d  190.39 190.91 191.65 192.69 194.25 196.75 201.14 209.82 230.55
— 2pbd*  1148.05 1143.86 1138.06 1129.78 1117.30 1097.24
— 2p6d*  1848.71 1840.33 1828.78 1812.33  1787.67

2p5f — 2p3d 4470.37  4464.07  4455.36  4442.83  4423.82 4393.02 4338.01  4224.17  3920.13
— 2p4d 1431.23  1427.99 1423.51 1417.09 1407.36 1391.68 1363.78 1306.30 1152.99
— 2pbd 92.79 93.22 93.80 94.62 95.81 97.69
— 2p6d*  607.87 603.24 596.92 587.93 574.56

2p6f — 2p3d  5130.68 5120.08 5105.47 5084.53 5052.98 5002.12 4912.11 4728.10 4243.81
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Screening length (Ap) in a.u.

Transition 100 90 80 70 60 50 40 30 20
— 2p4d  2091.54 2084.00 2073.62 2058.79 2036.52 2000.78 1937.88  1810.23  1476.67
— 2p5d  753.10 749.23 743.90 736.32 724.96 706.79
— 2p6d  52.44 52.77 53.18 53.77 54.59
3pe — 3De
2p4f — 2p3d 2839.04 2836.78 2833.64 2829.13 2822.23 2810.97 2790.70 2748.17  2632.07
— 2pdd 44.19 44.97 46.07 47.64 49.99 53.78 60.47 73.87 107.00
— 2p5d*  1216.58 1212.10 120591 1197.05 1183.72 1162.29
— 2p6d*  1885.17 1876.47 1864.50 1847.42  1821.85
2p5f — 2p3d 4079.14  4073.13  4064.77  4052.77 4034.61  4005.14 3952.52 3843.81 3553.62
— 2pdd 1284.29  1281.32 1277.19 1271.28  1262.37 1247.95 1222.29 1169.51 1028.54
— 2p5d 23.52 24.25 25.21 26.59 28.65 31.88
— 2p6d*  645.07 640.12 633.38 623.78 609.48
2p6f — 2p3d 4738.85  4728.51  4714.25 4693.84 4663.11  4613.62 4526.00 4347.08 3876.64
— 2p4d 1944.00 1936.71  1926.67 1912.35 1890.87  1856.42 1795.77 1672.79  1351.57
— 2p5d 683.23 679.64 674.69 667.67 657.15 640.35
— 2p6d*  14.64 15.27 16.10 17.29 19.02

* pf level lies energetically lower than the pd level

Table 4.3.18: Absolute values of the 2pnf(13F¢) — 2pn’d(1:3D°)[n = 4 — 6; n’ = 3 — 6] transition energies (in meV)

of Be?t ion under WCP.

Screening length (Ap) in a.u.

Transition 100 90 80 70 60 50 40 30 20
ige _, Ipo
2pdf — 2p3d 6948.14 6945.64 6942.18 6937.13 6929.45 6916.18 6894.02 6845.82 6713.53
— 2p4d 309.27 309.91 310.81 312.08 314.03 317.18 322.84 334.38 364.21
— 2pbd*  2649.02 2644.54 2638.32 2629.38 2615.82 2593.85
— 2p6d*  4217.37 4208.40 4196.01 4178.25 4151.41
2p5f — 2p3d 9746.64 9740.19 9731.29 9718.44 9698.86 9666.27 9609.52 9489.74 9166.80
— 2p4d 3107.77 3104.46 3099.92 3093.38 3083.44 3067.28 3038.34 2978.29 2817.48
— 2p5d 149.48 150.02 150.80 151.92 153.59 156.24
— 2p6d*  1418.87 1413.85 1406.90 1396.94 1382.00
2p6f — 2p3d  11249.80 11238.81 11223.59 11201.73 11168.58 11114.14 11018.80 10820.54  10294.42
— 2pdd  4610.93 4603.07 4592.22 4576.68 4553.16 4515.14 4447.62 4309.09 3945.09
— 2pbd  1652.63 1648.63 1643.10 1635.21 1623.30 1604.11
— 2p6d  84.29 84.76 85.40 86.35 87.71
3Fe _, 3po
2pdf — 2p3d 6267.78 6265.49 6262.34 6257.71 6250.67 6509.08 6218.23 6174.16 6053.13
— 2p4d 68.33 69.63 70.35 72.00 74.54 77.13 86.03 101.20 140.68
— 2pbd*  2758.91 2754.21 2747.67 2738.34 2724.12 2705.26
— 2p6d*  4274.57 4265.36 4252.62 4234.40 4206.86
2p5f — 2p3d 9064.10 9057.90 9049.27 9036.81 9017.88 8987.00 8931.50 8815.76 8503.97
— 2p4d 2864.65 2862.04 2857.28 2851.10 2841.75 2829.15 2799.30 2742.80 2591.53
— 2p5d 37.41 38.20 39.26 40.76 43.08 46.77
— 2p6d*  1478.25 1472.95 1465.69 1455.30 1439.65
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Continuation of Table (4.3.18)

Screening length (Ap) in a.u.

Transition 100 90 80 70 60 50 40 30 20

2p6f — 2p3d  10565.57 10554.80 10539.88 10518.41 10485.88 10433.15 10339.04 10144.79  9629.79
— 2p4d  4366.12 4358.94 4347.90 4332.71 4309.75 4275.30 4206.84 4071.83 3717.34
— 2p5d  1538.88 1535.10 1529.87 1522.37 1511.08 1492.91
— 2p6d  23.22 23.95 24.93 26.31 28.35

* pf level lies energetically lower than the pd level

The energy eigenvalues of 2pmd (13D° m = 3 — 6) states of WCP embedded He, Lit and
Be?T are taken from the work of Saha et. al. [294]. The transition energies given in the
tables are the absolute values of the difference between the 2pnf (13F¢) and 2pmd (43D?)
levels because for a given Ap the energy values of 2pnf (13F¢) levels can be higher or
lower with respect to the energy of 2pmd (13D°) levels. For instance, in the case of !F¢
state of He, 2p4f state lies energetically higher than 2p3d (!D°) and 2p4d (!D°) states
but lower than the 2p5d (D) and 2p6d ('D°) states. The conversion factor 1 a.u. of
energy = 27.21138 eV [289] has been used. Saha et. al. [294] reported an initial blue
shift (increase in the transition energy) followed by a red shift (decrease in the transition
energy) for 2pmd (3D°) — 2p3p (3P¢) transitions, with respect to the decrease in A\p. In
contrast, we find either a blue shift or a red shift for a particular transition scheme. For
instance, the 2p4f (3F¢) — 2p3d (3D°) line for Be** gets a gradual red shift with respect
to decreasing A\p and a blue shift is observed for the 2p4f (3F¢) — 2pdd (3D°) of the
same ion under similar conditions. Such features are evident from figure (4.3.9) where the
2p4 f(13F¢) — 2pnd(Y3D°) [n = 3 — 6] transition energies of Be?* are plotted as a function
of screening length (Ap).

The structure calculations of 13F¢ states of two electron systems under classical
WCP are very limited [240,283] in the literature. In references [240,283], the following two
approximations were made for the sake of simplicity in solving the basis integrals involved
in Cl-method:

1. The screened electron-electron repulsion in the potential (1.0.1) is approximated by

expanding it in a Taylor series as

M i—1
~ ()i

r12 P Ayl
where M is the upper limit of the terms in the Taylor series expansion.

6—7“12/)\D

2. The inter-electronic distance is approximated by ris =~ r1 + 79, which indicates that
the electrons are assumed to be situated in the opposite sides of the nucleus which is

clearly a special case and, not a general picture.

So it is necessary to make an investigation using whole analytic form of the screened poten-

tial as well as proper correlation in the wavefunction. In this subsection we have already
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Figure 4.3.9: Modification of transition energies (in meV) for dipole transitions
2p4f (V3F¢) — 2pmd(*3D°) [m = 3 — 6] of Be?" ion embedded in classical WCP.

discussed the influence of ESCP on the energy eigenvalues of metastable bound 3F¢ states
of two-electron systems like He, Lit and Be?*, where the whole analytic form of the screened
potential has been used without any approximation. But the wavefunction we have used
consists only pf configuration, for which we have compromised the numerical accuracy in
the order of 0.001%. Under such circumstances we have executed a precise investigation on
the structural properties of metastable bound and resonance 13F¢ states under the ESCP
where the entire analytic form of the screened potential retaining its original form (1.0.1)
and considered a complete wavefunction containing both pf and dd configurations which

are expanded in explicitly correlated nine—exponent Hylleraas basis set.

For the investigations on the metastable bound and resonance 3F¢ states of He
atom under ESCP, we have diagonalized the Hamiltonian matrix 432 times using symmetric
nine—exponent Hylleraas basis set with N = 900 for different values of v; so that the lowest
value of p can vary from 0.005 a.u. to 0.545 a.u. in a step size of 0.00125 a.u. and kept
72 constant, where y; (4.2.34) and 2 (4.2.35) are the common ratios in the geometrical
sequences p; = p;—171 (pf—part) and v; = v;_172 (dd—part), respectively. We have selected
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432 different ; values which produce 432 sets of energy eigenvalues (E). The highest
value of the p sequence i.e. pg is fixed at 8.0 while p; of any set differs from that of the
previous set by 0.001. This process is executed for various plasma conditions by choosing
different values of A\p. The lowest bound energies of metastable bound 3F¢ and 'F¢ states
for different Ap are given in tables (4.3.19) and (4.3.20) respectively. In the first row of
the tables the energy eigenvalues of He™ (2p) states are given, below which all the energy
eigenvalues of metastable bound 3F¢ states lie. It can be seen that the energy values
of the MBSs gradually become more and more positive as A\p decreases and as a result
the number of states decrease with the decrease of Ap. For example, in table (4.3.19) we
see that there are 12 3F°® MBSs in free case (A\p = 00), and the number reduces to 7 for
Ap = 100 a.u. and 1 for A\p = 20 a.u. Below A\p = 20 a.u. there is no MBS of 3F¢ symmetry
of He-atom. The present energy eigenvalues of MBSs are compared with that reported by
Kar and Ho [239,240]. The comparison reveals that under the plasma scenario Ap < 100
a.u. our present calculated energy values are lowest yet obtained. Thus we have achieved
better accuracy in the determination of the energy eigenvalues of metastable bound 3F¢
states under plasma using 900 terms in the multi-exponent Hylleraas type basis set which
is smaller than the number of terms used in the correlated CI-type basis sets (1160 — 1296
terms) [239] and (1800 — 2200 terms) [240] and as a consequence, the computational time
is substantially reduced. The reason behind this advantage lies in the fact that we use an

exact analytic form of the matrix element of the potential part.

Structural properties like electron-electron repulsive potential (V}.), electron-nucleus

2“25 , (cosbha), (b12), (r1), <7a%>’ (r12) and

(r%,) of *F¢ and 'F* MBSs of He atom for different Ap are shown in the tables (4.3.21) and

(4.3.22), respectively. It is to be mentioned that in case of free atom we have estimated

attractive potential (V) and their ratio n =

the inter-electronic angles (612) by taking the cosine inverse of (cosf;2) (tables 4.3.21 and

4.3.22). However, in the present case, (f12) is determined by the following relation [295]

™ 37
(012) ~ 5o (cos b12) (4.3.6)
Tables (4.3.21) and (4.3.22) show that both (ri) and (ris) increase when \p decreases for

L3Fe states. This shows that as Ap decreases, the size of the atom expands.

Table 4.3.21: Expectation values of repulsive potential (V;.), attractive potential (V;), ratio of
attractive to repulsive potential 7, inter-electronic angles (f12) (in degree) using (4.3.6), different
one and two-particle moments of metastable bound 2pnf 3F¢ [n = 4 — 15] states of He atom below
He™ (2p) threshold for different screening length Ap of classical weakly coupled plasma. The notation
P[+Q] stands for P x 10*%. All values are given in atomic units.

States Ap  (V}) A n (r1) (r?) (ri2) (riy) (012)
opAf oo 6.38[-2] -1.12[+0] 17.65  9.96[+0] 1.72[+2] 1.76[+1] 3.47[+2] 93.59
100 5.39[-2] -1.08[+0] 20.17  1.00[+1] 1.78[+2] 1.79[+1] 3.57[+2] 93.47
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Continuation of Table 4.3.21

States  Ap (V) (Va) U (r1) (r1) (r12) (rf2) (012)
70 49702] -1.07[+0] 20153 1.02(+1] 1.83[+2] L81[+1] 3.67(+2 93.36
50 4.41[-2] -1.04[+0] 2374  1.04[+1] 1.93[+2 1.86[+1] 3.88[+2] 93.17
10 3.9302] -1.020+0] 2615  1.07[+1] 206[+2] 1.91[+1] 4.13[+2 92.95
30 3.13[-2] -9.96[-1 3178  1.14[+1] 2.39[+2] 2.05[+1] 4.79[+2] 92.52
95  248[-2] -9.60-1] 38.96 1.23[+1] 2.86[+2 2.24[+1] 5.73[+2] 92.09
20  1.41[2] -9.28[-1 6549  1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] 91.25
95f oo 407-2] -LOS[+0] 2656 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] 91.82
100 3.08-2] -1.04[+0] 33.79  171[+1] 5.79[+2 3.19[+1] 1.15(+3] 91.69
70 2.6702] -1.02[+0] 3836 1.77[+1] 6.19[+2] 3.30[+1] 1.23[+3] 91.56
50 2.13[2] -1.00[+0] 46.93  188[+1] 7.03[+2] 3.52[+1] 1.40[+3] 91.35
40 1672 -9.83[-1 58.64 2.02(+1] 827[+2] 3.81[+1] 1.65+3] 91.12
30 898[-3 -951[F1] 105.83 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] 90.65
2w6f oo  2.81[-2] -1.05[+0] 3748  2.48[+1] 1.26[+3] 4.72[+1] 2.52[+3] 91.05
100 1.84[-2] -1.01[+0] 5518  2.64[+1] 143[+3] 5.04[+1] 2.87[+3] 90.90
70 1.44[2] -1.00[+0] 69.09 281[+1] 1.64[+3] 5.39[+1] 3.28(+3] 90.77
50 9.42[-3] -9.78[1] 103.87 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] 90.55
40 5.01[-3] -9.60-1] 19134 4.06[+1] 3.52(+3] 7.89[+1] 7.05[+3] 90.31
WTf oo 2.061-2] -1.04[+0] 50.390  3.44[+1] 2.50(+3] 6.65[+1] 5.00[+3] 90.66
100 1.10[-2] -1.00[+0] 90.45 3.86[+1] 3.14[+3] 7.48[+1] 6.28[+3] 90.50
70 7.34[-3] -9.86[-1 134.26 4.37[+1] 4.04[+3] 8.50[+1 8.08[+3] 90.36
50 2533 -9.65-1] 38110 6.40[+1] 8.91[+3] 1.25[+2] L78[+4] 90.13
98f oo 157-2] -1.03[40] 6532 4.56[+1] 4.45[13] 8.89[+1] 8.90[+3] 90.44
100 6.43[-3] -9.92[-1] 15420 5.53[+1] 6.51[+3] 1.08[+2] 1.30[+4] 90.27
70 2953 9771  331.09 7.15[+1] 1.00[+4] 1.40[+2] 2.18[+4] 90.14
29f oo  1.24[-2] -1.02[+0] 8220 5.83[+1] 7.33[+3] 1.14[+2] 1.46[+4] 90.31
100 3.38(3] -9.86[-1] 201.23 8.00[+1] 1.37[+4] 1.57[+2] 2.74[+4] 90.13
210f oo  9.99[-3] -1.02[+0] 102.05 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] 90.21
100 1.33-3] -9.82[-1] 73341 1.25[+2] 3.38[44] 2.48[+2] 6.76[+4] 90.05
WIlf oo  7.99-3] -L01[+0] 127.19 9.15[+1] 1.81[+4] 1.80[+2] 3.63[+4] 90.14
12f oo 6.150-3 -1.01[+0] 164.60 1.17[+2] 3.00[+4] 2.33[+2] 6.00[+4] 90.08
9213f oo  6.75[-3] -1.01[+0] 149.84 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] 90.14
214f oo 5.08]-3 -1.00[+0] 198.36 1.83[+2] 7.49[+4] 3.63[+2] 1.49[+5 90.09
215f oo  T.02[-3 -1.00[+0] 142.97 2.12[+2] L11[+5] 4.22[+2] 2.23[+5] 90.20

a [239]
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Table 4.3.20: Energy eigenvalues (E in a.u.) of metastable bound 2pnf 'F¢ [n > 4] states of He below Het(2p) threshold and 2p state
of He™ ion for different screening length Ap (a.u.) of classical weakly coupled plasma.

States oo 100 70 50 40 Ap 30 25 20 15 12
Het(2p) -0.5 -0.480247 -0.471931 -0.460980 -0.451525  -0.436025 -0.423853  -0.405969 -0.377135 -0.349478
2pdf  -0.531995 -0.503056 -0.491268 -0.476090 -0.463300  -0.442973 -0.427597  -0.406087
-0.5319955% -0.502956% -0.491074%  -0.4757375% -0.462784%  -0.4421585%  -0.426532°
-0.531995436°  -0.503056068° -0.476090624° -0.4060876°
2p5f  -0.520385 -0.492023 -0.480775 -0.466543 -0.454773  -0.436545
-0.5203855 -0.491928°% -0.4805995%  -0.4662415% -0.454351°%
2p6 f -0.514113 -0.486401 -0.475736 -0.462494 -0.451781
-0.514113% -0.4863145% -0.4755835%  -0.4622235%
2p7f  -0.510345 -0.483339 -0.473276 -0.461042
2p8 f -0.507907 -0.481645 -0.472187
2p9f  -0.506239 -0.480745
2p10f  -0.505045 -0.480330

2pl1f  -0.504144
opl2f  -0.503411
op13f  -0.502832
2pldf  -0.502296
opl5f  -0.501230

@ [239], ¥ [240]
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Table 4.3.22: Expectation values of repulsive potential (V.), attractive potential (V,), ratio of

(Va)
(V)
different one and two-particle moments of metastable bound 2pnf 'F¢ [n = 4 — 15] states of He

attractive to repulsive potential n =

, inter-electronic angles (f12) (in degree) using (4.3.6),

atom below He™ (2p) threshold for different screening length Ap of classical weakly coupled plasma.
The notation P[+Q] stands for P x 10¥%. All values are given in atomic units.

States  Ap (V) (Va) n {r1) (rf) (ri2) (rf2) (012)
pAf oo 6.392] -112[40] 17.64 9.96[+0] 1.72[+2] L76[+1] 3.46(+2 93.46
100 5.39[2] -10S[+0] 2015  1.00[+1] 1.77(+2] L78[+1] 3.57[+2] 93.36
70 4.9702] -1.07(+0] 2152  1.02[+1] 1.83[+2] 1.81[+1] 3.67[+2 93.25
50 441[-2] -1.04[+0] 2373  1.04[+1] 1.93[+2] 186[+1] 3.87[+2] 93.07
40 3.9302] -1.02+0] 2614  1.07[+1] 206[+2] 1.91[+1] 4.13[+2 92.87
30 3.3[-2) -9.96[1] 3176  1.14[+1] 239[+2] 2.05[+1] 4.79[+2] 92.45
95 2.49[2] -9.691] 3893 1.23[+1] 2.86[+2] 2.24[+1] 5.73[+2 92.05
20  1.41[2] -9.28}-1] 6543  1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] 91.23
op5f oo 407-2] -LOS[40] 2655 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] 9173
100 3.08-2) -1.04[+0] 33.76 L71[+1] 5.79[+2] 3.19[+1] 1.15[+3] 91.61
70 267L2] -1.02[+0] 38.33 1.77[+1] 6.18[+2] 3.30[+1] 1.23[+3] 91.49
50 2.13[-2] -1.00[+0] 46.90 1.88[+1] 7.03[+2] 3.52[+1] 1.40[+3] 91.29
10 1.67-2] -9.83F1] 5859 2.02[+1] 8.27[+2] 3.81[+1 1.65[+3] 9108
30 89913 -951[1] 10571 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] 90.63
W6f oo 282[-2] -1.05[40] 3746 248[+1] 1.26(+43] 4.72[+1] 2.52[+3] 90.99
100 1.84[-2] -1.01[+0] 5514  2.64[+1] 1.43[+3] 5.04[+1] 2.87[+3] 90.85
70 1.44[2] -1.00[+0] 69.04 2.81[+1] 1.64[+3] 5.39[+1] 3.28(+3] 90.73
50 9.43[3] -9.78[1] 10378 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] 90.52
40 5023 -9.60F1] 19111 4.06[+1] 3.52[+3] 7.88[+1] 7.05[+3] 90.29
WTf oo 206-2] -1.0440] 5037  3.44[+1] 250(+3] 6.65+1] 5.00[+3] 90.61
100 1.10[-2] -1.00[+0] 90.38  3.86[+1] 3.14[+3] 7.48[+1] 6.28]+3] 90.46
70 7.3503] -9.86[-1] 13416 4.37[+1] 4.04[+3] 8.50[+1] 8.08[+3] 90.34
50 2.53[-3] -9.65-1 380.59 6.40[+1] 8.91[+3] 1.25[+2] 1.78[+4] 90.13
28f oo 157-2] -1.03[40] 6529 4.56[+1] 4.44[+3] 8.89[+1] 8.90[+3] 90.41
100 6.44[-3] -9.92[-1] 154.09 5.52[+1 6.51[+3] 1.08[+2] 1.30[+4] 90.25
70 2.95[3] -9.77[1] 33077 T.04[+1] 1.09[+4] 1.40[+2] 2.18[+4] 90.13
29f oo  1.24[2] -1.02(+0] 8217 5.83[+1 7.33(+3] 1.14[+2] 146[+4] 90.29
100 3.391-3] -9.86[-1] 291.01 8.00[+1] 137(+4] 157[+2] 2.74[+4] 90.12
210f oo  9.99[-3] -1.02(+0] 10202 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] 90.20
100 1.34}-3] -9.82[-1] 73232 1.25[+2] 3.38[44] 2.48[+2] 6.76[+4] 90.04
WIlf oo 7993 -LO1[+0] 127.14 9.14[+1] 1.81[+4] 1.80[+2] 3.63[+4] 90.12
12f oo  6.15[-3] -1.01[+0] 164.66 1.17[+2] 3.00[+4] 2.33[+2] 6.00(+4] 90.07
13f oo  6.74[-3] -1.01[+0] 150.00 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] 90.13
WI4f oo 5.070-3] -LO0[+0] 198.97 1.83[+2] 7.49[+4] 3.64[+2] 1.49[+5] 90.08
215f oo 6.76[-3] -1.00[+0] 147.92 2.15[+2] 1.13[+5] 4.27[+2] 2.26[+5] 90.17

@ [239]
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In the last phase, we focus on the resonance energy and width of 13F¢ states under WCP.
Tables (4.3.23) and (4.3.24) show the resonance energies (E,) and widths (I') respectively
for the resonance 3F¢ states below the He™(3p) threshold with respect to different values
of Ap and the present results are compared with only available values from literature [239].

Similar to the MBSs the number of resonance 3F¢ states decrease with respect to the
decrease of Ap. In tables (4.3.23) and (4.3.24), the resonance *F¢ states are associated with
the dominant electronic configurations 3dnd [n > 3|, 3pnf [n > 4] and 3dng [n > 5] as
described below:

i. 3dnd [3 < n < 10] configurations signify 3F¢(1), 3F¢(2), 3F¢(4), 3F¢(7), 3F¢(10),

3F¢(13), 3F¢(16) and 3F¢(19) states.

ii. 3pnf [4 < n < 10] configurations signify 3F¢(3), 3F¢(5), 3F¢(8), 3F¢(11), 3F°(14),
3F¢(17) and 3F¢(20) states.

iii. 3dng [5 < n < 9] configurations signify 3F¢(6),2 F¢(9),3 F¢(12),> F¢(15) and 3F¢(18)

states.

It can be observed from table (4.3.24) that the width (I') decreases with the decrease of Ap
for most of the states except the 3dng [5 < n < 9] states. In this context we have explored
the changes of the structural properties of resonance 3F¢ states of He atom below He™ (3p)
threshold, similar to the metastable bound 3F¢ states with respect to Ap, which is presented
in table (4.3.25). Resonance 3F° states show similar features for the variation of (V,), (V;.),
n, (r1), (r?), (r12) and (r?,) with the changes in Ap as noted in case of metastable bound
3F® states. Table (4.3.25) also shows that, inter-electronic angle (f12) values decrease with
the decrease of A\p for both 3dnd and 3pnf states whereas it increase as Ap decreases for
3dng states. Therefore, it can be concluded that there is a direct relationship between
changes in the inter-electronic angle (f12) and width I', with respect to Ap. Moreover, the
data presented in tables (4.3.24) and (4.3.25) suggest that, the small acute inter-electronic
angles correspond to very feeble resonance widths (higher autoionizing lifetime), as observed
for 3dng states. As a result, 3dng states are extremely stable against autoionization in the
free case and become more prone to autoionization when Ap decreases.

Table 4.3.25: Expectation values of repulsive potential (V.), attractive potential (V,), ratio of

(Va)
(V)

different one and two-particle moments (r1), (rf), (ri2) and (rf,) of resonance 3F° states of He

attractive to repulsive potential n =

’, inter-electronic angles (f12) (in degree) using (4.3.6),

atom below He™ (3p) threshold under classical weakly coupled plasma. All values are given in atomic
units. The notation P[£Q)] stands for P x 10¥9.

States  Ap (V1) (Va) U (r1) (ri) (r12) (ri2) (012)

SFe(1) oo LIL-1] -7TA9-1] 6.75  6.70(+0] 5.70[+1] 1.04[+1] 1.28(+2 126.85
100 1.01[1] -7.10[1] 7.01  6.63[+0] 5.46[+1] 1.03[+1] 1.24[+2] 127.06
70 9.74[2] -6.93[1] 7.2  6.62[+0] 5.42[+1] 1.03[+1] 1.23[+2] 126.86
50  9.23[2] -671[1] 7.26  6.61[+0] 5.39[+1] 1.02[+1] 1.22[+2] 126.69
40 884[2] -6.49-1] 7.35  6.50[+0] 5.27[+1] 1.02[+1] 1.20[+2 127.12
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Continuation of Table (4.3.25)

States  Ap  (V}) (Va) U (ry) (i) (r12) (r12) (012)
30 81302 6.18[1] 7.60  6.62[+0] 5.38(+1 1.02[+1] 1.22(+2] 126.68
95  7.60[2] -5.93[1] 7.79  6.64[+0] 5.42[+1] 1.03[+1] 1.23[+2] 126.64
20  6.86[-2] -555[1] 8.00  6.71[+0] 5.51[+1] 1.04[+1] 1.25[+2] 126.77
15  5.600-2] -4.94[1] 868  6.88[+0] 5.83[+1] 1.07[+1] 1.32[+2] 126.50
12 4.63[2 -4.3201] 9.33  T.A4[40] 6.34[+1 1.I1[+1] 1.44[+2] 126.52
SFC(2) oo 6.67-2] -5.96[-1 893  1.07[+1] 1.50[+2] 1.82[+1] 3.74[+2] 152.41
100 5.7002] -5.57-1] 976  1.08[+1] 1.62[+2] 1.83[+1] 3.80[+2] 152.03
70 5.3002] -5.40[1] 1017  1.09[+1] 1.66[+2] 1.85[+1] 3.87[+2] 151.71
50 4.79L2] -5.17F1] 1080  1.10[+1] 1.71[+2] 1.88[+1] 3.99[+2] 151.04
40 4.35[2) 4981 1143  1.12[+1] 1.79[+2] 1.91[+1] 4.15[+2] 150.50
30 3.65[-2) -4.66[1 1277 1.16[+1] 1.95[+2] 1.99[+1] 4.47[+2] 149.18
925 3.11[-2] -4.41[1 1418  1.20[+1] 2.13[+2] 2.07[+1] 4.85[+2] 148.05
20 2.33[-2] -4.03[1 17.30  1.30[+1] 256[+2] 2.25[+1] 5.75[+2] 146.73
BFe(3) oo 6.50[-2] -5.83[1] 896  1.10[+1] 1.70[+2] 1.73[+1] 3.34[+2] 87.32
100 5.530-2] -5.43[1] 981  111[+1] 1.73[+2] 1.74[+1] 3.39[+2] 86.99
70 5.13[2] -5.26[1] 1024  1.2[+1] 1.76[+2] 1.76[+1] 3.45[+2] 86.83
50  4.63L2] -5.04F1] 1080  1.13[+1] 1.82[+2] L79[+1] 3.56[+2] 86.22
40 4.10[2] -4.84[1] 1156  L15[+1] 1.89[+2] 1.82[+1] 3.71[+2] 85.84
30 3.48[2) -453[1] 12.99  1.20[+1] 2.08[+2] 1.90[+1] 4.05[+2] 84.46
95 2.93[-2] -4.27[1] 14.57 1.25[+1] 2.31[+2] 1.99[+1] 4.50[+2] 82.68
20  2.08[-2] -3.80[1] 18.60 1.30[+1] 3.01[+2] 2.25[+1] 5.81[+2] 77.07
SFC(4) oo 4.321-2] -5.38[-1] 1246  1.65[+1] 4.41[+2] 2.95[+1] 9.81[+2] 158.78
100 3.37-2) -4.99[1] 1479  167[+1] 458[+2 3.00[+1] 1.01[+3] 155.89
70 2.970-2) -4.82[-1] 1624  1.72[+1] 4.86[+2] 3.00[+1] L.07[+3] 156.97
50 247(-2 -4.60[-1 18.61  L78[+1] 5.29(+2] 3.21[+1] 1.16[+3] 155.25
40 205[-2] -4.41[-1 2145 1.86[+1] 5.85+2 3.37[+1 1.27[+3] 153.64
30 1.38[-2) -4.10[-1] 2054  209[+1] 7.57[+2] 3.80[+1] 1.62(+3] 151.75
BFC(5) oo 4.12[-2] -5.30[1] 12.88  1.74[+1] 5.05[+2] 297[+1] 9.95[+2] 82.44
100 3.19[-2] -4.92[-1] 1540 1.77[+1] 5.230+2] 3.01[+1] 1.02[+3] 78.25
70 2.76[-2) -A74[1] 1717 1.83[+1] 5.61[+2] 3.13[+1] 1.10[+3] 79.77
50 2.26[-2] -4.52[1 2001  191[+1] 6.20(+2] 3.28[+1] 1.21[+3] 76.79
40 1.83[-2] 4331 2358  2.02(+1] 7.01[+2] 3.48[+1] 1.36[+3] 72.94
30 1.14[2] -4.02L1] 3500 2.34[+1] 9.83[+2] 4.09[+1] 1.90[+3] 62.83
SFC(6) oo  4.04-2] -5.23[-1] 1293  1.68[+1] 4.55[+2] 2.75[+1] 8.35[+2 40.86
100 3.04[-2] -4.83[-1 1589  1.73[+1] 4.85[+2] 2.85[+1] 8.96[+2] 42.11
70 250[2] -4.65[1] 17.98 179[+1] 5.31[+2] 298[+1] 9.85[+2] 43.44
50 2.00[-2) -443[-1] 2213 1.92[+1] 6.26[+2] 3.24[+1] 1.17[+3] 45.81
40 1.40[-2] -4.21F1 3012  225[+1] 9.20[+2] 3.89[+1] 1.75[+3] 53.29
BFC(T) oo 2.98[-2] -5.08[-1 17.01  2.30[+1] 1.02[+3] 4.42[+1] 2.20[+3] 161.74
100 2.04[-2] -4.69[-1] 22.95 2.49[+1] 1.12[+3] 4.62[+1] 2.40[+3] 159.20
70 1.66[2] -4.52[1] 2717  261[+1] 1.23[+3] 4.86[+1] 2.64[+3] 159.15
50  1.20[-2] -4.31[1 3591 2.84[+1] 1.49[+3] 5.31[+1] 3.16[+3] 157.30
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Continuation of Table (4.3.25)

States  Ap  (V}) (Va) U (ry) (i) (r12) (r12) (012)
40 S87[3] 413[1] 4662 3.08[+1] 181[+3] 5.78[+1] 3.81[+3] 150.06
SFC(8) oo 2.85[-2] -5.03[-1] 17.67  2.53[+1] 1.17[+3] 4.53[+1] 2.31[+3] 80.32
100 1.90[-2] -4.64[1] 2432 265[+1] 1.29[+3] 4.75[+1] 2.54[+3] 75.03
70 151[2) -447[1] 2051  281[+1] 1.46[+3] 5.05[+1] 2.87[+3] 73.93
50 1.14[2] -4.20[1] 37.65 3.01[+1 1.72[+3] 5.52[+1] 3.44[+3] 89.70
40 6.73[-3] -4.08-1 60.73  3.57[+1] 2.44[+3] 6.53[+1] 4.78[+3] 58.94
3FC(9) oo 2.80[-2] -4.99[1 17.76  2.52[+1] 1.16[+3] 4.40[+1] 2.20[+3] 34.77
100 1.79[2] -4.59[1] 2559  271[+1] 1.36[+3] 4.78[+1] 2.58[+3] 38.17
70 1.37[2) -442[1] 3217  2.92[+1] 1.60[+3] 5.20[+1] 3.06[+3] 40.89
50  6.80[-3] -4.18[1] 6146  3.96[+1] 3.12(+3] 7.32[+1] 6.15[+3] 69.33
BF(10) oo 2.17[-2] -4.90[1] 2252  3.29[+1] 2.05[+3] 6.21[+1] 4.33[+3] 163.34
100 1.25[-2] -4.51[-1] 3586  3.55(+1] 241[+3] 6.73[+1] 5.06[+3] 159.16
70 8.99[-3] -4.35[1] 4840 3.80[+1] 2.93[+3] T.A41[+1] 6.12[+3] 159.57
50  A4T1[F3] -4.14[1] 88.03  4.91[+1] 4.87[+3] 9.33[+1] 9.76[+3] 96.51
SFC(11) oo 2.00[-2] -4.87[-1] 23.27  3.47[+1] 2.32[+3] 6.39[+1] 4.60[+3] 76.04
100 1.14[-2] -4.48]-1] 38.99 3.82[+1] 2.84[+3] 7.08[+1] 5.61[+3] 73.67
70 7.94[3] 4321 5441  4.24[+1] 3.52(+3] T.88[+1] 6.94[+3] 65.72
BFC(12) oo 2.08[-2] -4.84[-1] 23.20 3.48[+1] 2.36[+3] 6.30[+1] 4.52[+3] 30.16
100 1.11[-2] -4.45[1] 30.99  3.96[+1] 3.12[+3] 7.28[+1] 6.04[+3] 37.76
70 6.24[3] -4.28]1] 68.58 4.97[+1] 5.04[+3] 9.30[+1] 9.84[+3] 45.72
SFC(13) oo 1.64[-2] -4.781-1] 20.07 4.36[+1] 3.76]+3] 8.36[+1] 7.82[+3] 162.69
100 7.54[-3] -4.40[1] 5837  5.00[+1] 4.97[+3] 9.62[+1] 1.02[+4] 160.82
70 450[-3] -4.25[1] 9444  581[+1] 6.81[+3] L12(+2] 1.40[+4] 158.04
SF(14) oo 1.59[-2] -4.77[-1] 20.87  4.57[+1] 4.16[+3] 8.56[+1] 8.24[+3] 73.07
100 7.80[-3] -441[1] 56.58  5.18[+1] 5.46[+3] 9.87[+1] 1.09[+4] 93.25
70 3.70L3] -4.23L1] 114.22 6.48[+1] 8.56[+3] 1.23[+2] 1.69[+4] 57.61
3F°(15) oo 1.54[-2] -4.75[1] 30.60  4.77[+1] 4.60[+3] 8.87[+1] 8.93[+3] 30.34
100 4.92[-3) -4.35[-1] 88.43  6.93[+1] 9.94[+3] 1.33[+2] 1.98[+4] 88.76
3F°(16) oo  1.36[-2] -4.72[1] 34.67 547[+1] 6.13[+3] 1.05[+2] 1.25[+4] 143.56
BF(17) oo 1.32[-2] -4.72[1] 35.67 5.67[+1] 6.63[+3] 1.08[+2] 1.32[+4] 87.60
3F°(18) oo 1.06[-2] -4.66[-1] 43.76  6.99[+1] 1.01[+4] 1.34[+2] 2.03[+4] 89.12
3FC(19) oo  1.46[-2] -4.78[-1 3276  6.41[+1] 9.26[+3] 1.23[+2] 1.85[+4] 90.23
3F°(20) oo 1.72[-2] -4.82[1] 28.01 5.17[+1] 6.17[+3] 9.84[+1] 1.23[+4] 91.24

The resonance parameters (E, and T') of 'F® states below He™ (3p) threshold for different Ap
are given in the tables (4.3.26) and (4.3.27) respectively. These tables reveal similar features
as discussed in case of 3F¢ states. Structural properties like (V;.), (V4), (f12) and different
moments— (r1), (r?), (ri2) and (r},) of resonance 'F® states below He™(3p) threshold are
also estimated for different A\p, as shown in table (4.3.28).
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Continuation of table (4.3.23)

AD
States oo 100 70 50 40 30 25 20 15 12
SFe(11) -0.23314  -0.20636  -0.19650
-0.233155%  -0.206175¢ -0.19618¢
3Fe(12) -0.23207  -0.20526  -0.19559
-0.2321¢  -0.2052¢  -0.19525¢
SFe(13) -0.23108  -0.20483  -0.19543
3Fe(14) -0.23071  -0.20443  -0.19518
SFe(15) -0.22975  -0.20340
3Fe(16) -0.22906
SFe(17)  -0.22882
SFe(18) -0.22743
3Fe(19) -0.22624
3F¢(20) -0.22401

a [239]
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Continuation of table (4.3.24)

States 0 100 70
SFe(11) 5.37[-5] 2.71[-5] 1.07[-5]
3Fe(12) 2.45[-7] 2.91[-6] 1.16[-5]
SFe(13) 1.84[-4] 1.11[-4] 4.36[-5]
3Fe(14) 1.61[-4) 3.05[-5] 1.16[-5]
3Fe(15) 4.06[-6] 9.0 [-5]
3Fe(16) 6.53[-5)

SFe(17) 1.06[-4]
3Fe(18) 7.46[-5]
SFe(19) 1.60[-4]
3F©(20) 1.83[-4)

a [239]
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Continuation of table (4.3.26)

a [239]

AD

States 0o 100 70 50 40 30 25 20 15 12
Fe(11) -0.23201 -0.20508 -0.19563

-0.2321¢  -0.2052%  -0.1948¢
1Fe(12) -0.23106 -0.20456

-0.2314%  -0.2045%
1Fe(13) -0.23078 -0.20350

-0.2035%

1Fe(14) -0.22925
lpe(15) -0.22778
1Fe(16) -0.22670
1Fe(17) -0.22518
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Continuation of table (4.3.27)

AD
States 00 100 70 50 40
1Fe(11) 1.09[-10] 2.99[-7] 9.69[-6]
1Fe(12) 5.84[-5] 4.83[-7]
1Fe(13) 3.96[-4] 2.66[-5]
1Fe(14) 3.59[-5]
1Fe(15) 1.57[-5]
1re(16) 1.37[-5]
IFe(17) 9.44[-5]

a [239]
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Table 4.3.28: Expectation values of repulsive potential (V.), attractive potential (V,), ratio of

(Va)
(Vi)
different one and two-particle moments (r1), (rf), (r12) and (r?,) of resonance 'F¢ states of He

attractive to repulsive potential n =

’, inter-electronic angles (f12) (in degree) using (4.3.6),

atom below He™ (3p) threshold under classical weakly coupled plasma. All values are given in atomic
units. The notation P[+Q)] stands for P x 10%<.

States — Ap  (V7) (Va) U (r1) (r1) (r12) (rf2) (012)
TF°(1) oo 6.5512] -6.02[1] 918  1.01[+1] 1.37[+2] L68[+1] 3.07(+2] 135.10
100 5.60[-2] -5.63}-1] 1004 101[+1] 1.38[+2 1.68[+1] 3.10[+2] 134.91
70 5.2202] -5.46[-1 1045 1.01[+1] 1.40[+2] 1.69[+1] 3.14[+2] 134.74
50  4.74[2) -5.24[1 11.05 1.02[+1] 1.43[+2] 1.71[+1] 3.20[+2] 134.47
40 4.34[2] -5.05[1] 11.64 1.03[+1] 1.46[+2] 1.73[+1] 3.27(+2 134.21
30 3.71F2] -475[1] 1278  1.06[+1] 154[+2] L77[+1] 3.43[+2] 133.78
25  3.24[-2] -4.50[-1 13.88 L.08[+1] 1.62[+2] 1.81[+1] 3.61[+2] 133.49
20  2.50[-2] -4.15[1] 16.03 1.13[+1] 1.81[+2] 1.90[+1] 3.99[+2] 133.32
IFE(2) oo TOL[2] -5.92F1 844  L.00[+1] 1.32(+2] 1.58[+1] 2.76[+2] 108.87
100 6.04[2 -5.52[1] 914  LOL[+1] 1.34[+2] 1.50[+1] 2.81[+2] 108.47
70 56402 -5.36[-1] 949  1.02[+1 1.37[+2] 1.60[+1] 2.85[+2] 107.96
50  5.1202] -5.13[1] 10.02  1.03[+1] 1.42[+2] 1.63[+1] 2.94[+2] 107.26
40 4.68-2] -4.94[1 1055 1.05[+1] 147(+2] 1.65[+1] 3.04[+2] 106.16
30  3.96[2] -4.62L1] 11.67 1.09[+1] 1.62[+2] L72[+1] 3.32(+2] 104.11
25 3.38[-2] -4.37[1] 12.80  1.14[+1] 1.80[+2] 1.80[+1] 3.67[+2] 101.59
20  2.49[-2] -3.97[1] 1597 1.26[+1] 237(+2] 2.03[+1] 4.77[+2] 95.63
IF9(3) oo 4.19[2] -5.39[1] 12.86  158[+1] 4.03[+2 281[+1] 8.75[+2] 140.41
100 3.25[-2) -5.00-1] 15.37 L61[+1] 4.18[+2] 2.86[+1] 9.05[+2] 139.72
70 2.88[-2) -4.83-1] 1676  1.63[+1] 4.33[+2] 2.90[+1] 9.36[+2] 139.14
50 242[-2) -4.62[1 19.05  1.68[+1] 4.62[+2] 2.99[+1] 9.95[+2] 138.28
40 205[-2] -4.44[1 21.66 1.74[+1] 4.99[+2] 3.10[+1] 1.06[+3] 137.66
30 1.47[2] -4.14[1] 2817 1.88[+1] 5.95[+2 3.38[+1] 1.26[+3] 137.76
95  1.03L2] -3.90L1] 37.80 2.07[+1] 747[+2] 3.76[+1] 1.58[+3] 140.57
IFe(4) oo 43202 -5.34[1] 1236 1.62(+1] 4.22[+2 277[+1] 8.60[+2] 10351
100 3.36[-2) -4.95[-1 1472  1.66[+1] 4.44[+2] 2.83[+1] 9.01[+2] 102.08
70 2.9702] -478[1] 16.09 1.69[+1] 4.66[+2] 2.90[+1] 9.41[+2] 100.27
50 2.47[2) -4.56[-1] 1847  1.76[+1] 5.11[+2] 3.02[+1] 1.02[+3] 96.76
40 2042 -4.37}1 2144  1.86[+1] 5.78[+2] 3.20[+1] 1.15[+3] 92.85
30 1.36[-2) -4.07[1] 20.82  2.10[+1] 7.59[+2] 3.64[+1] 1.49[+3] 79.96
IF(5) oo 4.04[2] -5.23[1] 12.93  1.68[+1] 4.56[+2] 2.75[+1] 8.35[+2] 39.67
100 3.03-2] -4.83}-1] 15.93 1.74[+1] 4.91[+2] 2.86[+1] 9.04[+2] 40.59
70 257M2] -4.65F1] 18.07  1.80[+1] 5.38(+2 3.00[+1] 9.97[+2] 41.81
50 1.08[-2] -4.42[1 2228 1.94[+1] 6.40[+2] 3.27[+1] 1.19[+3] 44.57
40 8.91[-3] -4.15[1] 46.58  2.88[+1] 1.53[+3] 5.34[+1] 3.18[+3] 133.47
IFe(6) oo 2.90[2] -5.08[1 17.52  2.32[+1] 9.53[+2] 4.26[+1] 2.01[+3] 143.51
100 1.97[-2) -4.60[-1] 23.73  2.40[+1] 1.03[+3] 4.43[+1] 2.18[+3] 141.86
70 1.62[2) -453[-1] 27.86  249[+1] 1.11[+3] 4.60[+1] 2.35[+3] 140.92
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Continuation of Table (4.3.28)

States  Ap  (V7) (Va) n (r1) (r1) (r12) (rf2) (012)
50  1.21[-2] -4.32[-1] 35.59  2.65[+1] 1.28[+3] 4.92[+1] 2.69[+3] 138.82
40 141[-2] -4.22[-1] 29.74  2.21[+1] 8.79[+2] 3.82[+1] 1.67[+3] 51.32
Fe(7) oo 295[-2] -5.05[-1] 17.12  2.39[+1] 1.02[+3] 4.29[+1] 2.07[+3] 100.93
100 1.98[-2] -4.66[-1] 23.46  2.53[+1] 1.16[+3] 4.54[+1] 2.33[+3] 95.65
70 1.62[-2] -4.50[-1] 27.71  2.63[+1] 1.26[+3] 4.74[+1] 2.53[+3] 95.86
50  1.15[-2] -4.28]-1] 37.22  2.90[+1] 1.55[+3] 5.25[+1] 3.10[+3] 88.78
40 7.69[-3] -4.10[-1] 53.33  3.32[+1] 2.11[+3] 6.08[+1] 4.20(+3] 81.39
F°(8) oo 2.80[-2] -4.99-1] 17.77  2.52[+1] 1.16[+3] 4.40[+1] 2.19[+3] 32.73
100 1.80[-2] -4.59[-1] 25.48  2.71[+1] 1.37[+3] 4.78[+1] 2.59[+3] 35.04
70 1.38[-2] -4.42[-1] 32.02  291[+1] 1.59[+3] 5.18[+1] 3.04[+3] 37.80
50  5.38[-3] -4.16[-1] 77.29  4.25[+1] 3.54[+3] 8.05[+1] 7.23[+3] 123.43
'F€9) oo 2.12[-2] -4.90[-1] 23.09  3.20(+1] 1.93[+3] 6.01[+1] 4.03[+3] 145.03
100 1.21[-2] -4.51]-1] 37.05  3.44[+1] 2.25[+3] 6.49[+1] 4.67[+3] 142.75
70 8.96[-3] -4.36[-1] 48.62  3.69[+1] 2.61[+3] 6.88[+1] 5.41[+3] 140.87
50  7.31[-3] -4.19]-1] 57.28  3.74[+1] 2.77[+3] 6.98[+1] 5.42[+3] 56.30
'F°(10) oo  2.15[-2] -4.88[-1] 22.70  3.32[+1] 2.09[+3] 6.11[+1] 4.20[+3] 98.36
100 1.21[-2) -4.49[-1] 36.97  3.63[+1] 2.53[+3] 6.72[+1] 5.07[+3] 93.32
70 8.61[-3] -4.33[-1] 50.36  3.99[+1] 3.08[+3] 7.42[+1] 6.16[+3] 87.63
50  4.51[-3] -4.13]-1] 91.55  4.95[+1] 4.95+3] 9.33[+1] 9.89[+3] 82.99
Fe(11) oo 2.12[-2] -4.85[-1] 22.80  3.50[+1] 2.40[+3] 6.33[+1] 4.61[+3] 30.81
100 7.51[-3] -4.40[-1] 58.68  4.79[+1] 4.55[+3] 9.17[+1] 9.34[+3] 138.97
70 5.00[-3] -4.26[-1] 85.22  5.31[+1] 5.65[+3] 1.01[+2] 1.14[+4] 116.89
F°(12) oo  1.63[-2] -4.77[-1] 29.20  4.39[+1] 3.81[+3] 8.24[+1] 7.64[+3] 94.78
100 7.21[-3] -4.39[-1] 60.89  5.20[+1] 5.40[+3] 9.79[+1] 1.07[+4] 76.15
Fe(13) oo 1.62[-2] -4.77[-1] 29.47  4.42[+1] 3.87[+3] 8.31[+1] 7.76[+3] 96.62
100 3.96[-3] -4.32[-1] 109.24 7.34[+1] 1.10[+4] 1.39[+2] 2.17[+4] 38.90
Fe(14) oo 1.32[-2] -4.72[-1] 35.70  5.39[+1] 5.94[+3] 1.02[+2] 1.19[+4] 95.96
'F°(15) oo  1.06[-2] -4.66[-1] 44.05  6.76]+1] 9.49[+3] 1.30[+2] 1.90[+4] 91.57
'F°(16) oo 9.74[-3] -4.65[-1] 47.74  7.58[+1] 1.21[+4] 1.46[+2] 2.43[+4] 91.49
'Fe(17) oo 1.59[-2] -4.79[-1] 30.11  5.82[+1] 7.98[+3] 1.11[+2] 1.59[+4] 90.31
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Concluding remarks and future scope

Research on few—body atomic systems under plasma environment is covered in detail in this
dissertation. The findings of the present work expose several interesting structural proper-
ties of few—body systems under various plasma conditions and open up new directions for
future research. Three types of plasma environments have been considered: (i) Classical
weakly coupled plasma (WCP), (ii) classical dusty plasma (DP) and (iii) quantum plasma
(QP). In each case variational equation has been formed and energy eigenvalues of the
atomic systems considered are estimated by solving the generalized eigenvalue equation.
All calculations are carried out in quadruple precision to ensure the accuracy of the ob-
tained data. In what follows we draw conclusion on the results of present study along with

the some of the possible future applications of the findings in the concerned field of research.

At the beginning, model potentials ‘felt’ by a hydrogenic ion while moving through classical
WCP, classical DP and QP are developed considering the plasma as a dielectric medium.
The model potentials are valid as long as the atom is moving at such a velocity (v) that the
thermal Mach number lies below unity. The physical parameters of plasma, like particle
number density, temperature etc. are incorporated in the screening terms of model poten-
tial experienced by atoms when placed inside the plasma medium. For the cases of classical
WCP and QP, the potentials consist of two parts: (a) exponentially screened Coulomb po-
tential (ESCP) and (b) near field wake potential (NFWP) which depends on ion velocity
(v). For classical DP, in addition to ESCP and NFWP, an additional term dependent on
velocity and dust grain size arises, which is known as “dust potential”. Ritz variational
principle is used to examine the impact of such model potentials on the energy eigenvalues
of 1sg, 250, 2pp and 2p41 states of moving hydrogen atom using distorted trial wavefunctions
and solving the generalized eigenvalue equation. It is observed that, under plasma envi-
ronment, the energy eigenvalues of H-atom or H-like ions increase with respect to free (no
plasma) and static (v = 0) case and they increase further if velocity of the atom increases.
l—degeneracy is removed in presence of plasma and the velocity of hydrogen atom causes
the removal of |m|—degeneracy giving rise to ‘Stark-like’ splitting of the energy levels. The
variation of transition energies of m and o components of Lyman—« transitions of plasma
embedded hydrogen atom are also estimated for different velocities of the ion. In all the
cases the m—lines exhibit blue-shift as velocity of the atom increases whereas the o—lines ex-
hibit blue-shift only in classical weakly coupled plasma and show red-shift in both classical
dusty plasma and quantum plasma environments. The present methodology is extended to
study the influence of quantum plasma potential on the modification of energy eigenvalues
of different states of moving C°* ion for different densities of the electron-hole quantum
plasma environment. At the instance of an ion moving in a quantum plasma environment,

the level crossing phenomena and incidental degeneracy are detected with respect to the
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ion velocity. Future researchers are expected to explore the structural properties of vari-
ous ions in a quantum plasma environment using the current form of the potential. The
present methodology can be extended to study the variation of transition rate of H-like
systems with respect to ion velocity, which will carry immense application in case of fast
ion diagnostics in research works related to different thermonuclear fusion reactors. Such
studies are being conducted with a great deal of effort as part of the ITER project and
its auxiliary initiatives, such as the JET tokamak and ASDEX upgrade. Research on the
modulation of spectral line features (intensity, profile, broadening, etc.) can help with the
measurement of various plasma parameters, such as energies of plasma ions (using Lyman

lines), fluctuations in the electron density (using Balmer lines) etc.

In the subsequent work, the ground state (1s2;!S¢) energies of three-body systems are
estimated using a flexible multi-exponent Hylleraas type basis—set under Ritz variation
method for various screening parameters of the potential (ESCP) under classical WCP en-
vironment. Motion of all the three particles is incorporated in the variational equation.
Different three—body systems are considered which include exotic systems of XXY, XYY
X = pt, dF, and t7, Y = p~, 7~ and K] and Ps™(eTe e™) ions and molecular-like
Hy (p*pte™), DF (dTdte™) and T3 (ttt*e™) ions. Some of the energy values are compared
with the available results from literature and it is found that the present results can be
treated as benchmark for future references. We have also estimated the energy eigenval-
ues of the ground state (1s) of the two—body subsystems of respective three-body ions in
ESCP. For both three—body and its two—body subsystems, the ground state energies gradu-
ally become positive and move towards the destabilization limit (zero energy) as the plasma
screening is increased. It is found that the positively charged three-body systems show the
feature of ‘borromean bindings’ which means the three-body systems exists whereas their
two—body subsystems destabilize for a range of values of plasma screening strength. This
range of plasma screening strength is called ‘borromean window’ which increases as the
mass of the positively charged particle increases. We have also estimated the resonance pa-
rameters (energy and width) of free p*YY and pTp*Y [Y = u~, 7, K] ions below n = 2
ionization threshold of the respective two—body subsystems using stabilization method. The
current findings are consistent with those found in literature. For the first time ever in the
literature, the resonance parameters for p* K=K~ and pTpT K~ ions are provided. It is
seen that the present method is capable to produce reasonably accurate bound state ener-
gies and resonance parameters with a smaller number of terms in the basis set expansion as
compared to other existing methods. The present method can be extended in assessing the
effect of surrounding environment of exotic systems and other external confinements. It can
be used to investigate bound state properties of asymmetric three-body exotic systems like
ptdtu~, ptdtn~, d"tTp~ etc. Borromean bindings of such systems can also be estimated.

For experimental cases, if any such experimental setup is designed, then present work may
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provide the initial guiding data.

The last phase of this thesis deals with different structural properties of high-lying dou-
bly excited '3 F*¢ states of free and plasma embedded two—electron systems. These doubly
excited states (DES) are classified in two categories viz. metastable bound and resonance
states. For metastable bound '3F¢ states, Ritz variational method is employed and for
resonance states, the stabilization method is adopted. The 3F¢ states primarily originate
from pf configuration. Therefore in the first place we have considered the trial wavefunc-
tion consisting only of the most dominant pf configuration, which is expanded in explicitly
correlated multi-exponent Hylleraas type basis set. We have calculated the energy eigen-
values of metastable bound 3F¢ states of free two-electron systems having atomic number
Z =2 —18. Only a few of the results could be compared with those available in literature.
From the comparison, it is seen that, although the estimated energy values shows reason-
ably good agreement with the available results but the convergence is quite slow. The next
dominant contribution to 3F¢ states come from dd configuration and the explicit inclusion
of the dd term in the wavefunction along with the pf term improves the convergence of
energy eigenvalues of metastable bound states. Consequently we have produced benchmark
results for metastable bound '3F¢ states of He atom which will be useful for future refer-
ences. In case of resonance states, we have adopted the ‘soft-wall’ strategy of stabilization
method to predict the resonance energy and width of nearly 100 resonance states of 3F¢
state of free He atom upto n = 7 ionization threshold. It is seen that, the influence of the
explicit inclusion of pf and dd configurations together in the wavefunction in defining the
resonance state characteristics is quite pronounced. Various structural properties like one—
and two—particle moments, virial factors, inter—electronic angles etc. are estimated for both
metastable-bound as well as resonance "3F¢ states. The present method could be applied
to other resonance states with different symmetries where explicit configuration mixing is
required. We next consider metastable bound 3F¢ states of He, LiT and Be?* ions em-
bedded in classical WCP represented by ESCP. Instead of using Taylor series expansion of
screened electron-electron repulsion term, we have developed a closed analytic form of the
electron—electron screening term in the Hamiltonian for '3F¢ states. The trial wavefunc-
tion in this case also is initially constructed in basis set expansion technique keeping the pf
term explicit. It is observed that, when the plasma screening strength increases energy lev-
els become more positive and as a result the number of bound states decreases. Transition
wavelengths for the dipole transitions 2pnf (13F¢) — 2pn’d (13D°)[n =4 — 6; n' = 3 — 6]
exhibit a gradual blue or red shift with the variation of plasma screening. The study on
complex atomic spectra, such as those from laboratory plasma experiments or astrophys-
ical observations, may extract theoretical support from such findings. For the betterment
of the accuracy of our estimated data, we have considered the mixing of both pf and dd

configurations in the trial wavefunction for the determination of the structural properties of
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meta-stable bound and resonance 3F¢ states of He atom placed in classical WCP environ-
ment. Most of the energy eigenvalues of the meta-stable bound “3F¢ states are the lowest
yet obtained. Stabilization method has been used to estimate the resonance parameters of
L3F¢ states (below He't (4p) threshold) of He atom for different plasma screening. Like the
bound states, resonance energies increase and the number of such states decrease with the
decrease as plasma screening strength increases. New features are found on the variation
of resonance widths of those states with respect to plasma screening. It is observed that
the widths of the resonance states with the dominant configurations 3dnd [3 < n < 10] and
3pnf [4 < n < 10] decreases with the increase of plasma screening strength whereas the res-
onance states having dominant configuration 3dng [5 < n < 9] it increases. In this context,
we have demonstrated that width will decrease if the inter-electronic angle increases with
respect to increase of plasma screening strength. For the first time in the literature, the
variations of other structural properties, such as attractive and repulsive potential, one- and
two-particle moments, etc. are also examined for the metastable bound and resonance 13F¢
states of the He atom embedded in classical WCP. We anticipate that future researchers in
related areas will take into consideration the current technique as an alternative approach

for structural computations of such high-lying DES.

The real verification of this theoretical results requires highly advanced experimental tech-
niques. At present, in some cases, a meaningful comparison of theoretical and experimental
results could not be done due to scarcity of appropriate experimental data. With the
advent of technology in performing high resolution experiments and in recording precise

astrophysical data, this is quite likely to be possible in future.
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Abstract

An extensive calculation of Borromean windows (BWs) for 22 different configurations of
three-body exotic systems have been done using an explicitly correlated Hylleraas type basis
set. From the variation of BWs with mass relation parameter (g) as observed from our
calculations, a physical argument is being placed to interpret the existence of a BW for only

q < 1 configurations.
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1. Introduction

The bound (i.e. stable) state of an N-body system is termed
as a Borromean state if all possible subsystems, i.e. (N — 1),
(N —2), ..., 3, 2 body systems become unbound [1]. This
type of state is very interesting and indeed special because
the natural process of forming an N-body system is by adding
the constituent particles one by one. The possibility of the
existence of such a state was first noticed long ago by
Thomas [2] and then by Effimov [3] in the field of nuclear
physics. After almost 35 years, the theoretical predictions
on such states in ultra-cold gases have been experimentally
verified by Kraemer et al [4] and Pollack et al [5]. The
evidence of such states in different disciplines of science e.g.
atomic physics [6—10], molecular physics [11-13], nuclear
physics [2, 3, 14], chemical physics [15] and biology [16] is
now available in the literature. The majority of the theoretical
investigations on Borromean states deal with the systems
in which net interactions within all pairs of particles are
attractive. But in case of three-body systems, interaction
between a pair of particles is always repulsive and thus
provides an interesting case to study Borromean binding. In

5 Permanent Address: Dept. of Physics, Acharya Prafulla Chandra College,
New Barrackpore, Kolkata-700131, India.
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the last decade, considerable advancement [6—10, 13] has been
made to study Borromean states of three-body systems under
a screened Coulomb environment represented by the Yukawa

type potential
—Ar

Vi =—. (1)

where A is the screening parameter. A plasma environment can
simulate such an interaction where the screening parameter
becomes a function of the plasma temperature and density.
However, such a screened Coulomb potential may be
obtained in other physical situations also [17]. With the
increase in screening parameter (1), the energy eigenvalues
of the three-body and the corresponding two-body subsystem
become more and more positive [6, 7], leading to the complete
fragmentation of the systems. The screening parameter (A)
at which an N-body system destabilizes under the screened
Coulomb interaction is defined as the critical screening
parameter (A¢). The range of the screening parameter, in
which the three-body system is bound despite the two-body
subsystem being unbound, is termed as a Borromean window
(BW). In other words, the BW is the difference between
the critical screening parameters of the three-body and the
corresponding two body subsystem. It is true that for pure
Coulomb interactions, bound states of H; and H™ do not

© 2014 The Royal Swedish Academy of Sciences Printed in the UK
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fit the Borromean definition simply because they do not
show Borromean binding. But in case of screened Coulomb
interactions, it is seen [9, 10, 13, 18] that for a certain
range of screening parameter (A), the three-body HJ exists
in spite of the fact that the two-body sub-system H does
not exist. In contrast, H- and H destabilize for the same
screening parameter. Thus Hj shows Borromean binding
whereas H™ does not under screened Coulomb interactions.
For example, Bertini et al [13] studied the stability of the
ground state of H} and H™ under a screened Coulomb
interaction and found that both the systems show Borromean
binding for a specific range of screening parameters. Kar and
Ho found that the BW exists also for bound P, D, F and G
states of an H} system in a screened Coulomb environment
[9, 10, 18]. Due to the astrophysical abundance of the H;
ion, experimental investigations [19-21] have been done to
study the various structural properties of this ion. A few
theoretical works [6-8] are available on the existence of
Borromean binding for muonic molecular ions e.g. ppu, ddu,
ttp etc in the screened Coulomb potential. It is worthwhile
mentioning that structures of Coulombic three-body ions have
been theoretically studied [22-28] for a long time as the x-rays
emitted from these ions provide very useful information
about nuclear structure [29] and the muon catalyzed fusion
processes [29-31] in stellar bodies. Such exotic two-body
ions (XY) may be formed in experiments during the passage
of hadrons through matter or dense plasma, although they
have low lifetimes. The exotic two-body systems pu(1S)
and pu(2S) have been observed experimentally [32-34].
The hardronic hydrogen atoms pY in the ground 1s state
have a very short lifetime (e.g. ~107!s for pm and ~
10785 for pK) due to prompt nuclear absorption via the
strong interaction. Such two-body complexes can further
capture a third particle through collisional processes to form
a three body system X XY or XYY if the effective collisional
volume is sufficiently small which is true for such massive
systems. Usually the third particle is captured in a very
high angular momentum state and then, by a de-excitation
mechanism, it cascades down to a lower lying state via
dipole radiation, which in turn increases the lifetime of the
three-body system. It has been found that a small fraction
of kaons [35], pions [36] and also antiprotons [37, 38]
stopped in helium media survive for a longer time. Moreover,
recent experimental measurements show that the structural
properties of such exotic systems are gradually coming into
reach due to the advancements in optical technologies and
laser sources [39-42].

Whether a system can be observed in a bound state or
not depends on the masses of constituent particles and on
their mutual interactions as well. The mass relation parameter
(g) of a symmetric three-body system is defined as the ratio
between the mass of the particle that is attracting the other
two (e.g. u for the ppu system) and the mass of the one
repelling each particle. Pawlak et al [7] show that the width
of BW depends on the mass relation parameter (g) but as their
work is limited to only three exotic systems ppu, ddu and
tt i, they cannot answer the following subsequent questions :

1. What is the critical value of the mass relation parameter
(g) of a symmetric three-body system at which BW just
opens?

2. What is the asymptotic value of the BW for the mass
relation parameter (¢) of a symmetric three-body system
that approaches zero?

These questions need to be addressed in the context of the
study of BWs, as they would provide the knowledge of
the entire range of BWs by considering the two limiting
cases along with the study in the intermediate region. In this
work, we have made an effort to answer these questions by
an extensive calculation for 22 different three-body exotic
systems with an improved wave function. Moreover, we have
been able to elaborate on some of the physical arguments
explaining why ¢ > 1 configurations are disfavored for the
existence of BW when compared to ¢ < 1 ones. In particular,
we have estimated the ground state energy eigenvalues of a
number of exotic X XY (total charge is positive; g < 1) and
XYY (total charge is negative; ¢ > 1) systems ¥ = u, @, K
and X = p, d, t under screened Coulomb interactions. The
present calculations have been done under the framework
of the Rayleigh-Ritz variational method using explicitly
correlated Hylleraas type basis set. It is interesting to note
that XXY systems show Borromean binding whereas XYY
systems destabilize before the two body XY destabilization
limit, although XY is the two-body subsystem for both
XXY and XYY systems. A quantitative analysis shows that
as the screening becomes stronger, the binding energy of
X XY systems becomes greater than XYY systems. From the
study of the variation of relative BW with the mass relation
parameter (g) of the respective exotic systems, it is seen that
relative BW opens for g < 1 and the asymptotic value of the
relative BW is 13 as ¢ — 0. The details of this methodology
are given in section 2, followed by a discussion on the results
in section 3; the conclusion is given in section 4.

2. Methodology

The modified potential of a three-body system in the presence
of a screened Coulomb environment can be expressed as

e*)nrl e*)nrz e*)urlz

/R 2
ry r 2

where A is the screened Coulomb parameter. 7, is the distance
between the two identical particles and r; and r, are the
distances of the identical particles from the central particle
sitting at origin (e.g. for XYY and Y X X systems, the central
particles are X and Y respectively).

For the spherically symmetric ground state, the
three-body general variational equation [43] for arbitrary
angular momentum reduces to

/ 1/1 1 awN? 1/1 1 VAN
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Table 1. The ground state energy eigenvalues (in au) of exotic XYY and X XY systems {X: p, d, t; Y: u} for the different screening
parameter (X in au). Relative binding energies (RY) (percentage) between X XY and XYY systems X: p, d, t; Y: u are given for the
different screening parameter (A in au).

—FE (au) —FE (au) —FE (au)

A P PP RY Zm ddp R} o 1 R}
0.0 97.566 984 102.223 497 4.55 102.991910 109.816924 6.21 104944115 112.972 830 7.11
97.566984 59* 102.223491¢ 102.9919106° 109.815 698 104.9441154° 112.971933¢

97.56698343%  102.223 54 109.816 54 112.971 8¢
102.223 503 6°
10.0 87.855 345 92.568 209 5.09 93.260418 100.145 956 6.87 95.205930 103.296 334
92.568 199°¢ 100.144 720°¢ 103.295 434¢ 7.83
92.568 24 100.145 64 103.295 3¢
50.0 54.839746 60.038615 8.66 59.825553 67.257235 11.05 61.198210 70.280415 12.92
60.038611¢ 67.255 863°¢ 70.279521°¢
60.038 6¢ 67.2567¢ 70.279 3¢
100.0 25.826 355 30.782 620 16.10 29.756 288 36.948 814 19.47  31.198210 39.591 867 21.20
30.782618°¢ 36.947 245°¢ 39.591 120°¢
30.782 54 36.948 14 39.590 5¢
150.0 8.446984 11.937011 29.24 10.982 746 16.485717 33.38 11.945982 18.532941 35.54
11.937011¢ 16.484 151°¢ 18.532441¢
11.9369¢ 16.484 8¢ 18.531 5¢
170.0  4.297395 6.944875  38.12  6.216664 10.706357 4193  6.968302 12460505  44.08
190.0  1.581640 3296125 5201  2.858609 6.191216  53.82  3.390177 7.621487 5552
2000  0.731816 1960682  62.67  1.678362 4390282  61.77  2.097041 5646489  62.86
1.960 682 4.389327¢ 5.646211¢
1.960 3¢ 4.389 54 5.64524
2100  0.207350 0948810  78.14  0.816355 2886918  71.72  1.120501 3960122 71.70
0.948 810° 2.886 181¢
0.947 14 2.886 14
2150  0.064944 0.565957  88.52
217.0 0.030274 0.436 440 93.06
219.0  0.008277 0.320819  97.42
2200  0.001736 0268351 9935  0.260874 1.678541 8446 0450726 2.55833499 82.38
0.268 355¢ 1.678 029°¢ 2.558 159¢
1.676 8¢ 2.5569¢
220.2 0.000738 0.258 291 99.17
220.3 0.000273 0.253317 99.89
220.36 0.000 005 0.250349 99.99
220.37 —0.000039
223.0 0.133212 0.150990 1.373618 89.00
0.133223¢
224.0 0.095989 0.119785 1.277921 90.63
0.096 009¢
225.0 0.063015 0.091 167 1.185209 92.31 0.227221 1.963 501 88.43
0.063 032¢
226.0 0.034 623 0.065 044 1.095491 94.06
0.034 642¢
227.0 0.011481 0.058442 1.008 779 94.20
0.011503¢
227.6 0.000 821
0.000871¢
227.65 0.000 093
227.66 —0.000 049
228.0 0.041017 0.925084 95.56
229.0 0.026 588 0.844 421 96.85
230.0 0.015117 0.766 808 98.02 0.073756 1.439475 94.88
0.766 510¢
231.0 0.006 487 0.692 261 99.06 1.343207
232.0 0.000422 0.620 805 99.93
232.08 0.000 035 0.615223 99.99
232.09 —0.000013
233.0 0.028 768 1.159259 97.52
234.0 0.016915 1.071598 98.42
235.0 0.425236 0.007 890 0.986 826 99.20
0.425125¢
236.0 0.001462 0.904 956 99.84
236.2 0.000453 0.888931 99.95
236.29 0.000026 0.881759 99.99
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Table 1. Continued.

—FE (au) —FE (au) —FE (au)
A pup ppp RY dup ddu R} m m R/
236.3 —0.000020
236.5 0.338356
0.338250¢
238.0 0.258924
0.258 842°¢
240.0 0.165098 0.606 836
0.165 049¢ 0.606 762°¢
242.0 0.086017 0.475709
0.085997¢ 0.475 647¢
243.0 0.052549
0.052 542¢
244.0 0.023 686
0.023704¢
244.5 0.011245
0.011305¢
244.8 0.004 596
0.004 663¢
245.0 0.000 590 0.302 169
0.000 670¢ 0.302 164°
245.03 0.000 113¢
245.04 —0.000 069°
248.0 0.157711
0.157936¢
250.0 0.079315
0.079473¢
252.0 0.017483
0.017562¢
252.5 0.005217
0.005378°
252.7 0.000 837
0.001 049°
252.74 0.000 008
252.75 —0.000 196
# Bhattacharyya et al [48].
b Frolov et al [49].
¢ Pawlak et al [7].
4 Sil et al [6].
¢ Kar et al [51].
subject to the normalization condition where
. —0;r;
/\112 AV s = 1, @) nj (@) =e"", (6)

where the symbol used in equations (3) and (4) are the same
as in [43]. Here, mj3 is the mass of the central particle whereas
m and m, are the masses of the identical particles of the sym-
metric three-body systems under consideration. The masses
of u, @, K, p, d and t are taken as m,=206.768 262m.,
my; = 273.132426m,, mg = 966.101 694 9m., mp =
1836.152667 5m., my;=73670.4829654m. and m, =
5496.921 526 9m. respectively, where m. is the mass of
the electron. We have taken m. = 1 as the atomic unit used
throughout the calculations.

The correlated wave function considered for our
calculation is given by

W (r, 1, r2) =

9
X Z ni (1) n;(2) |: Z Z Z Clmn T3 + exchange:|
i=1

>0 m>0n>0

9 9
+Z Z [’71’ (1yn;(2) Z Z Z Cronri T30 +exchange],

i=1 j=1 >0 m>0n=0
i#]
&)

where os are the nonlinear parameters. The effect of the
radial correlation is incorporated through different os in the
wave function, whereas the angular correlation effect is taken
care of through different powers of r;. In a multi-exponent
basis set, if there are x number of nonlinear parameters, the
number of terms in the radially correlated basis is @
and therefore, the dimension of the full basis (M) including
angular correlation will be [’% x y], where y is the number
of terms involving ry,. For a fixed number of bases, x and y
should be chosen in such a manner that the effect of the radial
as well as the angular correlation are properly taken care of. To
this end, to make the basis of a tractable size, we include nine
different values of o in our method, which form a geometrical
sequence: o; =o0;_1Y, Y being the geometrical ratio [44].
Thus, in this calculation, the number of terms in the radially
correlated basis is 45 and with 22 terms involving different
powers of r,, the dimension of the full basis (V) becomes 990.
A discussion on the choice of the specific number of nonlinear
parameters was given in our earlier article [45]. For each
screening parameter, the linear variational parameters used in
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Table 2. The ground state energy eigenvalues (in au) of exotic XYY and Y X X systems {X: p, d, t; Y: '} for the different screening
parameter (A in au). Relative binding energies (RY) (in au) between X XY and XYY systems {X: p, d, t; Y: m} are given for the different

screening parameter (A in au).

A —FE (au) —FE (au) —FE (au)
(au) prET ppT R, dmmw ddn R, tww ttm R,
0.0 124.690 674 129.718 073 3.87 133.653701 141.524534 5.56 136951552 146.472365 6.50
124.690 674 07*

50.0 80.425 360 85.969 490 6.45 88.937428 97.405 083 8.69 92.081757 102.223361 9.92
100.0 47.215697 52.927045 10.79 54.588414 63.309187 13.77 57.341339 67.754111 15.37
150.0 23.821 049 28.803607 17.33 29.617 686 37.546979 21.19 31.826161 41.400552 23.13
200.0 8.925715 12.402317 28.03 12.869 611 19.006 120  32.29 14.437058 22.075746 34.60
210.0 6.862 148 9.969063 31.16
230.0 3.583539 5.904747  39.31 6.322564 11.005377 42.55
250.0 1.387016 2.883109 51.89 3.290509 6.888817 52.23 4.153 681 8.995895 53.83
260.0 0.677 872 1.757214  61.42 2.154 059 5.184217 58.45 2.870325 7.076785 59.44
270.0 0.220759 0.888919 75.16 1.262464 3.711794  65.99 1.829 890 5.381642  65.99
275.0 0.085564 0.553326 84.52
280.0 0.011735 0.286065 95.89 0.609 687 2470156  75.32 1.026418 3.908086 73.74
281.0 0.003 820 0.241133 98.41
281.2 0.002 338 0.232497  98.99
281.4 0.001015 0.223979  99.55
281.5 0.000612 0.219764  99.72
281.6 0.000 002 0.215579  99.99
281.61  —0.000058
283.0 0.160262
285.0 0.091 848
287.0 0.037260
288.0 0.015642
289.0 0.000179
289.02 0.000007
289.03 —0.000090
290.0 0.187206 1.459767 87.17 0.453 008 2.654741 82.93
295.0 0.055 832 1.042335 94.64
298.0 0.027 442 0.820496  96.65
299.0 0.017 139 0.751392  97.72
300.0 0.009212 0.684736  98.65 0.114 300 1.621863 92.95
301.0 0.003 686 0.620544 9941
302.0 0.000611 0.558837  99.89
302.4 0.000053 0.534855 99.99
302.45 0.000 006 0.531886  99.99
302.46 —0.000002
305.0 0.388858 0.028 253 1.188937 97.62
306.0 0.017 897 1.109122 98.39
307.0 0.009 856 1.031583 99.04
308.0 0.004 158 0.956329 99.56
309.0 0.000 847 0.883372  99.90
309.5 0.000081 0.847758  99.99
309.58 0.000 006 0.842114  99.99
309.59 —0.000003
310.0 0.157 682 0.812723
311.0 0.119531
312.0 0.084 133
313.0 0.051 501
314.0 0.029 496
315.0 0.005910 0.494 559
315.2 0.001 680
315.3 0.001 361
315.37 0.000 153
315.38 —0.000014
320.0 0.236 205
321.0 0.191 857
322.0 0.149967
323.0 0.116 501
324.0 0.082026
325.0 0.050 882
326.0 0.023476
327.0 0.000776
327.04 0.000012
327.05 —0.000 176

* Bhattacharyya et al [48].



Phys. Scr. 89 (2014) 015401

S Dutta et al

Table 3. The ground state energy eigenvalues (in au) of exotic XYY and Y X X systems {X: p, d, t; Y: K} for the different screening
parameter (X in au). Relative binding energies (R¥ ) (in percentage) between X XY and XYY systems {X: p, d, t; Y: K} are given for the
different screening parameter (A in au).

—E (au) —E (au) —FE (au)

A pKK ppK R, dKK ddK Ry (KK 1K R,

0.0 330.800 637 334.575377 1.12  400.176959 410.609 734 2.54 430.623711 446.122899 3.32

330.80063677*

100.0 239.838 364 244.007 205 1.71  307.459282 318.599 460 349  337.295789 353.626696 4.62
200.0 166.075 945 170.608 044 2.66 229.055514 241.066 693 498 257247701 274.688 669 6.35
300.0 107.891316 112.326 102 395 164.095730 176.332809 6.94  189.854114 207.722505 8.60
400.0 63.670079 67.522 047 570 111.501363 123.127272 944 134225608 151.556582 11.43
500.0 31.977 129 34.866 702 8.29 70.209 125 80.428582  12.71 89.439333 105257705 15.02
600.0 11.579 834 13.284046 12.83 39.237733 47.399557 17.22 54.615579 68.060983  19.75
700.0 1.450 568 1.951378 25.66 17.708 389 23.354972  24.17 28.946 063 39.334553  26.41
710.0 0.970778 1.362893  28.77
720.0 0.585947 0.874168 32.97
730.0 0.296 183 0.486795 39.16
740.0 0.101 628 0.203732 50.12
745.0 0.040922 0.102705 60.15
750.0 0.005 884 0.031387 81.25
752.0 0.000 367 0.011356 96.77
752.2 0.000 190 0.010504 98.19
752.4 0.000068 0.008 791  99.22
752.6 0.000 006 0.007 123 99.92
752.66 0.000001 0.006631  99.99
752.67  —0.0000002
753.0 0.003917
754.0 0.002 306
754.1 0.001 775
754.2 0.001 257
754.3 0.000753
754.4 0.000263
754.45 0.000023
754.46 —0.000025
800.0 4.852758 7.762306 37.483 11.705 996 18.566747  36.95
850.0 1.472 341 3.032857 5145 6.045429 11.044957 45.26
870.0 0.668 722 1.715585 61.02
880.0 0.383 635 1.183266  67.58
890.0 0.176 330 0.737658  76.09
900.0 0.047 548 0.381782  87.54 2.263 549 5.393579 58.03
905.0 0.013001 0.238701  94.55
906.0 0.008 420 0.212937  96.04
907.0 0.004 550 0.188131  97.58
908.0 0.001 333 0.164286  99.19
908.4 0.000214 0.155018  99.86
908.48 0.000001 0.153183  99.99
908.49 —0.000025
910.0 0.119486
912.0 0.078 536
913.0 0.059 501
914.0 0.041417
916.0 0.025423
917.0 0.013630
918.0 0.003757
918.4 0.000 367
918.44 0.000 047
918.45 —0.000032
920.0 1.262 584 3.657489 65.48
930.0 0.869 294 2.903244  70.06
940.0 0.545767 2.225926 75.48
950.0 0.289334 1.626773  82.21
960.0 0.095 004 1.107561 91.42
970.0 0.025 565 0.670780  96.19
975.0 0.002 600 0.484293 9945
975.9 0.000 172 0.453034  99.96
975.97 0.000002 0.450633  99.99
975.98 —0.000022
980.0 0.319 666
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Table 3. Continued.

—E (au) —FE (au) —E (au)
A pKK ppK R, dKK ddK R, (KK 1K R,
985.0 0.177313
990.0 0.057 524
993.0 0.022217
994.0 0.008 063
994.6 0.000920
994.68 0.000033
994.69 —0.000076

? Bhattacharyya er al [48].

Table 4. Ground state energy eigenvalues (in au) of H}, D}, T; and Ps™ for various screening parameters (A in au).

—E(au)
A Ps~ H} D} T
0.0 0.262 005 0.596 902 0.598 211 0.0.598 702
0.2620050702*  0.597 136°
0.1 0.173 618 0.503 099 0.504 402 0.504 889
0.1736181600*  0.503 330"
0.2 0.106 409
0.106 409 677 5*
0.3 0.057 553
0.4 0.024 698
0.5 0.005 965 0.226 676 0.227817 0.228 241
0.005 965 664 3*
0.55 0.001421
0.56 0.000871
0.57 0.000481
0.58 0.000 191
0.59 0.000 029
0.594 0.000001
0.595 —0.000002
0.7 0.135199 0.136214 0.136579
0.135561°
1.0 0.044 832 0.045 025 0.045288
1.2 0.011923 0.012 187 0.012308
0.012287°
1.25 0.006 808
0.007201°
1.29 0.003 672
0.003 989"
1.3 0.003 222 0.003 296
1.33 0.001339
0.001 597°
1.34 0.000 882
0.001 190°
1.35 0.000476 0.000 609 0.000 657
0.000750°
1.36 0.000118 0.000236 0.000279
0.000 400°
1.363 0.000019
1.364 —0.000019
1.367 0.000 004
1.368 —0.000027 0.000011
1.369 —0.000020

2 Kar and Ho [50].
b Bertini et al [13].

equation (5) along with energy eigenvalues E are determined

by solving the generalized eigenvalues equation [46]

[

C=ESC,

where H is the Hamiltonian matrix, S is the overlap matrix,

C is the column matrix consisting of linear variational

parameters and E is the energy eigenvalue. In order to set

(7 the highest and lowest o value in the set of nine nonlinear
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Figure 1. The variation of the ground state energies of ppu, ddu and ¢t versus different screening parameter (1) is given in (a) and those
of pup, dpp and t e versus the different screening parameter (1) are given in (b).
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Figure 2. The variation of the ground state energies of ppw, ddmw and tt7 versus the different screening parameter (1) is given in (a) and
that of prrw, dwm and twwr versus the different screening parameter (1) is given in (b).

parameters, we optimize the ground state energy eigenvalues
using the Nelder—Mead procedure [47] with two nonlinear
parameters. The higher value of the optimized set is taken
as the highest value of the set of nine nonlinear parameters
and it is fixed for all the sets. All calculations are carried out
in quadruple precision to ensure better numerical stability for
the extended multi-exponent Hylleraas basis set.

3. Results and discussion

For different screening parameter (A), the ground state energy
eigenvalues of exotic XYY and YXX systems {X: p, d, t}
taking ¥ as u, w and K are given in tables 1-3 respectively.
Table 4 displays the ground state energy eigenvalues of HJ,
D, T4 and Ps™ for various screening parameters (A). The
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Figure 4. The variation of the relative binding energy (R; ) (Y = u, 7, K) with various screening parameters (A).

screening parameter (1) is primarily set at zero corresponding
to a free system and then gradually increased in a systematic
manner up to the limit of destabilization of the corresponding
three-body system. The results reflect that for both unscreened
and screened cases, our values are in good agreement with the
other available theoretical results [6, 7, 13, 48-51] included
in tables 1-4. For example, it is evident from table 1 that in
the low screening region, the ground state energy eigenvalues

of ppu, ddp and ttp systems are more negative than those
reported by Pawlak er al [7] and Sil et al [6], whereas in
the higher screening region, this feature is not obtained. It
may be noted that this method may produce better results for
the energy eigenvalues for the entire range of screening by
adjusting the nonlinear parameters and size of the basis set.
Nevertheless, the accuracy obtained in this work is adequate
for the study of BW of the respective three-body exotic
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The variation of the relative binding energy (R}) (Y = u, 7, K) with various screening parameters (A).
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Figure 6. The variation of the relative binding energy (R)) (Y = u, 7, K) with various screening parameters (1).

systems. To the best of our knowledge, the results given
in table 1 for puu, dup and tpp systems and the results
displayed in tables 2 and 3 are reported here for the first time
in the literature.

The ground state eigenenergies of X XY and XYY (X =
p,d,t; Y =p) for different screening parameters (A) are
plotted in figures 1(a) and (b) respectively. In both figures,
the dotted line represents the zero energy (i.e. the complete
fragmentation limit) and all the three body systems gradually

approach it with an increasing screening parameter (A), due
to the weakening of the Coulomb potential. A similar feature
has been observed for XXY and XYY (X = p, d, t) systems
taking ¥ = and K given in figures 2(a), (b) and 3(a), (b)
respectively.

Itis evident from tables 1-3 that the energy eigenvalues of
X XY systems are more negative compared to XYY systems
for any arbitrary screening parameter (A). In order to estimate
the amount of boundedness of X XY systems compared to
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Table 5. Critical screening parameters and BWs of exotic
three-body systems. Critical screening parameters (1) of two-body
systems are taken from [52].

Two-body Three-body
sub-system A€ system A€ BW
Pl 221.26 ppi 227.65 6.39
227.66*
PRI 220.36 0
pr 283.07 ppm 289.02 5.95
prw 281.6 0
Pk 753.69 prK 75445 076
pKK 752.66 0
du 233.05 ddp 24503  11.98
245.03*
dup 232.08 0
dm 302.67 ddrn 31537 1270
drmw 302.45 0
dK 910.58 ddK 918.44 7.86
dKK 908.48 0
tu 237.26 tu 252774 1548
252.75%
tup 236.29 0
t 309.80 ttmw 327.04 17.24
tnw 309.58 0
tK 978.31 ttK 994.68  16.37
tKK 975.97 0
pe 1.1899 H} 1.363 0.1731
1.365°
1.3734¢
de 1.1903 D} 1.367 0.1767
te 1.1904 T 1.368 0.1776
ee 0.5953 Ps™ 0.594 0

2 Pawlak et al [7].
b Bertini et al [13].
¢ Ho [53].

XYY systems, we introduce a dimensionless quantity, the
relative binding energy (RY), which is defined as the ratio
between the difference of the ground state energies of X XY
and XYY systems and the ground state energy of the XXY
system. In tables 1-3, the estimated relative binding energy
(R,’;) (given in percentage) between X XY and XYY systems
are presented for a range of screening parameter (A) and it
is evident that, in each case, XYY systems destabilize more
rapidly compared to XXY systems. We have depicted the
variation of the relative binding energy (Rg) Y =u,m, K)
with a screening parameter (1) in figure 4. It is clear from
figure 4 that RZ (Y =p, m, K) increases slowly up to a
certain value of the screening parameter (1) and then increases
rapidly to 100% until the XYY system becomes unbound.
The variation of RY (Y =p,n,K) and R} (Y =p, 7, K)
with screening parameter (1) presented in figures 5 and 6
respectively show a similar kind of pattern.

The estimated critical screening parameters (1) of
all three body systems along with the critical screening
parameters of the respective two-body subsystems [52] are
displayed in table 5. The radius of a muonic atom (pu)
is 186 times smaller than that of the radius of a hydrogen
atom and the ionization potential (IP) of a muonic atom (pu)
is 186 times larger than the IP of a hydrogen atom [46].
Thus, it is expected that the critical screening parameters
for exotic systems with heavier masses will be much larger
compared to the critical screening parameters of normal
atomic systems. The Debye length is likely to be very small

Realtive borromean window (%)

6 '\
A0
] \.
2] K
\.
0+ T .

00 01 02 03 04 05 06 07 08 09 10 141

Mass relation parameter (q)

Figure 7. The variation of the relative BW (%) versus the mass
relation parameter (g).

in such circumstances, as obtained from our calculations.
Considering the screening by plasma environment, the
densities involved in such calculations may be found in the
interior of Zovian planets, where they may even exceed
the solid state density. It is also evident that the critical
screening parameter for the two-body system (XY) lies
between the critical screening parameter of the XXY and
XYY three-body systems i.e. A yy > Ay > ASyy. Thus, all
X XY systems show Borromean bindings, whereas all XYY
systems destabilize before the corresponding two-body (X7Y)
destabilization limit. Hence the BW for all XYY systems is
zero. The estimated BW for all X XY systems is also given in
the last column of table 5. The values of BW for X XY systems
keeping a fixed Y shows that as the mass of the nucleus
increases, the BW also increases. For example, BW,,, >
BWy4, > BW,,,, which is in agreement with Pawlak et
al [7]. Here we introduce a dimensionless quantity ‘relative
BW’ which is defined as % x 100% in order to make
a comparison among the BWs of the XXY systems. The
estimated relative BWs for different mass relation parameters
(g) are given in table 6 and the corresponding variation is
displayed in figure 7. It is evident from table 6 and figure 7
that the relative BW is zero for ¢ > 1 and it increases as
q approaches zero. It is clear that the relative BW slowly
increases with ¢ in the region 1-0.5 and then increases rapidly
as g tends towards zero. It is worthwhile mentioning that
for ¢ =0.52615 the relative BW is 0.08%, which is small
compared to the highest relative BW of 13.01% for g =
0.000 18 corresponding to Tj. Therefore, we have chosen
systems in between 0 < g < 0.5 to get a smooth variation of
relative BW with q.

We have shown for the first time that BW exists if we add
a positively charged particle X to the XY system (myx > my),
as g becomes less than 1 for the X XY system; whereas BW
does not exist when we add a negatively charged particle Y to
the XY system, as ¢ becomes greater than 1 for XYY systems.
For example, the relative BW is 2.86 (for ¢ = 0.11261) if we
add a proton to the pu system whereas the BW does not exist
if we add a muon to the pu system, for which. g = 8.88025
The reason behind the existence of BWs for systems with a
q > 1 configuration is given below.



Phys. Scr. 89 (2014) 015401

S Dutta et al

Table 6. Relative BWs for different exotic systems under screened
Coulomb interactions.

Mass relation

System  parameter (¢) Relative BW
tiLpL 26.58497 0
twmw 20.12551 0
dpp 17.751 69 0
dnm 13.43849 0
P 8.88025 0
prET 6.72258 0
tKK 5.68979 0
dKK 3.79927 0
pKK 1.900 62 0
eee 1.000 00 0
ppK 0.526 15 0.08
ddK 0.26321 0.86
ttK 0.17575 1.71
ppw 0.14875 2.09
ppi 0.11261 2.86
ddrn 0.068 79 4.19
ddp 0.05633 5.10
1w 0.049 68 6.19
i 0.03762 6.50
H} 0.000 54 12.70
D} 0.00027 12.95
T3 0.000 18 13.01

It is well known that the stability of negatively charged
ions is less than the stability of positive ions, e.g. H™, Ps™,
He™ etc ions are less stable. We have also found that the
binding energies of the XYY (total charge is negative; g > 1)
systems are less than that of the binding energies of XXY
(total charge is positive; g < 1) systems for free case. When
we switch on the screening parameter (A), both the systems
destabilize as the binding energy reduces compared to the free
case due to a weakening of the Coulomb potential. With the
gradual increment of the screening parameter (A), the faster
destabilization of XYY systems compared to X XY systems
yields a lesser value of the critical screening parameter
of XYY systems compared to XXY systems. Hence, it is
expected that a BW does not exist for XYY systems (g > 1).
These extensive calculations confirm the above mentioned
fact for ten different ¢ > 1 configurations.

4. Conclusion

It can be concluded that the BW opens for g <1
configurations of three-body exotic systems and the
asymptotic value of the relative BW is 13.6 for T}. The
novelty of our method lies in the choice of a flexible
multi-exponent Hylleraas basis for three-body systems where
all three particles are moving. We hope that the results
presented in this communication will be useful for future
studies in related disciplines.
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The analytic form of the electrostatic potential felt by a slowly moving test charge in quantum
plasma is developed. It has been shown that the electrostatic potential is composed of two parts:
the Debye-Huckel screening term and the near-field wake potential. The latter depends on the
velocity of the test charge as well as on the number density of the plasma electrons. Rayleigh-Ritz
variational calculation has been done to estimate precise energy eigenvalues of hydrogen-like
carbon ion under such plasma environment. A detailed analysis shows that the energy levels
gradually move to the continuum with increasing plasma electron density while the level crossing
phenomenon has been observed with the variation of ion velocity. © 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921739]

I. INTRODUCTION

The study of the changes in structural properties of
foreign atoms or ions in different external environments'™'*
is a subject matter of immense interest for the last few deca-
des as it provides a deep insight into several interesting
phenomena in astrophysics and plasma physics. There exists
a bulk of studies discussed in detail by Sil er al.,”® on the
behavioral changes in the structural properties of few-body
systems embedded in an external plasma environment. These
are useful for laboratory and astrophysical plasma diagnos-
tics determination. The most important part of such studies is
to model the environment by an effective potential that the
foreign atom/ion or the test charge will feel inside or moving
through that medium. It is well-known according to the
Debye-Huckel theory'®!'” of weak electrolytes that a static
atom/ion feels screened Coulomb type potential while placed
within a collision-less high temperature classical plasma. In
this case, the screening parameter is a function of electron
number density (n.) and temperature (7) of the plasma and
thus different plasma situations can be simulated by suitably
tuning the screening parameter.” In contrast, when the tem-
perature (T) of the plasma electrons approaches the “Fermi
temperature” Tr = Er/kp [E and kg are the “Fermi energy”
of the electrons and the Boltzmann constant, respectively],
the equilibrium plasma electron distribution function
changes from the Maxwell-Boltzmann to the Fermi-Dirac
distribution. Under such condition, the quantum degeneracy
effects start playing a significant role as the thermal de
Broglie wavelength for the plasma electrons becomes equal
or comparable to the average inter-electronic distance.'®
Quantum plasmas are generally made of electrons and ions
or holes. The studies on quantum plasma have become im-
portant in several branches of applied physics, especially in
nano-science'®?' as well as in laboratory plasma experi-
ments>> and in astrophysical scenario.?¢2®

Pine®” has treated an arbitrary collision-less quantum
plasma environment as a dielectric medium and derived the
analytic form of dielectric function using the Random Phase

1070-664X/2015/22(6)/062103/9/$30.00
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Approximation (RPA) method. Using such dielectric func-
tion, Shukla et al.*® showed that the effective potential felt
by a slowly moving test charge has two components: the
usual near field Debye-Huckel screening term and the far-
field wake potential. Far field wake potential decays as the
inverse cube of the distance between the origin of the test
charge and the location of the observer. It is interesting to
note that for far field, the effective potential of a moving
“test charge” in an isotropic collision-less classical plasma
also falls off as the inverse cube of the distance between the
observer and the test charge.’’ The effect of far field wake
potential is very small on the binding energy of the atom.
Thus, it is very much important to investigate the effect of
near field wake potential on the binding energy of the atom/
jon. The only attempt in this context was made by Hu et al.*?
They”* have found that the near field wake potential is pro-
portional to ,iz and cos 0; r being the radial distance between
the moving ion and the observer, while 0 is the angle
between the radius vector and the velocity vector of the ion.
They’® have used Meijer’s G function in deriving the
analytic form of the near field wake potential, where this G
function violates the condition used in its definition.>® These
results in some anomalous findings in the binding energy
calculations, e.g., variationally over-bound energy levels
with respect to the energy levels of the free atom and the
removal of degeneracy of the energy levels with respect to
the magnetic quantum number “m.” Even if we assume that
their form of the potential to be correct, the energy levels
should undergo a Stark-like shift due to the “cos §” term in
the potential and due to obvious reason there is no possibility
of getting Zeeman-like splitting without any perturbation,
e.g., magnetic field which breaks the azimuthal symmetry of
the system.

To examine the influence of near field wake potential on
the structural properties of a moving atom/ion in quantum
plasma, the analytic form of the potential has been derived in
the present work using the correct form of Meijer’s G func-
tion™ and its identities. The present potential is proportional

© 2015 AIP Publishing LLC
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to rKO( ) [Ko(x) being the zeroth order Macdonald function

or Modified Bessel’s function of the second kind®* and 7, is
the Debye parameter] and cos@. Subsequently, we have
applied Rayleigh-Ritz variation method to obtain the binding
energies of all states lying between 1s and 4f configurations
of hydrogen-like carbon ion moving through Electron-Hole-
Droplet (EHD) quantum plasma. In contrast to the findings
of Hu et al.,32 no overbound result has been observed.
Moreover, the splitting of energy levels with respect to |m|,
has been observed and it is purely Stark-like shifting due to
the presence of an oscillatory term in the potential. The
details of the present methodology are given in Sec. II,
followed by the results and discussion in Sec. III, and finally
the conclusion is given in Sec. IV.

Il. METHOD

A. Near-field potential felt by a slowly moving “test
charge” in quantum plasma

The field (D) of a charge ¢ moving with a velocity ¥ in a
dielectric medium is given by the equation'®

V.D = 4nqd(F — v1). (1)

Considering the quantum plasma environment as a linear
dielectric medium, we have the relation D =¢E ; where the
electric field E is derived from the scalar potential ¢ by
using E = —ﬁ(p. Equation (1), then, may be written as

—VeNVo — eV = 4ngd(F — br). )
After a Fourier transformation, we obtain

ikt

_ dmg e
(Zn)% k2e(k)’

3)

The potential ¢(r) can be obtained by inverse Fourier trans-
form'® of Eq. (3) and may be expressed as

= q e];- 3
-l

The dielectric function ¢(k,®) for low frequency perturba-
tion (o <K kvy) was derived by Pines? as

kw—l—i—z ( z%%) (5)

s= eh
(37r n, ) is the thermal velocity. The subscript

where v, =

s used in the expression for thermal velocity (v,) corre-
sponds to the species of the plasma. For electron-hole droplet
plasma, the species corresponds to either electron (e) or hole
(h); my and ng are the effective mass and density, respec-
tively, of the species s. In the present calculation, we have
taken my, = 0.39M, and m, = 0.26M,;*>° where M, is the
rest mass of an electron. The Fermi-Thomas screening wave

\/_(Ups

number Ky, is defined as Kp; = , where the plasma
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oscillation frequency (w,,) is given by w,, = (4"" ‘)
should be mentioned that the Debye length A; = T
Equation (5) can be rearranged as

. 14 k222 T A 1
ko) =——"2|14iz K , (6)
K2 2 k(l e iﬁ) vaxf

| Pines?® obtained Eq. (5) after perform-

where - z= = eeny
ing complex 1ntegrat10n where the pole position was at

o = —k.8.°%% The velocity (v) of the ions is chosen in such
a way that the thermal Mach number’’ remains less than
unity. For v < v, we can get

1 k2/12 Kkt

. +is R
e(k,co) 1+k222 2<1+k2/1§1>
« Sl Q)
s=h Uts /s

Combining Eqgs. (4) and (7), we obtain

=@+ P, ®)
where
22

o) = ;’ﬁjwaﬁd% ©)

In the spherical polar coordinates (k, o, t), the volume ele-
ment is given as d°k = k’sinododtdk. After integrating
over ¢ and 7, Eq. (9) reduces to

2q)v(2] 00

k . q -
0 :7J0 TMSlnkrde;e q. (10)

¢, as expressed in Eq. (10) is the well-known Debye-Huckel

screening potential.*'®

The second term of Eq. (8) is given by

4
T q /lq - 1
Py = lf—J k.v
: 22n2 k(l + k2/"h§)2 s=e,h Ufs;“?
x TP (11)

Performing integration over the azimuthal angle (1), Eq. (11)
reduces to

__qv 3

v J 2
2
s=e.h fb/Lv 0 ( —|—k2)7)

T
X J cos (o + 0)e™* <% sin 6d, (12)
0

where 0 is the aangle between 7 and U, and (0 + o) is the
angle between k and @. The polar angle part of the integral
can be written as
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J cos (o + G)eik"cos" sinodo =cos@ -1} —sinf -I,, (13)
0
where
T . 2
I, = J cos 6e'X % singdo = — = j; (kr) (14)
0 i
and
T . T
L= J sin ge™* °*% sin odo = > lo(kr) + ja(kr)],  (15)
0

where j;(x) is the spherical Bessel function of first kind.
Neglecting the imaginary part, Eq. (12) becomes

00 k2' kr
:—qm“z J L’)zdk. (16)
— ()hlitv by 0 <1+k2/1$)
Using the following two identities:*
2
Ju(2)2" = zugg)g<g+g g_g&) (17)
2 2’2 2
and*®
p
b — L
Zﬁ _ a’b Gll 1 0(+b|azb (18)
(1+azt)” () ' B '
b
Eq. (16) can be written as
5 1
_ qv)’q 1 >~ 11 22 2
P == 2T COSQJO Gy 1 |2,k
' 2
10 k*r? 2
x GY3 1_1\7 (i), (19)
27 2

ena . . .

where G/ ( bb ’ bp |x) is the Meijer’s G function® defined
13-y Dg

as

a ,a
Gmn 3 P|x
by, ...,b

_%JHH F(< =

Jj=m+1

I T —a+5)
b +S) H/ n+1 F(d'—S)

X x'ds,
(20)

with the constraints 0 < m < g and 0 < n < p. I'(n) is the
Euler Gamma function. Using the identities™ given below

J G |f G al,...,ap| <\ ax
uv d17 7 rq bl,u-,bq n -
_GHmHn(al,.‘.,an,—dl,...,—dp,anﬂ,...,a,, ﬁ)

pHvg+u . N |
5 bl7"'7bWI7_Cla"'7_(’uabm+17“'7bq é

21

Phys. Plasmas 22, 062103 (2015)
kamn [ A1y -ees Gp mn [ A1+ Kk, a, +k
X6y <b1,...,b |> Gy <b1+k ) 22

by +k
mn ap, ..., dp _ (ymn—1 az, ..., dp
G <b1, ...,bq,hal |X) - GP*I‘I*I (bl, ...,bq —1 |X>

Eq. (19) gets modified to
4ty 1

-2
G20<1 N /12>0059. (24)

¢y = — 2
s=e,h UfS}"s

r

It is interesting to note that the Meijer's G function,>
appearing in the above equation converges if and only if the

argument, i.e. ° becomes less than unity, i.e., r < 22,. To

L8] 4 2
obtain the final form of the potential ¢,, we have used the
following identity:*

_ - X
2K 1G§3<ﬁ+ g_ 4) ="K, (). (25)
The final form of near-field wake potential ¢, is given by

qv 1
=—— K, cos 0 26
n=-5Yon o(lq> L)
where K, (x) is the Macdonald function or modified Bessel
function of second kind. It is interesting to note that similar
kind of radial dependence of the potential was obtained by
Frolov* in the case of short-range interaction between two
point electric charges.

B. Structure calculation of slowly moving
hydrogen-like ion in quantum plasma

The modified non-relativistic Hamiltonian of a slowly
moving hydrogen-like ion in the presence of an external
quantum plasma environment can be given by [a.u. is used
throughout]

1
H—=— Ev2 + Vs (r, 0), (27)

where the near-field effective potential Vs (r,0) is com-
posed of two parts as

Veiy (r,0) = Va(r) +

Here, V,(r) is the Debye-Huckel screening potential given
by

V,(r, 0). (28)

_ g e M (29)

Va(r) = ——

where Z is the atomic number of the moving ion and u is the

Debye screening parameter related to the Debye length as
1
H=3

The near-field wake potential V,, (r, ) is given by

V(r, 0) = {rKo </1 >cos 0, (30)
q

where the wake field coefficient () is defined as
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TABLE 1. Convergence of the energy eigenvalues (a.u.) of 1sy, 2p1, 3da, and 4f; states of C** moving in quantum plasma. The number density (1,) of elec-
trons is taken as 10'?/c.c. while the speed of the ion (v) is 10° cm/s. N represents the total number of terms in the basis set.

N 130 N 2[71 N 3d2 N 4f3
16.996 989 379 2 3.516 726 519 3 1.101 328 256 4 0.328 549 543
3 16.996 997 305 5 3.544 757 189 7 1.114 962 499 9 0.329 492 549
16.996 997 518 9 3.544 757 475 12 1.114 962 616 15 0.329 493 091
15 16.996 997 543 20 3.544 757 476 25 1.114 962 632 22 0.329 493 108
28 16.996 997 543 35 3.544 757 476 42 1.114 962 632 39 0.329 493 108
45 16.996 997 543 54 3.544 757 476 52 1.114 962 632 49 0.329 493 108

Zv 1
(= 725:(3,}1 vtsii ’

The variational equation for any arbitrary angular mo-
mentum state of one electron system is given by

J <aly>2 1 (aw)z
P +— (=
or 2\ 90

NG AN
——(Z2) 42V —E)¥?|dvgs =0. (31
a0 <3¢) +2(Ver — E)¥7 | dvrpg G1)

TABLE II. The energy eigenvalues —E (a.u.) of 15, states of C** moving in
quantum plasma having different set of electron number density (n./c.c.) and
ion velocity (v cm/s).

The wavefunction ¥ is subjected to the normalization
condition

J\Iﬂdurﬁ,qﬁ =1. (32)

The trial wavefunction is taken as
lP(I‘, 07 ¢) :f(r)ALm(ev (j))a (33)

where the radial part f(r) is given by
N
£r) =" Cix(r), (34)
i=1

TABLE III. The energy eigenvalues —E (a.u.) of 2sg, 2po, and 2p; states of
C°" moving in quantum plasma having different set of electron number den-
sity (n./c.c.) and ion velocity (v cm/s).

—Eqs (au.) —E (a.u.) —E5, (a.u.)

n, (/c.c.) v (cm/s) |m|=0 n, (/c.c.) v (cm/s) |m|=0 |m|=0 |m| =1
0 0 18.00000000 0 0 4.50000000 4.50000000 4.50000000
8.0 x 10" 0 1733681121 8.0 x 107 0 3.86368690 3.85785292 3.85785292
10° 17.33681120 10° 3.86368689 3.85782543 3.85779533
10* 1733681118 10* 3.86368685 3.85782487 3.85779514
16.98306649* 3.54344882°  3.52966416°  3.52956493"
10° 17.33681098 10° 3.86368633 3.85781925 3.85779322
17.25328413% 3.57641662°  3.53956809°  3.52966416"
5.0 x 10° 17.33681008 5.0 x 10° 3.86368405 3.85779427 3.85778469
25.60522514° 4.40032501*  3.77474159*  3.53214473%
10" 0 16.99701207 10" 0 3.55780856 3.54476161 3.54476161
10° 16.99699754 10° 3.55780693 3.54472655 3.54475747
10° 16.99699738 10° 3.55780657 3.54472073 3.54475700
107 16.99698206 107 3.55777061 3.54418783 3.54449515
10%° 0 16.54217234 10%° 0 3.16902746 3.14230776 3.14230777
10° 16.54214839 10° 3.16902456 3.14229037 3.14224439
10° 16.54214822 10° 3.16902418 3.14229621 3.14224287
107 16.54213093 107 3.16898702 3.14223675 3.14215211
10%! 0 15.89053458 10%! 0 2.65209786 259865596 2.59865596
10° 15.89046598 10° 2.65208981 2.59862497 2.59858157
10° 15.89046573 10° 2.65208933 2.59862135 2.59858025
107 15.89044045 107 2.65204099 2.59825988 2.59844818
10*? 0 14.96731440 10%? 0 1.99849293 1.89549274 1.89549274
10° 14.96727643 10° 1.99848876 1.89542088 1.89549069
10° 14.96727627 10° 1.99848850 1.89541666 1.89549053
107 14.96726037 107 1.99846268 1.89483600 1.89547373
103 0 13.68055489 10% 0 1.23890690 1.05303897 1.05303897
10° 13.68051129 10° 1.23890275 1.05281193 1.05303710
10° 13.68051115 10° 1.23890257 1.05280651 1.05303730
107 13.68049712 107 1.23888478 1.05229719 1.05302671

“Reference 32.

“Reference 32.
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with y,;(r) = r'e~*". The trial angular part is given by
Alm(ev ¢) = (V + ﬂCOS B)Y[m(ev (pb)v (35)

where Y,,,(0, ¢) is the spherical harmonics.
In order to calculate the matrix elements of the
Hamiltonian, we have used the following integral:>*

(0]
J K e K, (Bx)dx

0
VAQB) T(u+ )T (=)
@I ()

2
1 1 a—pf
F - =
X (“+V’”+2’“+2’a+ﬂ)’ (36)

where F is the confluent Hypergeometric function and Re
u>|Rev|andRe (o2 + f) > 0.

Finally, we have solved the generalized eigenvalue
equation*” given as

1=

C=ESC, 37

where Ii is the Hamiltonian matrix, S is the overlap matrix,
E’s are the energy eigenroots, and C’s are the linear
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variational coefficients. The non-linear parameters o;’s, f3,
and 7y are optimized by using Nelder-Mead procedure.*' The
convergence behavior of the energy eigenvalues has been
checked by increasing the number of terms in the wave func-
tion to ensure the accuracy of the present method. All
calculations are carried out in quadruple precision.

lll. RESULTS AND DISCUSSIONS

We have calculated the energy eigenvalues of ns, [the
principal quantum number, n =1 —4 and the subscript
denotes the values of the azimuthal quantum number]; np,
npy [n =2 —4]; ndy, nd,, nd, [n = 3 — 4]; and nfy, nfy, nf>,
nfs [n=4] states of C°* ion. The plasma electron densities
(n,) are chosen within the range of 10" — 10%/c.c., where
for each value of plasma density (n,), the ion velocities (v)
are within the range of 10° — 107 cm/s. Table I displays the
results for convergence of energy eigenvalues for
150, 2p1, 3d>», and 4f; states corresponding to plasma density
(n,) 10"/c.c. and ion velocity (v) 10 cm/s. It is evident from
Table I that the energy eigenvalues converge up to 9th deci-
mal place in each case. Similar convergence of energy values
is obtained for all the calculations done in the present work.

TABLE IV. The energy eigenvalues —E (a.u.) of 3so, 3po, 3p1, 3do, 3d;, and 3d, states of C*" moving in quantum plasmas having different set of electron

number density (n./c.c.) and ion velocity (v cm/s).

—FEs; (a.u) —E3, (a.u.) —E3y (au)
n, (fc.c.) v (cm/s) |m| =0 |m| =0 |m| =1 |m| =0 |m| =1 |m| =2
0 0 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000
8.0 x 10" 0 1.40534572 1.40002099 1.40002099 1.38931372 1.38931372 1.38931372
10° 1.40534571 1.40001296 1.40000432 1.38931361 1.38931359 1.38931354
10* 1.40534564 1.40001207 1.40000402 1.38931351 1.38931351 1.38931351
1.13800837% 1.12586273* 1.12583700% 1.10181766" 1.10181766" 1.10181766"
10° 1.40534488 1.40000307 1.40000094 1.38931254 1.38931272 1.38931325
1.14713322% 1.12861525% 1.12586273" 1.10203080% 1.06519697% 1.10193893"
5.0 x 10° 1.40534149 1.39996310 1.39998729 1.38930820 1.38930917 1.38931206
1.36260175% 1.19290816% 1.12655361% 1.10715733% 1.10223660% 1.10490827%
10" 0 1.14923194 1.13789722 1.13789723 1.11496287 1.11496287 1.11496287
10° 1.14923145 1.13788733 1.13789606 1.11496273 1.11496270 1.11496263
10° 1.14923096 1.13787887 1.13789537 1.11496174 1.11496190 1.11496236
107 1.14918232 1.13709896 1.13759242 1.11486312 1.11488121 1.11493546
10%° 0 0.85275345 0.83113577 0.83113577 0.78686902 0.78686902 0.78686902
10° 0.85275269 0.83113114 0.83111901 0.78686882 0.78686878 0.78686868
10° 0.85275224 0.83113021 0.83111706 0.78686792 0.78686805 0.78686843
107 0.85270789 0.83104578 0.83097475 0.78677385 0.78679108 0.78684275
10%! 0 0.51307024 0.47479205 0.47479205 0.39462864 0.39462864 0.39462864
10° 0.51306840 0.47478483 0.47477478 0.39462843 0.39462840 0.39462828
10° 0.51306792 0.47478106 0.47477341 0.39462775 0.39462784 0.39462810
107 0.51302066 0.47440449 0.47463583 0.39455982 0.39457226 0.39460957
10?* 0 0.18762946 0.13082887 0.13082887 0.01136017 0.01136017
10° 0.18762878 0.13081719 0.13082853 0.01136002 0.01135996
10° 0.18762861 0.13081432 0.13082842 0.01135976 0.01135987
107 0.18761157 0.13044258 0.13081701 0.01133326 0.01135103
10?3 0 0.00358750
10° 0.00358738
10° 0.00358736
107 0.00358535

“Reference 32.



TABLE V. The energy eigenvalues —E (a.u.) of 4sq, 4pg, 4p1, 4dy, 4d,, 4d>, 4fy, 4f1, 4f>, and 4f; states of cr moving in quantum plasmas having different set of electron number density (n./c.c.) and ion velocity (v

cmy/s).
—FE4 (a.u.) —Ey4, (a.u.) —FE44 (an.) —Ey4 (a.u.)
n, (fe.c.) v (cm/s) |m| =0 |m| =0 [m| =1 |m| =0 [m| =1 |m| =2 |m| =0 [m| =1 |m| =2 |m|=3
0 0 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000
8.0 x 10" 0 0.58332137 0.57865346 0.57865346 0.56923686 0.56923686 0.56923686 0.55490196 0.55490196 0.55490196 0.55490196
10° 0.58332136 0.57865021 0.57864684 0.56923680 0.56923680 0.56923678 0.55490190 0.55490190 0.55490189 0.55490187
10* 0.58332127 0.57864913 0.578646438 0.56923669 0.56923670 0.56923675 0.55490176 0.55490177 0.55490179 0.55490185
0.38038470" 0.36991115* 0.36990013* 0.34919409* 0.34919336" 0.34919373* 0.31860361" 0.31849924* 0.31860398" 0.31860361"
10° 0.58332038 0.57863836 0.57864279 0.56923546 0.56923570 0.56923642 0.55490031 0.55490045 0.55490086 0.55490153
0.38363334" 0.37089236" 0.36991115% 0.34926980" 0.33600588" 0.34923783" 0.31861941% 0.31860545" 0.31866131% 0.31863742"
5.0 x 10° 0.58331642 0.57859047 0.57862644 0.56923001 0.56923124 0.56923493 0.55489389 0.55489459 0.55489667 0.55490014
0.45895839° 0.39373940° 0.37015737* 0.35111057* 0.34934404" 0.35030319* 0.31900087* 0.31865102" 0.32004822" 0.31860398"
10" 0 0.38627150 0.37710044 0.37710044 0.35842741 0.35842741 0.35842741 0.32949318 0.32949318 0.32949318 0.32949318
10° 0.38627133 0.37709676 0.37710000 0.35842735 0.35842734 0.35842731 0.32949313 0.32949313 0.32949312 0.32949310
10° 0.38627083 0.37708789 0.37709929 0.35842627 0.35842645 0.35842702 0.32949196 0.32949206 0.32949235 0.32949285
107 0.38622101 0.37626956 0.37679442 0.35831828 0.35833810 0.35839757 0.32936955 0.32938029 0.32941613 0.32946744
10% 0 0.19334518 0.17815971 0.17815971 0.14683884 0.14683884 0.14683884 0.09678684 0.09678684 0.09678684 0.09678684
10° 0.19334495 0.17815827 0.17815457 0.14683878 0.14683877 0.14683874 0.09678681 0.09678681 0.09678680 0.09678679
10° 0.19334458 0.17815633 0.17815294 0.14683800 0.14683813 0.14683852 0.09678618 0.09678623 0.09678639 0.09678666
107 0.19330816 0.17808454 0.17803027 0.14675666 0.14677158 0.14681633 0.09672344 0.09672894 0.09674547 0.09677302
10%! 0 0.03820810 0.02020779 0.02020779
10° 0.03820777 0.02020659 0.02020495
10° 0.03820756 0.02020497 0.02020436
107 0.03818578 0.02004326 0.02014525

“Reference 32.
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For different sets of plasma densities (#,) and ion veloc-
ities (v), Tables II-V display the energy eigenvalues of n =1
to n=4 states, respectively. The energy eigenvalues
obtained by Hu ez al.** are also included in Tables II-V for a
comparison with the present work. The energy eigenvalues
of free ions are given in the first row of each table. From the
numbers quoted in Tables II-V, it is evident that as the
plasma density (n,) increases for a given ion velocity (v), the
energy eigenvalues become more and more positive leading
towards destabilization of the ion and as the ion velocity
increases for a given plasma density (n,), the energy eigen-
values become more and more positive but with a much
slower rate compared to the preceding one. Thus, it can be
argued that the effect of static screening (which depends
only on n,) of the plasma environment on the energy eigen-
value is much more pronounced as compared to that of the
wake field, where the later arises due to the velocity (v) of
the ion and also depends on plasma electron density (7,). In
contrast, Hu et al.**> showed that the energy of each state
considered by them became over-bound (i.e., more negative
than the energy of the free ion) when the ion velocity (v)
reached a sufficiently high value. For example, Hu et al.*?
reported that for n, = 8.0 x 102 m™> and ion velocity
v=5000m/s, the ground state (1so) energy of C*" becomes
—25.60522514 a.u. which is more negative than the ground
state energy —18.0 a.u. for the free C°" ion. In this regard,
Hu er al*® opined that such over-boundedness occurred
because of the choice of angular part of the wave function.
But the angular part of the wavefunction cannot be responsi-
ble for such over-boundedness as it violates the basic varia-
tional principle. No such over-boundedness is observed in
the present calculations. For example, we have obtained the
ground state (1sg) energy of —17.33681008 a.u. for C** ion,
where n, = 8.0 x 102 m > and v = 5000 m/s.

Phys. Plasmas 22, 062103 (2015)

It can also be noted from Tables III-V that the usual
breaking of accidental degeneracy (i.e., / degeneracy corre-
sponding to a given n) occurs with respect to the plasma
electron density (n,). This is a well-known phenomenon in
presence of Debye-Huckel potential and can be found in dif-
ferent studies.'® The degeneracy of energy eigenvalues with
respect to the absolute value of magnetic quantum number,
i.e., |m| is removed for each ion velocity (v) because of the
presence of cos @ term in the near-field wake potential as
seen in Tables III-V. For example, Table III shows that for
jon velocity (v) 10°cm/s and plasma electron density (n,)
10"/c.c., the energy eigenvalues of 2py and 2p; states are
—3.54472655 a.u. and —3.54475747 a.u., respectively. This
is purely Stark-like splitting. Such kind of splitting is
observed for different choice of plasma densities for p, d,
and f states as can be seen from Tables III-V. In contrast, Hu
et al** reported Zeeman-like splitting, i.e., the lifting of
degeneracy of the energy levels with respect to magnetic
quantum no. “m.”

The variation of energies of (2pg, 2p;) states for two dif-
ferent plasma densities (n,) is depicted in two sub-graphs of
Figure 1. It is evident from Figure 1 that corresponding to
plasma density n, = 10"/c.c., 2p; state lies energetically
below 2p, state for the entire range of ion velocity (v), and
thus no crossing of energy levels is being observed. But, for
density higher than the previous one, it is to be noted that 2pg
state energetically lies below than that of 2p; state when the
ion velocity is low and after a critical ion velocity 2p; state
becomes more negative than that of 2p, state. Hence, depend-
ing on the plasma electron density incidental degeneracy of
npo and np, states occurs at a particular critical ion velocity.
Such crossing of energy levels and subsequent appearance of
incidental degeneracy occur for all other angular momentum
states (i.e., d and f) as shown in Figures 2 and 3. It is clear

-3.54466 — -2.77820 —
1 ne=1.0 (+19) /c.c. I E
-3.54468 — 277830
-3.54469 2p, 1
-2.77835
] 2p,
-3.54470 - ]
i -2.77840 -
- -
35 -3.54471 =] E
s | 8 77845
> -354472 = i
S S
g 1 @ 577850
W 354473 w i
1 -2.77855 —
-3.54474 —
-3.54475 - 277860
-3.54476 — -2.77865
-3.54477 ~—r—rrrrm—T—rrrrm—r—rrrrm
1000 10000 100000 1000000 1000

lon velocity (cm/sec.)

ne=0.5 (+21)/c.c. I

2p0
2p1

FIG. 1. Plot of energy values (in a.u.)
of 2pg and 2p, states of C°" against
ion velocity (in cm/s) for plasma elec-
tron densities n, = 10" (/c.c.) and
ne = 0.5 x 10*' (Je.c.).

-2.77870 —f—rrrrm—rrrme ™)
10000 100000 1000000 1E7

lon velocity (cm/sec.)
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-1.1149617 —
-1.1149618 —
] nE:1.0 (+19) /c.c.
-1.1149619 -
-1.1149620
-1.1149621
3: -1.1149622
s
3 -1.1149623
g
2
i -1.1149624
-1.1149625
-1.1149626
-1.1149627
-1.1149628 T T T T
1000 10000 100000

lon velocity (cm/sec.)

FIG. 2. Plot of energy values (in a.u.) of 3dy, 3d;, and 3d, states of ct
against ion velocity (in cm/s) for plasma electron density n, = 10" (/e.c.).

from Figures 2 and 3 that contrary to np states, crossover of
energy eigenvalues appears at low plasma density
(n, = 10"/c.c.). The plasma density, critical velocity, and
energy at which crossover of states occurs, are given in Table
VI. Such incidental degeneracy was reported earlier by Sen*?
in case of shell confined hydrogen atom. Thus, Figures 1-3
give a good insight into the combined effect of static screen-
ing and near field wake potential on different angular mo-
mentum states of a slowly moving ion in quantum plasma.

IV. CONCLUSION

The electrostatic potential for a moving ion under quan-
tum plasma is derived where the thermal Mach number
remains less than unity. Subsequently, the effect of such
potential on the change of the energy eigenvalues of different
states of hydrogen-like carbon ion is studied under the
framework of Rayleigh-Ritz variational method. Level cross-
ing phenomenon and incidental degeneracy are observed for
the first time in case of an ion moving in the quantum plasma
environment. The present form of the potential will help

-0.3294918 —

-0.3294920 —

nc=1.0 (+19) /c.c.

-0.3294922 —

—— 4,
S -0.3204924 o 4f|
s — 4,
> -
2 03204926 | 4,
Q
c
m}

-0.3294928 —

-0.3294930 —

-0.3294932

1000 10000 100000
lon velocity (cm/sec.)

FIG. 3. Plot of energy values (in a.u.) of 4fy, 4f1, 4f>, and 4f; states of C>
against ion velocity (in cm/s) for plasma electron density n, = 10" (fe.c.).
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TABLE VI. For different plasma electron density (/c.c.), Critical ion veloc-
ity (cm/s) and energy eigenvalue (—F in a.u.) at the crossing of different
angular momentum states. The symbol P(+Q) corresponds to P x 102.

Plasma Critical ion Energy at
Name of the density velocity crossing (—F)
crossover states (/c.c.) (cm/s) (a.u.)
2po, 2p1 0.5(+20) 7.22(+5) 3.27700464
1.0(420) 8.79(+6) 3.14214490
0.5(+21) 1.36(+6) 2.77855694
3po, 3pi 0.5(+20) 1.19(+5) 0.92995292
1.0(+20) 3.75(+6) 0.83103806
0.5(+21) 3.72(+5) 0.58490697
4po, 4p 0.5(+20) 5.78(+4) 0.23720661
1.0(420) 2.78(+6) 0.83103806
0.5(+21) 1.27(+5) 0.05775748
3dy, 3d,, 3d, 1.0(+19) 1.13(+4) 1.11496259
0.5(+20) 1.77(+4) 0.89347312
1.0(420) 1.67(+4) 0.78686862
0.5(+21) 2.24(+4) 0.39462823
4dy, 4d,, 4d, 1.0(+19) 4.70(+3) 0.35842729
0.5(+20) 7.31(+3) 0.20993047
1.0(+20) 6.51(+3) 0.14683872
0.5(+21) 7.96(+3) 0.02025229
Afo, 4f1, 4f>, 4f3 1.0(+19) 3.09(+3) 0.32949309
0.5(+20) 2.64(+3) 0.16679314
1.0(420) 2.84(+3) 0.09678679

future workers to investigate the structural properties of dif-
ferent ions under quantum plasma environment.
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ABSTRACT: The analytic form of the electrostatic potential felt by a slowly moving test charge in Maxwellian dusty
plasma is developed. It has been shown that the electrostatic potential is composed of three parts: i) the Debye-Hiickel
screening term, ii) the near-field wake potential and iii) the dust charge perturbation effect. The last two terms depend
on the velocity of the test charge, the number density of the plasma electrons and the dust grain parameters. Precise
energy eigenvalues of hydrogen-like carbon ion under such plasma environment has been estimated by employing
Rayleigh-Ritz variational calculation. The form of the potential facilitates the removal of /-degeneracy and |m|-degeneracy
in the energy levels. A detailed analysis shows that the energy levels gradually move to the continuum with increasing
plasma electron density and the variation of ion velocity. Incidental degeneracy of the energy levels and level crossing
phenomena have been observed with the variation of plasma electron density.

Keywords: Dusty plasma, variational method, one-electron atom

I. INTRODUCTION

In recent years, dusty plasmas are attracting considerable attention in the field of plasma physics research. In
addition to electrons, ions, neutrals as present in ordinary plasmas, dusty plasmas contain massive particles of
nanometer to micrometer size. The dust grains may be metallic, conducting, or made of ice particulates. Plasma
with dust particles or grains can be termed as either ‘dust in plasma’ or ‘dusty plasma’ depending on the relative
values of three characteristic lengths : 1) the dust grain radius (7 ), ii) the average inter-grain distance (@) and iii) the

Debye radius (A,). For r, < A, < a, charged dust particles are considered as a collection of isolated screened

grains, which corresponds to ‘dust in plasma’. For the condition 7, < a < 4, dust particles participate in the collective
behavior and in that case the plasma is said to be ‘dusty plasma’. Dusty plasmas are most abundant in astrophysical
objects like in the planetary rings, in cometary tails or in interstellar clouds [1, 2]. Dusty plasmas are also formed in
laboratory based experiments like dc and rf- discharges, plasma processing reactors, fusion plasma devices, solid-
fuel combustion products efc. [3]. Dusty plasmas play important role in formation of plasma crystals as under some
plasma conditions dust grains can order themselves into crystal-like structure [4, 5].

There are a number of theoretical studies of plasma wave modulation, transport phenomena of the particles, ion
drag forces, phase transitions, crystallization of dust grains under dusty plasma environment [6-13]. But the effect
of dusty plasma on the structural properties of atoms is rather scanty [14]. The most important part of such studies
is to develop an appropriate model interatomic potential from a pure electrostatic view which can mimic the conditions
of such plasma environment. Unlike the plasma modeled by exponentially screened Coulomb potential, the model
potential for dusty plasma contains a complex character [14-18]. The closed form of the far-field potential felt by a
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slowly moving test charge through unmagnetized dusty plasma in the spherical polar co-ordinate was first derived
by Shukla [15]. It is shown that the effective potential consists of three parts: exponentially screened Coulomb part,
far-field wake potential part and dust charge fluctuation term. Shukla ez al. [16] developed another form of the far-
field potential of a slowly moving test charge in a plasma that consisted of positive dust grains and electrons. The
dust grain charge fluctuations and collisions among neutral atoms, electrons and dust grains were taken into account.
In the work of Moslem et al. [17], the Debye—Hiickel screening potential and oscillatory wake field potential
distribution around a test charge particle moving in the dusty plasma medium were derived by solving the linearized
Vlasov equation along with the Poisson equation. Ali ef al. [18] also used Vlasov-Poisson equation to formulate the
electrostatic potential caused by a test charge in unmagnetized non-Maxwellian dusty plasma where the plasma
particles are : superthermal hot electrons, cold fluid electrons, neutralizing cold cations and charge fluctuating
isolated dust grains.

The aim of the present paper is to formulate the near field potential felt by an atom/ion moving slowly through
unmagnetized dusty plasma and apply the potential to find the binding energies of one-electron ion. The binding
energies of moving hydrogen-like carbon (C°*) ion under different conditions of the classical dusty plasma are
estimated by using variational method. It is observed that the /-degeneracy of the hydrogenic energy levels
corresponding to a principal quantum number is lifted under this potential. Moreover, a partial removal of the m-
degeneracy is also observed. In particular, we have calculated the energy values of C** ion in /s, 2s, 2p, and 2p,
states by varying the velocity of the ion and the plasma electron density as well. The details of the formulation of the
inter-atomic potential for slowly moving test charge under dusty plasma is given in the Sec. II, the details of the
variational method used for the atomic structure calculation is given in Sec. III, computational results are given in
Sec. IV and final conclusion in Sec. V.

II. NEAR-FIELD POTENTIAL FELT BY A SLOWLY MOVING “TEST CHARGE” IN CLASSICAL
DUSTY PLASMA

The field ( ;) of a charge ¢ moving with a velocity 3 in a dielectric medium is given by the Poisson’s equation
[20],

ﬁ.ﬁziﬁ(f—ﬁt) (1)
€y
where D = — Dﬁ(p , D being the dielectric constant of the medium and ¢ being the potential in the medium. Using

the relation and making a Fourier transform followed by an inverse Fourier transform, we obtain the expression for
the potential as [20]

.l;A_
e’

-\ q 37
o(r) = 87[350 Ik2D(]€’_]€ ﬁ)d g @

Here j=+/—1 and g is the permittivity of free space. The dielectric constant of the medium is given by,

D(IE_E'ﬁ):1+Xe+Xi+Xd 3)

where, ., |_.., is the electric susceptibility for the plasma species ‘s’ (s=e,i,d corresponding to electron, ion and

dust, respectively).

Considering the Maxwell-Boltzmann distribution for the plasma particles, the electric susceptibility due to the
thermal motion of plasma electrons and ions is given by [20],

_ [y mka
Holer T2 |72 o, “)
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The electric susceptibility due to dust grain charging and thermal motion is given as [15],

1 l—'—k'u+l Vo
YT Ny, ey - ki

— 80 m s Tv
Ay = n.gq 2 is the Debye screening length of the plasma species ‘s’. T, m, ¢ _and n_are absolute temperature,

s )

mass, charge and equilibrium number density respectively of species ‘s’. The thermal speed of the plasma species

K ,T,
s’ is given by, Vis — " where K, is the Boltzmann constant.

If we consider that the dust grain contains negative charges only, then the quasi-charge neutrality condition

within the effective Debye-sphere of the plasma becomes, n,9, =n,q, tn,q, . For v >> ‘l;ﬁ , electric
susceptibility due to the dust grain becomes,
1 7 ki v v (#ﬁ)
~—|1-7. = + ed _ g ed
Y er [ N2 kvth v, e (%)
Using (4) and (5), one can obtain the modified form of (3) as,
D(Ig —E-u) 1+ L Y Z (];ﬁ)
’ k2 s=e,i,d /13 cﬂ’zz 2 k3 s=e,id Y, tv s /112‘/3
1 1 v, (k)
= 1 4+ —— ed
k> 2 2 k3 \;d v, A kzlz v:
B AN iy v, (ki)
22 | e 2 k3 =, vn/lf k2/12 V2 ©)
where
I I v,
112 s=e,i,d ﬂ’% ch"i2 (7)

For very slowly moving atom/ion i.e. v,, >> u , which means the thermal Mach number (defined as the ratio of

ion velocity and thermal velocity of plasma particles) remains below unity, the inverse of dielectric function becomes,

1 K2 Y 1 vlka
———\® 2t21+] - —= Z . 221/@(2”)
Dlk,~k-ii) 1+k°Z 1+&22 V2 k \_c,dm TeRE v

15”78 1 c

kZ 2 kZ 3

cos(n +9) + jo,

Tz T (1+4£222) (1+k°22) costr ) ®)
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4
A 4 1 uvedﬂ’t
o =1/—uﬂ — o, =—>"*%
where, 1 5 Z N and 92 22 )

s=e,i,d Vis/ts iVe

Here, 0 is the angle between 7 and 7; and (9 + ;7) is the angle between j and j . Using equation (8) one can
dissolve equation (2) into three parts that may be given as follows:

P=¢, +, to;
where we define the first part as
2
q A i q
b =33 5o dk= e/ (10)
8z ey " 1+ k74, Adre,r

The method of solving the integral can be found in ref. [21]. Thus the potential ¢, is of the form of Debye-
Hiickel potential [22], where A, signifies the effective or total Debye length of the plasma. The inverse of Debye

length is known as Debye parameter or simply screening parameter (n) i.e. # = %1[ . The second part of the

potential @ is

2 _ jkrcos
k e] n

0, = j L f(

cosln + 8 )sinndndrdk
8w'e,* (1+4°22 ) (n+Osinnd (11)

Here we have used the volume element ¢°k = k’sinndndzdk in spherical polar coordinate (k,#,7). One can
nan n

get the imaginary solution of the angular part of the integral (11) as,

2z 7w .
o cos . _4mcos @ ( coskr sinkr
,Io,,'[oej " cos (77 + 9)sm ndndr = I ( PR (12)
Now using (12), equation (11) reduces to
qo,cos6 Tk j(kr)
P, == : : dk (13)

272.2‘90 k=0 (1 + kzﬂtz)z

Here j, (kr) is the spherical Bessel function of first order [19]. The solution of integral (13) can be done using the
standard Meijer’s G function [19] and the solution technique described in [21], where in the limit » < 2 A the above
integral becomes

kJ:O (1 E /1? )2 ) /1;1 "o /@ , K (x) being the Macdonald function or modified Bessel function of second
kind [19].

Using the above result and putting o, from equation (9) one can get from equation (13) as,

p, =—-Crk, (% jcos@ (14)

76 \ International Review of Atomic and Molecular Physics, 6 (2), July-December 2015




Binding Energies of Hydrogenlike Carbon under Maxwellian Dusty Plasma Environment

qu 1
. o . C= . § .
This potential is called the near field wake potential and 4z, Pr v /13 is the wake-coefficient.
Let us now consider the third part of potential,
3 jkrcosy
_.qo, ¢ ke .
;=] cos(;y+0)sm;7d;7drdk
3 87[380 j(l+k2212)2 (15)

Here, the angular part of the integration is same as the angular part in wake potential. So, by using equation (12)
one can rearrange equation (15) in the following way,

3

_ go,cosf T k(krcoskr —sinkr)

= dk
2ne,r? 2, (l+k2/1[2 )2 (16)

Let us now consider a standard integral [23],

ksinkr . ar -

k:0(1+k2,13)2d “ar (17)
© k?cos kr 0 ¢ ksinkr P r) 7
L[ rcosar O p _Ksmkr % LT
kj.o (1+k2/1?)2 or kj.o (1+kzﬂt2)2 4/15[ ﬂz je (18)

Using the integrals (17) and (18) and the value of o, from equation (9), equation (16) takes the following form,

P, = —Deiﬁ’ cost) (19)

— uved
where, D= de. DI2V2 This potential is due to dust perturbation part and will vanish if the moving test charge
0 i ¢

is static i.e. u = 0 and/or the electron-dust collision is absent i.e. v ,= 0.

I11.CALCULATION OFENERGY LEVELSOFHYDROGENLIKE ION

To estimate the modified non-relativistic energy eigenvalues of slowly moving hydrogen-like ion in the presence of
an external classical dusty plasma environment, Rayleigh-Ritz variation calculation has been done (a.u. is used
hereafter). The expectation value of kinetic energy is given by,

oryY 1(owY 1 (o¥Y |,
"= Ka_J %) *rarala) }d r 20

Where 737 = 1-2sinfd6dwdr 1S the volume element in spherical polar (r, H,a)) co-ordinate ()< < o0,

0<0<x, 0<w<2x). The effective potential energy of the atom can be written as,

e

= —%eiru’ +CrK ,(r/ 2, Jcoso +De”" " cosh (21)

Thus the expectation value of potential energy is given by,
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V)= JVeffy/ d’v (22)
The normalization term is given by,
N) = j?’zd3f (23)

The trial wavefunction is taken as, ¥ = R, (ar)Ylm (H,w)A(H), where R, (ar) is the radial part of hydrogenic

wavefunction [24] with ‘o’ as variation parameter, Y, (00)) is the spherical harmonics [24] and A(@) = (y + ﬂcos@)

is the orbital distortion part [21] with “y* and ‘B’ as variation parameters. For the static ion (# = 0), wake and dusty
potentials will be absent and in this case we set y =1 and § = 0.

Let us now consider the one-electron auxiliary integral for radial part,

/
e dr =L

w(p.p)= = (24)
0 P

”"—aS

Iz

and the integral necessary to evaluate the expectation value of wake potential,

pvpcf :j ol ””K fr)dr

_ N7 (28) T(p+v)T(p-v) R VU | .P—&j
C(pre)™ r(p+ ) m[”*”é””é’wa (25)

., L F (a,b; c; x) is the confluent Hypergeometric function and Re(p) > ‘Re(v)‘ and Re(p +§) > ([23].
The expectation values using (20),(22) and (23) for the 1s,, 2s,, 2p, and 2p, states are given as follows.

where

1s —state

Using the trial wavefunction as lP(r, Qa)) =e " A(H), the expectation values can be derived as

(T)= [7/2 + %Zjazwl (2,2a)+ 23£W1 0.2a)

V)= —2q[72 + %ZJWI (1L,2a + )+ %CyﬂU1 (4.0.2a, )+ %D%Wl (2,20 + 1)
(N)= 2[# +’BT]W1(2,20()

2s, — state

Using the trial wavefunction as SU(r, 0, a)) = (1 - ar)e”” A(H), the expectation values can be derived as
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<T>=a2(yz%ZJWI<z,2a>—4am<s,za>+a2m<4,za)]+252 [7(0.26) = 2007, (1.20) +a'W; (2.20)
()= —261(y2 +%2J[Wl (1204 1) =200, (220 + 1) + o'W, (3,204 )|

+§Cy,8[U1 (4,020, 1) 20U, (5.0.2a, 1) + &’U, (6,0,20,11) |

+:Dy,8[ [(2.2a+ u) = 2aW, (3,20 + p) + o'W, (4.20+ 1) |

(N)= 2@2 +%2J[Wl (2.20)—2aW, (3.2a) + o'W, (4,20) |

2p, — state

Using the trial wavefunction as, lP(r, 0, a)) = re””cosHA(H) , the expectation values can be derived as

<T>—(y3 J W, (2.20) 20cW](3,2a)+a2Wl(4,20c)]+2(; 4ﬁ5 le(z,za)

7
<V>——2q(y? ﬂ— (320(-1-/1)-1- CypU, (6020(/1)+§D)/[)’W(42a+1u)

2p, —state

Using the trial wavefunction as, lP(r, 0, a)) = —re “sinfe’” A(H) the expectation values can be derived as

2

<T>_2(§+[;_2 [ W, (2.20) - 20cW1(3,2a)+a2Wl(4,2&)]+4(%+%2]Wl(2,2a)

<V>——4q(§+—2 (32a+ﬂ)+£Cy[>’U (602au)+%DyﬁW(42a+,u)
4B
(N) 4(3+15JWI(4,20¢)

The variational energy eigenvalue is now given as,

T)+(V
E= % =E,, (a,B,y)

The parameters (a, ,By) have been optimized using Nelder-Mead algorithm [25].

(26)
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IV. RESULTSAND DISCUSSION

The energy values of Is,, 2s, 2p,and 2p, states of C** ion are given in the table 1 where, the electron densities (7,)
are taken in such a way that the dust radius (r,) remains smaller than the effective Debye length (X)) and different ion
velocities are considered for which the thermal Mach number remains below unity. We have chosen typical size of
dust radius as r,= 0.5 nm, charge accumulated on dust grain g,= 100g, and mass of dust grains as m,= 12000m,,
where m,, is the mass of hydrogen atom.

In the table 1, the first row corresponding to each state indicates the energy eigenvalue of the free static C** ion.
For a fixed value of ion velocity (u) the energy eigenvalues for all the states decreases as n, increases. Similar
feature can be seen as the ion velocity () increases for a fixed electron density 7. But the amount of decrease of
energy in the former case is much greater than the later one. Thus the effect of static screening or Debye-Hiickel
part i. e. first part of the effective potential (21), which is a function of plasma electron density (7,) and dust
parameters, is more pronounced than the effect of the second and the third part of the effective potential (21)
namely, wake-part and dusty-part, where the later two parts are dependent on ion velocity # and plasma electron
density (n,).

As shown in the table, for the static case (¢ = 0) due to the effect of Debye-Hiickel part in the potential, the
[-degeneracy gets removed at each density and as a result the energies of 2s,, 2p, and 2p, states become different.

Table1
Theenergy eigenvalues—E (a.u.) of 1s, 2s, 2p, and 2p, states of C> ion moving in dusty plasma estimated with
different sets of electron number density (n_in m®) and ion velocity (u in ms?)

State n, (m>) u (ms”) -E (a.u.) State n, (m>) u (ms”) -E (a.u.)
- - 18.0 - - 4.5
0 17.98216023 0 4.482196542
100 17.98216023 100 4.482162312
500 17.98216022 1020 500 4.482161888
102 1000 17.98216020 1000 4.482161358
5000 17.98216008 5000 4.482157116
o 10000 17.98215992 2p, 10000 4.482151815
0 17.44281241 0 3.957701449
100 17.44281012 100 3.957652599
10% 500 17.44280094 10% 500 3.957476414
1000 17.44278948 1000 3.957276511
5000 17.44271391 5000 3.955684605
10000 17.44263049 10000 3.953694721
- - 4.5 - - 4.5

0 4.482198883 0 4.482196542
100 4.482175960 100 4.482137215
102 500 4.482175932 102 500 4.482137073
1000 4.482175898 1000 4.482136897
5000 4.482175675 5000 4.482135483
2s, 10000 4.482175602 2p, 10000 4.482133716
0 3.961873870 0 3.957701449
100 3.961868049 100 3.957656795
500 3.961844765 500 3.957598066
10% 1000 3.961815660 10% 1000 3.957524654
5000 3.961664635 5000 3.956990871
10000 3.961452745 10000 3.956327567
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Because of the cos 0 term in the near field wake part and the dusty part in the effective potential, the degeneracy of
energy eigenvalues with respect to the absolute value of magnetic quantum number (|m)) is lifted (corresponding to
given n and /). For example, from the table 1, it can be seen that for ion velocity # = 1000 m/s and plasma electron
density n_= 10> m the energy eigenvalues of 2p, and 2p, states are -3.95727651 a.u. and -3.95752465 a.u., which
indicates that both the states are no longer degenerate. It is also noteworthy that for n =10 m> the 2p, state
energetically lies below 2p , while for n =10> m”, the 2p, state energetically moves above to the 2p, state, giving
rise to the level-crossing phenomenon. Thus one may opine that the relative positions of the states corresponding to
same n and /-values and different |m| values depend on the plasma density of the dusty plasma environment. Moreover,
it can also be argued that two different levels can be made degenerate i.e. incidental degeneracy [21] may occur by
tuning the plasma parameters.

If the dust charge perturbation term is removed from the effective potential (by setting v, = 0), the energy of /s,
state for n, = 10* m> and u = 1000 ms™', becomes -17.44377726 a.u., whereas with dust potential under the same
plasma conditions and ion velocity, the energy of /s, state becomes -17.44278948 a.u. (as shown in table 1). Thus
in the presence of dust potential part, the energy of 1s, state becomes more positive by an amount of 9.8778 x 10+
a.u.

V. CONCLUSION

The electrostatic potential for a moving ion under classical dusty plasma is derived where the thermal Mach number
remains less than unity and dust grain radius is smaller than the effective screening length of the plasma. Subsequently,
the effect of such potential on the change of the energy eigenvalues of different states of hydrogen-like carbon ion
is studied under the framework of Rayleigh-Ritz variational method. The removal of accidental (/) degeneracy and
absolute magnetic quantum number (|m|) degeneracy are reported in case of an ion moving in the dusty plasma
environment. Level-crossing phenomenon has been observed between 2p, and 2p, states with the variation of
plasma electron density. The present form of the potential may be useful for calculating spectral properties of other
ions within dusty plasma surrounding. The energy eigenvalues reported here may serve as benchmark for future
theoretical research and also for experimental measurements under such plasma environment.
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1 | INTRODUCTION

In a two-electron atoms/ions, the states where both the electrons are promoted to excited orbitals are termed as doubly excited states (DESs).
These states are embedded in the one-electron continuum and thus are less bound compared to the singly excited states where one electron is in
the 1s orbital and the other one is in arbitrary excited orbital. The DESs of two-electron atoms have become a subject of immense interest immedi-
ate after the pioneering observation of two-electron-one-photon peak by Madden and Codlingm while recording photo-absorption spectra of

[2-41 ysing different quantum chemical methods are employed

helium atom placed in the field of synchrotron radiation. Bulk of theoretical studies
afterwards to investigate the structural features of such states. Accurate determination of the structural properties of the DESs of different two-
electron atoms are, therefore, necessary for astrophysical data analysis,[sl diagnosis of lines observed in solar corona,’®! high temperature dis-
charges!” as well as in laboratory plasma diagnostics.®!

Depending on the angular momentum coupling scheme and parity conservation rules, these DES can be classified into two general groups as
autoionizing and nonautoionizing.!”! There are two different channels of decay of those states namely radiative channel where the DES decays to a
lower excited state by emitting a photon, while in the autoionization channel the DES decays to an ion by ejecting the other electron. The radiative
channel is predominant for the nonautoionizing states. Electron-electron correlation plays an important role in forming these kinds of states and
thus Ritz variational method with the trial wave function expanded in explicitly correlated Hylleraas type basis is proven to be the best procedure
for theoretical estimation of energy levels and other structural properties of such states. Although, there exists a large number of investigations in
the literature related to structural and spectral features of DESs having low total angular momentum (upto L = 2),110-231 hut the same for other high
angular momentum states are rather scanty.[!4#?472%! For a two-electron atom, the lowest lying doubly excited nonautoionizing F state (L= 3) of
even parity originates from 2p4f configuration. Another important aspect of this state is that it is an unnatural parity bound state, that is, it's parity

M1 instead of using the formula n= (71)L. The work done particularly on these states so far is very much countable. To be

[24]

is determined by n=(—1)

specific, Lipsky and collaborators'“™ adopted truncated diagonalization method with Cl-type basis for few (1'3Fe) states of two-electron atoms

(Z=2-5). Callaway'?® estimated the first three states of helium having 2pnf (1'3Fe) configuration using Cl-type wavefunction in the framework of

[27]

Stabilization method based on hard wall strategy. Kar and Ho'“’"' also used large number of configurations in their Cl-type basis for first three states
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of 2pnf configuration of helium atom. The energy eigenvalues of 2pnf (1=4—9) 1.3F¢ states of helium have been reported by Kar and Ho

exponentially correlated Cl-type basis set. In a separate article, Kar et al.l?”!

(28] ysing

used similar type of wavefunction and extended the calculations for the
energy levels of other iso-electronic ions (Z=3—12).

In this communication, we have made an attempt to estimate the energy eigenvalues of 2pnf 13F¢ states (1=4—20) of two-electron systems
(Z=3—18) using trial wave function expanded in multiexponent Hylleraas type basis set. We have already used such type of wavefunction to deter-
mine the structural parameters of different S, P, and D states of free and confined two-electron systems.[2’3°'41] It is worthwhile to mention that
using Hylleraas basis the energy values of 2pnf 13F¢ states [n=8—20] of two electron atoms with Z > 10 are being reported for the first time. The

effective quantum number (n*) of the outer electron for each of these states has also been calculated using the theory of quantum defect.

2 | METHOD

2.1 | Wavefunction
The coupled angular wavefunction for 1:8F state having total angular momentum L = 3 and magnetic quantum number M = 0 in terms of the indi-
vidual angular wavefunctions for pf (having angular momentum quantum numbers Iy =3 and I, =1) configuration can be written as,

1
V2

where, Y and y represents the spherical harmonics for the coupled and uncoupled states, respectively. Using the standard expressions for spherical

Y =Y3s=—= AWy ' (2)-v5 ' ()i (2)] (1)

harmonics for the uncoupled states (y) in terms of individual angular coordinates (61, ¢4) and (62, ¢,), Equation 1 dissolves as,

31_ 3i

30— 768(5c05261—1)sin 615in B2sin (G —dy) 2)
With the symmetric Euler-angle (6, ¢, \s) decomposition technique,*? following two transformation relations originate:

sin B15in 025in (d, — 4 ) =sin H12c0s B (3)
. 1
cos 61 =—sin Hcos <\|/—§912> (4)

Here, 045 is the angle between r; and r;. Using these two transformation relations (3) and (4) and discarding the multiplicative coefﬁcient%

2L Equation 2 takes the form,

3cos0—5cos 30

. 5. . 5. . .
Yg;é=sm 912< 5 >+ §S|n29cos 6cos 2\ssin B12cos 912+§sm26cos 0sin 2¢5|n2612

V15

. V15 | _
=—sin 012D+ —5 sin 201,D3" + % (1—cos 2617)D3

(5)

where Dg, Dg*, and D%’ are the real angular momentum Wigner functions which depend on the Eulerian angles (6, ¢, \s) and assume the following

forms, 4%

o_ 5cos30—3cos 6
8 2
V15

D2t= —5cos 2Vsin 26cos

V15 | .
DI = —5sin2ysin 2fcos O
The total wavefunction of the system of two electrons can be written as,

W=F(r1,r2,112)Y50 (01, 1; 02, b5) Zexchange (6)

where, f(r1,r2,r12) is the radial part of the wavefunction which explicitly depends on the inter-electronic distance rq,. Following the work of Bhatia

[42]

and Temkin,'*?! one may take the 1-3F¢ state wave function of even parity due to (pf) configuration of a two electron atom as,

W=fDJ+f3" D3 +f; D3~ 7

Using the value of Yg’;é into the Equation 6 and then comparing with Equation 7 one can get,
9= —(ff)sinBy2, f2r= @ (f¥f)sin 2612, and fs~= @ (f+f)(1—cos 2645). The upper sign corresponds to the singlet state and the lower sign
to the triplet state. The symbols used here are the same as in Ref. 43. The singlet and triplet states are ensured by using following exchange proper-

ties on angular and radial wavefunctions,
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212D (0, b, V) ==(—1)""*Dk* (0, ¢, ) 8)

and

K (ry, 11, ri2) == (= DM (11, 12, 11)

(9)
K (ry,r1,r12) =2 (= )R (1 g, 1)

where €15 is the two-electron permutation operator. The trial radial wave function f(r1, r2, r12) can be written as,

P p
f(ri.r2, rz)= ZT], m2)+d Y mi(1) 8(1,2) (10)

i=1 j=1

In the second sum i <j and m;(j)=e~"", p being the nonlinear parameter. p denotes the number of nonlinear parameters which are taken in a
geometrical sequence following p;=p;_17y; v being the geometrical sequence. The function g(1, 2) containing correlation terms, is expanded into
Hylleraas basis set as follows,

g(172)=rfrzzzZC,mnr'lr’Z"rqz (11)

>0 m>0n>0

The effect of the radial correlation is incorporated through different p’s in the wave function whereas, the angular correlation effect is taken
care of through different powers of ry,. The dimension of the full multiexponent basis (N) is [ plpt1) Xs] where s is the number of terms involving rq»
and p is the number of exponents. For a fixed number of basis, p and s should be chosen in such a manner that the effect of radial as well as angular
correlation is properly incorporated in the wavefunction. In the present calculation, we have taken p = 9, that is, a 9-exponent basis set and consid-
ering s = 10, 15, 20, the expansion length of the wavefunction becomes N = 450, 675, 900 terms, respectively. The aim of the choice of the basis
set is to span the entire radial space adequately so that the desirable accuracy of the energy levels can be achieved even for very high excited states.
Specifically, the higher p values are responsible for spanning the space near to the nucleus whereas the lower one spans the space far away from
the nucleus. Thus spatial range of the basis can be tuned in a flexible manner by changing the geometrical ratio -y keeping p; constant throughout.
To have a preliminary idea about the highest and lowest nonlinear parameters in the set of p number of nonlinear parameter, we optimize the

energy eigen value of the corresponding angular momentum state with two nonlinear parameters using Nelder-Mead procedure.[‘m]

2.2 | Variational equation

The reduced variational equation for the even parity F state is obtained from the general variational equation of arbitrary angular momentum of a

(431 5
1[2 ENCANNC AYIETEN o \? o\ o\’
[<2 |:Z<arl> ( or; > +< or; ) "2 2 r% <6912 +<6912> <6912>
1(1 22 1 1)\[. 6f3 2+6f3
Jr2 (r% >[(f ) +(f3 ) }+<g E) {fs 0012 ~fs 6612}
1 <r12+r12> [3(f§)2+2(f32 ) +2(f3 ) ] v/15c0s 01, <1+12>f3f2+
1 2

sin204, T sin20q, r2

e (53 vav-a 8P @ )] Joo

sin0qo

two electron system

(12)

where, dr=r§ rf sin61 dry dry db1p; 0 <rp < 00, 0 <r, <oo; and 0 < 615 < 7. The potential energy function of two electron atom is expressed

as
V=————+— (13)

where Z is the atomic number.
After choosing the proper trial radial wave function, the energy eigenvalues are obtained by solving the generalized eigenvalue equation involv-
ing the Hamiltonian and overlap matrices given by

HC=E5 C (14)

where H and S are Hamiltonian and overlap matrices, respectively. Atomic units are used throughout. All calculations are carried out in quadruple

precision to have a better numerical accuracy.
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2.3 | Evaluation of basis integral

The following result!*”! i

00 00 ri+ry
A(m,n,l;a1,02)=J [ ’ ryrar e 4= %2rdr drodry,
r1=0Jr;=0 J|ri1—rp|

m n |

(i+i)!( —I-H()( —j+1—k)!
ST 9) 9p R P

i=0 /=0 k=0 =kl n=))!
1
(al+az)i+j+1a,1n+17,'+ka;+l+1—j—k

X

Here,m>0,n>0,1>0,and ay,a,>0.

We have also used the following formula for rl’1 with even and odd powers of rq,.

ri+ry

00 00
A(=1,n,1; 01702):J rl’le’“irldrlj r’z"e"’mdrzj rh,dri
0 0

[r1=ra|
00 ry ry+ry
J r{le’“i'idrlj rg’e’“z’zdrzj rh,dri
0 0 r—ry

00 (r2 ri+ry
+J ryer der r " le aridry J r'lzdriz
0 0 Jro—ry
=I1+12

where,

ri+ry

00 ry

l,=| rMe%rdr,| r~le-aindr rhodr

2 2 2 1 1 12Ulr12
0 0

rp—ri
1 (00 _ 3
J rye”%"dr, J

S —1,—ain I+1_ _ 1
=ik '0r1 e dr1[(r1+r2) (ra—r1) ]

Considering I+1=n and using standard Binomial expansion one can get

>
N1
AN

n! 4 o
(r1+r2)n_(r2_r1)n:2'70 (n72'71)|(2‘+1)'r3 4 1r%’+1(n=0dd)
n=—2
S n!

=2) i 212141 (n=even)
2 (n—2i-1)1(2i+1)! 2

When | is even, that is, n is odd, Equation 17 reduces to

s
N
s

| :g n! JM rm+n 2i— lefaerdr sz ’,12iefalr1dr1
2 nsg (n-2i-1)1(2i+ 1), 2 2],

Let us now use the following standard integral®®!

R
(L —pR
J, e var= P
Equation 19 now dissolves as,

n-1
2

2& nl(m+n-2i-1)! 1

ly=
2 n£z (2i+1)(n—2i—1)laF Tap 2

272 m+njl) 1
n“

When | is odd, that is, n is even, the limits of the outer sum of Equation 20 will be i =0 to "5=
the same as in Equation 20. In a similar fashion, I, integral for even | reduces to

is used in our calculations in performing the integrals involving independent coordinates rq, r, and rqo

(15)

(16)

(17)

(18)

(19)

(20)

2 otherwise the expression for integral I, will be
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ax

= 2 (m+n)! n (m)

L2 < nl(m+2i+1)! 1
n._&; <, (n=2i—1)(2i+1)!a] 2 tap+2i+2
Ty (21)
z S Z (m+2i+1)!n!{(m+n—j—1)! 1
n < (m+2i+1=)i(2i+1)!(n=2i—1)! (g, +a,)" " Td,
B 2m+n—1 (m+n)! 1
n -0 (m+n_j) (a1+a2)m+”’jd;1
and when | is odd,
| _2¢~ ni(m+2i+1)! 1
7y — (2i+1)!(n—2i—1) a2~ 1gp+2+2
w2 o (22)
2 T’"i‘“ nl(m+2i+1)!(m+n—j—1)! 1
N = (2i+1)!(n*2i*1)!(m+2i+17j)!aJ'2+1(al+az)m+n—j

3 | RESULTS AND DISCUSSIONS

The numerical values of the integral A(a,b,c;«,B) estimated using the formulae (16), (20), (21), and (22) corresponding to the different sets of
(—1, b, ¢) with the conditions b > 0, ¢ > 0 are displayed in Table 1. In the first three columns of Table 1, different powers of rq, r,, and r4,, that is, a,
b, and c are given. For each set of (a,b,c), the nonlinear parameters («, B) in the preceding column of Table 1 are varied from very low to high values.
It is to be noted that for each set, we have considered both the conditions «>p and B>« as well as b > ¢ and ¢ > b into account. The values of inte-
grals are given in the last column of Table 1. It is worthwhile to mention that the results match exactly with those obtained from the standard sym-
bolic computation software Maple, which ensure the numerical accuracy of the expression for A(—1, b, c; a, B) over the complete range of nonlinear
parameters.

Table 2 shows the convergence behavior of the energy eigenvalues of 2pnf [n=4—20] 18F¢ states of Li* with respect to the total number
of terms N =450, 675, and 900 in the 9-exponent basis set. To determine the limiting values of the 9-exponents, that is, the highest and lowest
p of the geometrical sequence, we have used a double exponent basis and optimized the energy eigenvalues of 2pnf [n=4—20] 13F¢ states
using Nelder-Mead algorithm™*# upto N < 57. For Li* we have obtained three sets of limiting values of the nonlinear parameters as (0.25,1.5),
(0.1,1.5), and (0.05,1.5). The first set is optimized for 2p4f state and the third one is for 2p20f state. In the 9-exponent basis set, the intermedi-
ate p values are generated in a geometrical progression as described in the methodology. The lower boundness of the states 2pnf [n=4—20]
depends on the sets of nonlinear parameters. In Table 2, (0.25,1.5) set gives 2pnf [n=4—6], (0.1,1.5) set gives 2pnf [n=7—14], and (0.05,1.5) set
gives 2pnf [n=15—-20] states as lower bounds. From Table 2 one can find that the energy eigenvalues of 2p4f to 2p7f are converged upto
eighth decimal place, 2p8f to 2p12f are converged upto 6th decimal place, 2p13f and 2p14f are converged upto fifth decimal place, and the
rest of the configurations are converged upto fourth or third decimal place. It is evident that if the number of terms N in the basis set is further
increased then the convergence behavior will be better. But the accuracy provided by the experiments in spectroscopic measurements, such as
measurement of transition energies, is maximum of the order of meV. For this reason we have limited our study of convergence upto N =900
terms to complete our whole study without so much time consumption but with reasonable accuracy. Similar features are seen for the other
ions (Z=4-18) also.

The energy eigenvalues of 2pnf [n=4—20] 13F¢ state of Be?™ to Ar'®" ions for N =900 are given in the Table 3. We have compared
our results with those reported by Kar et al??! for 2pnf [n=4—7] 13F¢ state of Li* to Mg'®" ions. The comparison shows that their’?!
results are more bound at the sixth decimal place for the singlet states and the fifth decimal place for the triplet states. In contrast, the pres-
ent energy values are lower bound than that of the values obtained by Lipsky et al.?*! for the ions Z=2—5. For example, Lipsky et al.?¥
obtained the energy value of 2p4f (1F¢) state as —1.252331a.u., whereas the present energy value of that state is —1.252511 a.u., which is
more negative at the forth decimal place of the former result. It is worthwhile to mention here that, the general wavefunction for F® state is

of the form,
Yr=Vpr T Pag (23)

where, s and @4y are the wavefunctions corresponding to pf and dd configurations. The reason of our upper bound-ness of the energies in
comparison to that of obtained by Kar et al,’? lies in the fact that in our basis set expansion, we did not incorporated the terms containing

3d4d and it is higher orbital configuration for singlet state and 3d? and it is higher orbital configuration for triplet state. Since 3d?
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TABLE 1 Values of the integral A(—1,b,c;a,8) withb >0,¢c >0

a B c o [ A(-1.b,c;a,B)
-1 3 1 0.001 0.0007 0.28559528767775331707[+21]
1.0 0.05 0.15360000000000000000[ +09]
20.0 5.5 0.47686757610943117397[-03]
3.5 17.0 0.96589203802113271165[-05]
100.0 350.0 0.91390492056881061462[-13]
=i 5 4 0.001 0.0007 0.26402051936417828650[ +41]
1.0 0.05 0.74328146657279995997[+19]
20.0 5.5 0.14386689860441544219[-02]
3.5 17.0 0.30459951447336372127[-06]
100.0 350.0 0.49414345416949721222[-21]
-1 8 3 0.001 0.0007 0.58191730025066474307[+49]
1.0 0.05 0.32701328916480000000[ +24]
20.0 5.5 0.52167519715284150325[-02]
3.5 17.0 0.55942949732896543776[-07]
100.0 350.0 0.28886756507090846543[-24]
=il 6 10 0.001 0.0007 0.19197770405852866241[+71]
1.0 0.05 0.54864986187432244132[+36]
20.0 55 0.54776907438776790329[+00]
3.5 17.0 0.36023828054357135428[-05]
100.0 350.0 0.57274425067467716692[-30]
-1 7 7 0.001 0.0007 0.38172873195468099110[+62]
1.0 0.05 0.57144154565308317696[+31]
20.0 5.5 0.68786695213944311113[-01]
3.5 17.0 0.19282009528632468693[-06]
100.0 350.0 0.43369363418665017720[-28]
=i 4 4 0.001 0.0007 0.20696368991201417656[+37]
1.0 0.05 0.41295053537279907736[+17]
20.0 5.5 0.88024390534495116558[-03]
3.5 17.0 0.72936362878251620218[-06]
100.0 350.0 0.22573006227254058873[-19]

The notation x[y] stands for xx10”.

configuration lies energetically below than that of 3d4d configuration, convergence behavior of the present energy eigenvalues for the singlet
states are better than the triplet states in comparison to the values obtained by Kar et al.?’! To the best of our knowledge, there are no
other results for the nonautoionizing 13F¢ state energies of two-electron ions from A" to Ar'®* in the literature for a comparison with our
results. Also for the first time, we have estimated the energies of the 2pnf [n=8—20] configurations of 1:3F¢ state for Li* to Ar!*"™ ions. The

effective quantum numbers n* of 2pnf [n=4—20] 13F¢ states for Z=3—18 have also been calculated by using the relation

@]

where, E is the energy of the state below total ionization and N is the inner electron quantum number.

E=

1
2
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TABLE 2 Energy eigenvalues (- E in a.u.) of 2pnf [n=4—20] 13F¢ states of Li* ion for different number of terms N in the basis set

Singlet Triplet
State N =z State N =z
2paf 450 1.2525115270 2p4af 450 1.2524200395
675 1.2525115295 675 1.2524200469
900 1.2525115302 900 1.2524200510
1.252515231764° 1.252450638234°
2p5f 450 1.2062924486 2p5f 450 1.2062275184
675 1.2062924503 675 1.2062275237
900 1.2062924507 900 1.2062275269
1.20629449566° 1.206251595683°
2p6f 450 1.1813051756 2p6f 450 1.1812625589
675 1.1813051766 675 1.1812625626
900 1.1813051769 900 1.1812625648
1.181306379° 1.1812794195°%
2p7f 450 1.1662888800 2p7f 450 1.1662602853
675 1.1662888817 675 1.1662602879
900 1.1662888819 900 1.1662602894
1.1662896° 1.1662720°
2p8f 450 1.1565611795 2p8f 450 1.1565468468
675 1.1565665106 675 1.1565468549
900 1.1565666592 900 1.1565468560
2p9f 450 1.1499036594 2p9f 450 1.1498995194
675 1.1499040107 675 1.1498995341
900 1.1499041490 900 1.1498995413
2p10f 450 1.1451513000 2p10f 450 1.1451515933
675 1.1451516717 675 1.1451516053
900 1.1451517819 900 1.1451516107
2pl1f 450 1.1416507793 2plif 450 1.1416427056
675 1.1416508072 675 1.1416427383
900 1.1416508095 900 1.1416427425
2p12f 450 1.1389823573 2p12f 450 1.1389760839
675 1.1389827634 675 1.1389764955
900 1.1389827676 900 1.1389765008
2p13f 450 1.1369050101 2p13f 450 1.1369000251
675 1.1369081272 675 1.1369031663
900 1.1369081476 900 1.1369031921
2p14f 450 1.1352498253 2p14f 450 1.1352456879
675 1.1352631325 675 1.1352591226
900 1.1352631857 900 1.1352591778
2p15f 450 1.1339035029 2p15f 450 1.1339000066

(Continues)
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TABLE 2 (Continued)

State

2p16f

2p17f

2p18f

2p19f

2p20f

2Reference [29]

Singlet
N

675
900
450
675
900
450
675
900
450
675
900
450
675
900
450
675
900

rernational Journal of
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=z

1.1339367518
1.1339369311
1.1327738003
1.1328515228
1.1328520996
1.1318011954
1.1319520646
1.1319533127
1.1309511106
1.1311979116
1.1312008804
1.1302005884
1.1305543930
1.1305634926
1.1284727319
1.1299948987
1.1305628999

State

2pl6f

2p17f

2p18f

2p19f

2p20f

Triplet
N

675
900
450
675
900
450
675
900
450
675
900
450
675
900
450
675
900

=g

1.1339334791
1.1339336684
1.1327707800
1.1328488095
1.1328493770
1.1317984937
1.1319498125
1.1319511390
1.1309484992
1.1311959750
1.1311990709
1.1301974746
1.1305527634
1.1305584725
1.1284716986
1.1299933567
1.1300384361

TABLE 3 Nonrelativistic energy eigenvalues - E (a.u.) and effective quantum numbers (n*) for the 2pnf [n=4—20] 13F¢ states of helium-like

(Z=4-18) ions
lon

Be2+

State

2p4f

2p5f

2p6f

2p7f

2p8f
2p9f

2p10f
2p11f
2p12f
2p13f
2p14f
2p15f
2p16f

_Esinglet (a-u-)

2.285835

2.285840435960°

2.182357

2.182359664331°

2.126366

2.1263673969°

2.092697

2.0926982%

2.070889
2.055960
2.045295
2.037412
2.031421
2.026761
2.023067
2.020087
2.017650

n
3.967789
3.967751130897°
4.967582
4.967545627247°
5.967482
5.96744929071*
6.967443
6.96739779%
7.967404
8.967418
9.967383
10.967327
11.967302
12.967465
13.967243
14.967481
15.967389

_Etriplet (a.u)
2.285581
2.285639440599°
2.182182
2.182228822190°
2126253
2.126285925°
2.092622
2.0926454°
2.070837
2.055923
2.045268
2.037390
2.031404
2.026748
2.023056
2.020078
2.017643

e
3.969553
3.969146875345°
4.969967
4.969328681292°
5.970152
5.9693738957°
6.970263
6.9693829*
7.970328
8.970384
9.970355
10.970553
11.970541
12.970616
13.970575
14.970835
15.970556

(Continues)
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DUTTA €T AL N-I'-UM
H EMISTRY
TABLE 3 (Continued)
lon State ~Eginglet (a.u.) n* ~Etriplet (a.0.)
2p17f 2.015631 16.967305 2.015625
2p18f 2.013939 17.967616 2.013934
2p19f 2.012508 18.967597 2.012503
2p20f 2.011286 19.968077 2.011282
B3+ 2p4f 3.631775 3.973172 3.631307
3.63178147087° 3.97314696448° 3.631390336345?
2p5f 3.448482 4973017 3.448167
3.44848492847° 4.972994373812 3.44823320775°
2p6f 3.349239 5.972957 3.349037
3.349240870°7 5.972932525? 3.349084879°
2p7f 3.289536 6.972917 3.289402
3.2895368* 6.9729005° 3.2894359°
2p8f 3.250851 7.972906 3.250759
2p9f 3.224363 8.972896 3.224297
2p10f 3.205425 9.973543 3.205376
2plif 3.189685 11.120984 3.189641
2p12f 3.178997 12.171951 3.178965
2p13f 3.170688 13.232561 3.170662
2p14f 3.164094 14.305068 3.164070
2p15f 3.158758 15.394183 3.158735
2p16f 3.154394 16.497405 3.154373
2p17f 3.150779 17.616189 3.150760
2p18f 3.147739 18.756824 3.147734
2p19f 3.145161 19.919983 3.145124
2p20f 3.142965 21.102377 3.142716
c* 2p4f 5.290270 3.977107 5.289558
5.29027795753° 3.97708682340° 5.289661360120°
2p5f 5.004636 4.976980 5.004162
5.00463919882° 4.976964184122 5.00424519430°
2p6f 4.849907 5.976937 4.849606
4.849908858° 5.976921310% 4.849665342°
2p7f 4756793 6.976915 4.756594
4.75679392° 6.9769022% 4.75663661°
2p8f 4.696445 7.976907 4.696308
2p9f 4.655116 8.976907 4.655019
2p10f 4.625579 9.976920 4.625508
2p11f 4.603741 10.976902 4.603687
2p12f 4.587141 11.976881 4.587099
2p13f 4.574225 12.977167 4.574192

WILEYL2*"

e
16.970563
17.970839
18.971390
19.971616
3.975008
3.974681092280°
4.975440
4.97493037865°
5.975650
5.975011116°
6.975759
6.9750395%
7.975822
8.975878
9.976583
11.124768
12.175559
13.236328
14.309461
15.399430
16.503302
17.622684
18.758887
19.938287
21.250158
3.978900
3.978639250204°
4.979319
4.97890824179°
5.979510
5.979002189*
6.979620
6.979040226°
7.979690
8.979715
9.979742
10.979760
11.979768
12.980053

(Continues)
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TABLE 3

lon

Oé+

(Continued)
State
2p14f
2p15f
2p16f
2p17f
2p18f
2p19f
2p20f
2paf

2p5f

2p6f

2p7f

2p8f

2p9f

2p10f
2p11f
2p12f
2p13f
2p14f
2p15f
2p16f
2p17f
2p18f
2p19f
2p20f
2p4f

2p5f

2p6f

2p7f

2p8f

2p9f
2p10f

International Journal of

UANTUM DUTTA €T AL

HEMISTRY
~Eginglet (a.u.) n* ~Etriplet (a.0.) n*
4.563980 13.977609 4.563954 13.980450
4.555713 14.978790 4.555691 14.981748
4.548938 15.982028 4.548919 15.985132
4.543310 16.988730 4.543294 16.991869
4.538579 18.000291 4.538565 18.003558
4.534542 19.023099 4.534529 19.026680
4.531002 20.079835 4.530991 20.083399
7.261297 3.980066 7.260319 3.981780
7.26130514460? 3.98005218186* 7.260439353307 3.981569320540°
6.850806 4.979961 6.850162 4.982172
6.85080960411° 4.97994902415° 6.85025899833 4.981839016900°
6.628362 5.979929 6.627954 5.982354
6.628363930° 5.979917697° 6.628024153° 5.9819369788°
6.494464 6.979916 6.494196 6.982449
6.4944651* 6.9799055% 6.4942457° 6.981978867
6.407668 7.979909 6.407483 7.982521
6.348211 8.980044 6.348079 8.982700
6.305718 9.980115 6.305621 9.982795
6.274294 10.980322 6.274221 10.983007
6.250405 11.980607 6.250348 11.983331
6.230878 13.038673 6.230827 13.041814
6.216116 14.055261 6.216075 14.058425
6.204192 15.076329 6.204159 15.079471
6.194429 16.101480 6.194401 16.104728
6.186279 17.138800 6.186257 17.141878
6.179393 18.191342 6.179374 18.194520
6.173492 19.266428 6.173476 19.269607
6.168348 20.377538 6.168335 20.380595
9.544842 3.982365 9.543587 3.983983
9.54485107280% 3.98235280803* 9.54371957137? 3.983812014932°
8.986986 4.982273 8.986164 4.984349
8.98698988676% 4.982263479837 8.98627272866% 4.984074551558°
8.684600 5.982251 8.684082 5.984515
8.684602473° 5.982239697° 8.684160333° 5.9841724017°
8.502546 6.982246 8.502206 6.984609
8.50254794% 6.98223230° 8.5022626" 6.98421535%
8.384518 7.982239 8.384284 7.984669
8.303666 8.982246 8.303499 8.984717
8.245861 9.982475 8.245738 9.984973

(Continues)
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TABLE 3 (Continued)
lon State ~Eginglet (a.u.) n* ~Etriplet (a.0.)
2p11f 8.203121 10.982612 8.203028
2pl12f 8.170624 11.982929 8.170552
2p13f 8.145344 12.983282 8.145287
2pl4af 8.125210 13.988255 8.125164
2p15f 8.107893 15.069069 8.107851
2p16f 8.094587 16.094123 8.094553
2p17f 8.083519 17.127359 8.083490
2p18f 8.074224 18.168157 8.074199
2p19f 8.066230 19.233382 8.066213
2p20f 8.059229 20.338356 8.059188
EZ# 2p4f 12.140900 3.984194 12.139356
12.14090927076° 3.98418501875° 12.13950016801°
2p5f 11.413173 4984113 11.412168
11.41317664739? 4.98410609294 11.41228577247°
2p6f 11.018620 5.984096 11.017988
11.018622523 5.984087511° 11.018073607?
2p7f 10.781034 6.984122 10.780619
10.7810413 6.9840831° 10.7806871°
2p8f 10.626979 7.984215 10.626684
2p9f 10.521423 8.984534 10.521219
2p10f 10.445916 9.985718 10.445777
2p11f 10.389938 10.990131 10.389834
2p12f 10.347096 12.003409 10.347009
2p13f 10.313940 13.014067 10.313879
2p14f 10.287695 14.024516 10.287646
2p15f 10.266389 15.044133 10.266342
2p16f 10.248509 16.096286 10.248468
2p17f 10.233047 17.209515 10.232999
2p18f 10.211977 19.181068 10.211908
2p19f 10.186256 22.856023 10.186170
2p20f 10.177034 24.798841 10.176961
Ne8+t 2p4f 15.049466 3.985684 15.047626
15.04947593532° 3.98567656525° 15.04778041165°
2p5f 14.129364 4985612 14.128172
14.12936788309° 4.98560578775% 14.12829797405°
2p6f 13.630421 5.985596 13.629671
13.630422927° 5.985590933 13.629763942°
2p7f 13.329943 6.985595 13.329452
13.329944442 6.98558854 13.3295192°

International Journal of M
QuaNtum WILEY

=
10.985127
11.985458
12.985829
13.990825
15.072002
16.097016
17.130333
18.171217
19.235851
20.345399
3.985721
3.985578204205°
4.986059
4.985830437001°
5986213
5.9859262493
6.986332
6.985969246
7.986562
8.986847
9.987881
10.992289
12.005761
13.016168
14.026629
15.046635
16.098959
17.213339
19.188680
22.872085
24816255
3.987123
3.987002559633°
4.987436
4.987243469809°
5.987583
5.9873363597°
6.987662
6.98737884°

(Continues)
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TABLE 3

lon

Na9+

Mg10+

(Continued)
State
2p8f
2p9f
2p10f
2p11f
2p12f
2p13f
2p14f
2p15f
2p16f
2p17f
2p18f
2p19f
2p20f
2paf

2p5f

2p6f

2p7f

2p8f

2p9f

2p10f
2p11f
2p12f
2p13f
2p14f
2p15f
2p16f
2p17f
2p18f
2p19f
2p20f
2p4f

2p5f

2p6f

International Journal of

UANTUM DUTTA €T AL

HEMISTRY
~Eginglet (a.u.) n* ~Etriplet (a.0.) n*
13.135092 7.985630 13.134756 7.987743
13.001597 8.985661 13.001357 8.987812
12.906154 9.985783 12.905978 9.987948
12.835548 10.986268 12.835416 10.988429
12.781773 11.988858 12.781669 11.991071
12.739992 12.990598 12.739911 12.992790
12.706857 13.992406 12.706793 13.994571
12.680121 14.994961 12.680068 14.997167
12.658004 16.010079 12.657957 16.012461
12.639445 17.042215 12.639406 17.044599
12.622479 18.184305 12.622428 18.188092
12.604086 19.725651 12.604043 19.729727
12.592190 20.959726 12.592141 20.965299
18.270539 3.986919 18.268398 3.988277
18.27054868630? 3.98691334478% 18.26856003131° 3.988174230763°
17.135558 4.986855 17.134175 4.988571
17.13556233814? 4986849143387 17.13430934555% 4.988403784836?
16.520001 5.986841 16.519134 5.988703
16.520002960° 5.986837049° 16.519231389 5.9884933851°
16.149256 6.986839 16.148688 6.988777
16.14925691* 6.986836037 16.14875893 6.98853510°
15.908826 7.986843 15.908437 7.988826
15.744092 8.986848 15.743816 8.988852
15.626317 9.986856 15.626114 9.988879
15.539211 10.986875 15.539057 10.988918
15.472528 11.994720 15.472856 11.989063
15.420942 12.998155 15.421353 12.989138
15.379978 14.003405 15.380494 13.989257
15.346841 15.012883 15.347535 14.989455
15.319621 16.028399 15.320534 15.990935
15.296921 17.053775 15.297692 17.015664
15.277685 18.096176 15.278779 18.031692
15.261007 19.173631 15.260964 19.176663
15.246294 20.303240 15.246355 20.298136
21.804116 3.987960 21.801669 3.989243
21.80412595849° 3.98795494500° 21.801838953682 3.9891542463197
20.431755 4.987900 20.430180 4.989517
20.43175918580° 4.987896173867 20.430319957237 4.989372864234°
19.687360 5.987890 19.686374 5.989640

(Continues)
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TABLE 3 (Continued)

lon State ~Eginglet (a.u.) n* ~Etriplet (a.0.) n*
19.687362146 5.987886177° 19.686476020% 5.9894590800*
2p7f 19.238977 6.987890 19.238332 6.989710
19.23897839° 6.98788616° 19.23840642° 6.989499690?

2p8f 18.948178 7.987902 18.947737 7.989761
2p9f 18.748924 8.987912 18.748610 8.989797
2p10f 18.606463 9.987931 18.606232 9.989834
2p11f 18.501095 10.987975 18.500921 10.989883
2p12f 18.420940 11.988576 18.420806 11.990484
2p13f 18.358596 12.988978 18.358489 12.990916
2pl4af 18.308896 13.994956 18.308811 13.996882
2p15f 18.267538 15.037822 18.267466 15.039846
2p16f 18.232922 16.116563 18.232876 16.118155
2p17f 18.204634 17.194470 18.204563 17.197454
2p18f 18.181584 18.253195 18.181526 18.256111
2p19f 18.161895 19.331296 18.161838 19.334700
2p20f 18.144794 20.441013 18.144739 20.444896

AL+ 2p4f 25.650197 3.988848 25.647442 3.990063
2p5f 24.017954 4.988793 24.016185 4.990319
2p6f 23.132498 5.988785 23.131391 5.990436
2p7f 22.599107 6.988786 22.598384 6.990501
2p8f 22.253153 7.988813 22.252658 7.990566
2p9f 22.016098 8.988837 22.015745 8.990618
2p10f 21.846601 9.988900 21.846342 9.990694
2p11f 21.721220 10.989122 21.721025 10.990919
2p12f 21.625579 11.993058 21.625427 11.994879
2p13f 21.551393 12.994549 21.551273 12.996378
2p14f 21.492519 13.996722 21.492424 13.998532
2p15f 21.445031 14.999273 21.444953 15.001102
2p16f 21.406172 16.002219 21.406106 16.004098
2p17f 21.373949 17.006348 21.373892 17.008295
2p18f 21.346587 18.025782 21.346539 18.027734
2p19f 21.323359 19.051988 21.323317 19.054005
2p20f 21.302666 20.130941 21.302629 20.133038

S 2p4af 29.808779 3.989615 29.805714 3.990768
2p5f 27.894154 4.989564 27.892189 4.991009
2p6f 26.855415 5.989556 26.854187 5.991118
2p7f 26.229645 6.989560 26.228843 6.991181
2p8f 25.823763 7.989567 25.823215 7.991221
2p9f 25.545631 8.989574 25.545241 8.991251

(Continues)
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TABLE 3

lon

P13+

sl4+

(Continued)
State
2p10f
2p11f
2p12f
2p13f
2p14f
2p15f
2p16f
2p17f
2p18f
2p19f
2p20f
2paf
2p5f
2p6f
2p7f
2p8f
2p9f
2p10f
2p11f
2p12f
2p13f
2p14f
2p15f
2p16f
2p17f
2p18f
2p19f
2p20f
2p4f
2p5f
2p6f
2p7f
2p8f
2p9f
2p10f
2p11f
2p12f
2p13f
2p14f

International Journal of

UANTUM DUTTA €T AL
HEMISTRY

~Eginglet (a.u.) n* ~Etriplet (a.0.) n*
25.346763 9.989584 25.346476 9.991278
25.199667 10.989620 25.199451 10.991316
25.087774 11.990110 25.087606 11.991824
25.000743 12.990352 25.000611 12.992064
24.931698 13.990664 24.931592 13.992382
24.876004 14.991052 24.875918 14.992767
24.830405 15.992084 24.830333 15.993826
24.792037 17.010200 24.791975 17.012006
24.759949 18.029525 24.759899 18.031259
24.730700 19.138353 24.730647 19.140552
24.706440 20.231656 24.706399 20.233665
34.279865 3.990284 34.276486 3.991379
32.060355 4.990236 32.0581%94 4.991607
30.856109 5.990230 30.854760 5.991710
30.1305%4 6.990231 30.129713 6.991767
29.659995 7.990235 29.659393 7.991802
29.337504 8.990243 29.337076 8.991831
29.106914 9.990249 29.106599 9.991852
28.936353 10.990264 28.936115 10.991876
28.806642 11.990433 28.806457 11.992060
28.705727 12.990535 28.705581 12.992168
28.625668 13.990657 28.625552 13.992278
28.561089 14.990823 28.560995 14.992439
28.508229 15.991303 28.508151 15.992931
28.464302 16.994948 28.464236 16.996601
28.426749 18.021466 28.426693 18.023139
28.395128 19.047073 28.395079 19.048800
28.366136 20.159605 28.366097 20.161235
39.063452 3.990872 39.059758 3.991916
36.516557 4.990827 36.514199 4.992130
35.134583 5.990821 35.133111 5.992229
34.301950 6.990823 34.300989 6.992283
33.761851 7.990826 33.761195 7.992314
33.391724 8.990828 33.391257 8.992337
33.127066 9.990830 33.126723 9.992351
32.931304 10.990831 32.931044 10.992365
32.782444 11.990841 32.782244 11.992373
32.666619 12.990845 32.666462 12.992376
32.574731 13.990845 32.574604 13.992391

(Continues)
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TABLE 3 (Continued)

lon State ~Eginglet (a.u.) n* ~Etriplet (a.0.) n*
2p15f 32.500609 14.990873 32.500506 14.992416
2p16f 32.439946 15.991035 32.439860 15.992598
2p17f 32.389652 16.991738 32.389581 16.993286
2p18f 32.346881 18.008851 32.346819 18.010461
2p19f 32.310679 19.029190 32.310626 19.030814
2p20f 32.278212 20.108901 32.278167 20.110527

cltst 2p4f 44159541 3.991393 44.155530 3.992389
2p5f 41.262760 4991351 41.260203 4.992593
2p6f 39.690835 5.991345 39.689240 5.992686
2p7f 38.743714 6.991348 38.742674 6.992737
2p8f 38.129331 7.991352 38.128620 7.992770
2p9f 37.708279 8.991378 37.707774 8.992812
2p10f 37.407184 9.991480 37.406812 9.992929
2p11f 37.184473 10.991578 37.184192 10.993036
2p12f 37.015107 11.991786 37.014891 11.993241
2p13f 36.883273 12.992484 36.883102 12.993949
2p14f 36.778449 13.995845 36.778312 13.997313
2p15f 36.694092 14.997323 36.693981 14.998786
2p16f 36.625059 15.999056 36.624966 16.000544
2p17f 36.567812 17.001815 36.567733 17.003332
2p18f 36.519640 18.009615 36.519572 18.011167
2p19f 36.478161 19.037881 36.478103 19.039445
2p20f 36.442081 20.091848 36.442022 20.093717

Arlé* 2p4af 49.568131 3.991858 49.563803 3.992810
2p5f 46.298963 4991818 46.296208 4.993004
2p6f 44.524864 5.991814 44.523147 5.993092
2p7f 43.455887 6.991816 43.454767 6.993141
2p8f 42.762436 7.991821 42.761671 7.993173
2p9f 42.287194 8.991830 42.286649 8.993201
2p10f 41.947327 9.991958 41.946927 9.993339
2p11f 41.695944 10.992045 41.695642 10.993433
2p12f 41.504770 11.992248 41.504538 11.993633
2p13f 41.356011 12.992546 41.355828 12.993935
2pl4af 41.237637 13.996279 41.237489 13.997683
2p15f 41.142415 14.997749 41.142295 14.999150
2p16f 41.064482 15.999591 41.064383 16.000994
2p17f 40.999872 17.002176 40.999787 17.003622
2p18f 40.945690 18.006010 40.945617 18.007484
2p19f 40.898984 19.030762 40.898919 19.032313
2p20f 40.858603 20.073679 40.858545 20.075302

“Reference 29
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4 | CONCLUSIONS

Explicitly correlated multiexponent Hylleraas type basis in the framework of Ritz variational principle can yield reasonably accurate energy eigenval-
ues for L3F¢ metastable bound states due to (pf) configuration of two-electron atoms (Z=3—18). The form of the wavefunction written as a linear
combination of the product of correlated radial part and spherical top functions as an angular part is employed in the present work for the first time.
The variational equation and related basis integrals are thus relatively different than the previous works. Multiexponent nature of the radial wave-
function is also an important aspect of the present method which has the potential to apply for the resonant states of the same symmetry in the
purview of modified stabilization method.*?3% The estimated data are in good agreement with the few available theoretical data. Although, the
accuracy of the present data is less than Kar and Wang,[29] but it can be increased by incorporating dd configurations explicitly as well as by increas-
ing the number of terms in the expansion of the radial wavefunction. We hope that the present treatment may be considered as an alternative
method for structural computations of such high-lying DES for the future researchers in the related disciplines. A meaningful comparison between
the theoretical and experimental energy values are not possible at present due to the unavailability of the experimental data. This situation thus war-

rants high resolution experimental measurement for 1:3F¢ states of two electron atoms.
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1 | INTRODUCTION

| Tapan K. Mukherjee*

Abstract

Evaluation of energy eigenvalues of first 19 metastable bound doubly excited states
(DESs) arising from even parity F states of He atom are done within the framework
of the Ritz variational principle. The wavefunction of the given state is constructed
from different combinations of pf and dd configurations. The radial parts of the
wavefunctions for both the configurations are expanded in Hylleraas type basis set.
The nonlinear parameters of the Slater-type orbitals representing both the electrons
are taken in geometrical sequence that span the radial space properly. The present
calculated energies for the metastable bound states are lowest yet obtained. The res-
onance parameters that is, energy position and width of a large number of resonance
states lying above He*(2p) threshold are evaluated by using stabilization method. The
resonance parameters calculated in this work are in good agreement with the avail-
able theoretical results for the resonance states lying below He*(3p) threshold. The
parameters for a large number of resonance states lying between He*(3p) and
He*(7p) thresholds are being reported for the first time. The effective quantum num-
bers of all the states considered in the present work are estimated by using quantum
defect theory. Different structural properties for example, the one- and two-particle
moments, virial factors, expectation values of interelectronic angles, two-particle
radial probability densities, and so forth are estimated for both metastable-bound as
well as resonance states. The present results can be used as a benchmark for future
references.

PACS: 31.15.ac, 31.15.V-, 31.15.xt, 32.80.Zb, 32.80.Ee

KEYWORDS
autoionization, doubly excited states, electron correlation, He atom, Hylleraas coordinate,
variational method

Structural properties of two-electron atoms have drawn attention to many theoreticians as well as experimentalists. In the beginning of this cen-
tury, Tanner et al'! published a review article on the studies of two-electron atoms. Investigations on two-electron atoms are of immense interest
in recent years due to the nonseparability of the dynamical equation of motion.2=2¢ |t provides a fundamental testing ground for various quan-

tum chemical approximation methods for example, Feshbach projection operator formalism,?”-2! d,[3031

close-coupling approximation metho
multiconfigurational Hatree-Fock method,®23%! hyperspherical close-coupling method based on numerical basis set,*#3%! complex-coordinate-

rotation (CCR) method with a finite numerical basis set built on the solutions of discretized one particle Hamiltonian,[%] CCR method with minor
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operational modifications, 2637 stabilization method,¢1%38-4°! and so forth. According to the conventional classification scheme,*" DESs may be
classified on the basis of stability into two general groups as metastable bound states (nonautoionizing) and resonance states (autoionizing)
depending on the angular momentum coupling scheme and parity conservation rule. With spin-orbit induced LS-mixing the metastable bound
states will have opportunity to auto-ionize, although radiative decay will be much more probable.**42 Feldman and Novick!*®) have provided the
selection rule for autoionization where the nonradiative transition of doubly excited state (DES) to a state of ionized configuration of He takes
place. The metastable bound states exhibit fluorescence decay where one electron of DES jumps to an energetically lower state giving rise to
emission of a photon. On the basis of the criteria as provided by Saha et al.** the DESs are now classified into three groups, namely metastable-
bound, pure resonance, and fluorescence-active resonance states.['***=47 The autoionization decay rate for the fluorescence active resonance
states are very small compared to that of pure resonance states of a particular symmetry.[‘” Dominance of fluorescence decay over autoinization
for such states was established by previous studies.[1444-47]

There exists numerous investigations in the literature related to structural and spectral features of DESs of two-electron atoms up to D state,
among which few references are given.[4'5’7’12’15’48‘56] In contrast, the same studies for F® states are rather scanty.[8'9'11'16'24'57'61] The estima-
tions of the energy eigenvalues of metastable bound ' 3F° states of the He atom were done by a group of theoreticians!®?14585% py using differ-

ent quantum chemical approximation methods. Among these calculations, Kar and Ho!!

obtained the lowest energies values for first six
metastable bound states using purely exponentially correlated Cl-type wavefunction with 2200 terms in their basis set. Eiglsperger et al*!}
reported energy eigenvalues of more number of metastable bound states of He by using almost 16 000 terms in their wavefunction expanded in
Coulomb-Strumenium basis. It is to be noted that energy values of first five metastable bound states are less accurate than those obtained by Kar

and Ho.”! Eiglsperger et all*!!

opined that their methodology leads to the increase of precision of the energy eigenvalues for the states
approaching toward the He*(2p) threshold. By analyzing the results of the above works, it appears that it is difficult to obtain precise energies for
both lower and higher lying metastable bound  3F¢ states by using one particular method, although several efforts were made in this direction

since the pioneering work of Lipsky et al.l>8!

[8,57-61] [59]

A group of authors studied the properties of resonance * 3F° states of the He atom. Lipsky et al®® and Callaway®®! reported only res-

onance energy values, whereas Herrick and Sinanoglu,®” Ho and Callaway'®® and Bachau et al/®Y! reported both resonance energies and width.

Maximum number of resonance states were reported by Kar and Ho'®!

using correlated Cl type basis set in the framework of stabilization method,
though widths of few states were not reported. The width of only one such state is available in the literature, due to the calculation of Bachau
et al.l®Y All such studies are limited to the resonance » 3F¢ states below He*(3p) threshold.

We have therefore, made an extensive study on the structural properties of 3F° state of He atom where the Ritz variational principle is being
used for metastable bound states below He*(2p) threshold. We have adopted stabilization method with “soft wall” strategy®*“®! for the calcula-

tion of resonance parameters of resonance 3F¢ states above He*(2p) threshold. The wavefunction used by Dutta et al?¥

is being modified in the
present work by introducing dd configuration. Explicitly correlated multiexponent Hylleraas type basis set is being used in the present communica-
tion. We have obtained better energy values than that of the previous studies®?1%5859 for both lower and higher lying metastable bound 3F°
states of He. Moreover, the parameters of a large number of resonance states up to He*(7p) threshold have also been estimated. In the present
work, the resonance parameters for the states with extremely narrow widths below He*(3p) threshold along with the states lying between He*(3p)
and He*(7p) thresholds, are being reported for the first time. The one- and two-particle moments, virial factors, expectation values of inter-
electronic angles, two-particle radial probability densities, and so forth are estimated to justify the classification scheme as given by previous stud-
ies.B4Y The details of the methodology is given in Section 2 followed by the discussion on the results in Section 3 and finally concluded in

Section 4.

2 | METHOD

The variational equation for the even parity F state is obtained from the general variational equation of arbitrary angular momentum of a two-

electron system[¢%¢]

where the translational and rotational symmetry of the Hamiltonian are being exploited to reduce the nine-dimensional vari-
ational equation to a three-dimensional one. The three coordinates of two-electron atom are the sides of the triangle (ry, ry, r12) formed by the
two electrons and the nucleus of two-electron atom where the rotation of the triangle in space can be defined by three Eulerian angles (9, ¢, v).

Following the work of Bhatia and Temkin,'*? we can write the wave function of ¥ 3F¢ state of a two-electron atom as,
=303 +2*D3* +f2 D% (1)

[24,62] D‘(i

where Dfi(9,¢,y/) are the real angular momentum Wigner functions. are the eigenfunctions of the two-electronic angular momentum

operator I:Z, that is, I:ZD,ki =11+ 1)Dfi (in a.u.), I being the angular momentum quantum number. The symbols are same as used by Bhatia and

Temkin.'? The radial parts of the wavefunction are given by



DUTTAET AL QUANTUM_WI LEY_LZ3°f%7

CHEMISTRY
fg = -Fl sin012 =/ 261 sin€12 cosfqo
f§+= 15F1sin2912+ @GlsinHQ (2)
6 V21
fz~ = 615 (1-cos2612)

Here 64, is the angle between r; and r,. Each of the terms in the wavefunction ¥ has its own physical significance. By transforming the real

angular momentum functions (D) in the individual polar coordinates of the two electrons, it can be shown that the terms associated with F; and

F, represent pf configuration. The radial parts for pf configuration are F; = (f +f) and Fo=(fx f), with the condition f = f(ro, r1). The upper sign cor-
responds to the singlet state and the lower sign to the triplet state.

The trial radial wave function corresponding to pf configuration is expanded in Hylleraas basis set as

p

p p
[+3 m+1
f= Zr+ B 1 Ciata iy (D (2)+ > Cikg i, (D, (2) 3)
Kio1

ki=1kz=1
with the following conditions:

The powers of ry, rp, and rq, satisfy (I, m;, n;) = (0, O, 0).

A1 is the number of elements in the set of the powers of ry, 15, and rq5.
1;(j) = e~ is the Slater-type orbital. p is the nonlinear parameter.

p denotes the number of nonlinear parameters.

In the double sum of Equation (3) k; < ko.

oA wWh R

Cik,k,'s are the linear variational parameter.

Similarly, it can be shown that the terms associated with G; in Equation (2) represent dd configuration where G, = (g = 3) and g gl(ro, r1). The
trial radial wave function corresponding to dd configuration is expanded in Hylleraas basis set as

4
3= Zer 32 | Digig Ci (1), (2 ZZDrklkzgkl )Ck, (2) 4)
1

ki=1kz=

The parameters A, and Dy, have the same meaning as of A; and Cy,k, of Equation (3). The Slater-type orbital {i(j) is given by, ¢;(j) =e™“",
where ¢ is the nonlinear parameter for the dd configuration.

In the present calculation both A; = A, (symmetric basis set) and A1 # A, (asymmetric basis set) are considered. The effect of the radial corre-
lation is incorporated through different p's and ¢'s in the wave function whereas, the angular correlation effect is taken care of through different

powers of rq,. The number of terms in the basis set expansions for the trial radial wave functions f and g are Nq = p(p2+1) xAq1 and Ny = p(p—;l) XAz,
respectively. The total dimension of the multiexponent basis is N = N1 + N,. Three different types of basis sets as considered in the present work

are given below:

1. Symmetric double-exponent basis: The expansion length of the wavefunction are taken as N = 750 and 900 with p = 2. In the first case
A1 =A, =125 while A; = A, = 150 is considered for the latter.

2. Symmetric nine-exponent basis: The expansion length of the wavefunction are taken as N = 900 and 1530 with p = 9. In the first case
A4 = A, =10 while A; = A, = 17 is considered for the latter.

3. Asymmetric nine-exponent basis: The expansion length of the wavefunction are taken as N = 1350 and 1530 with p = 9. In the first case
A4 =28 and A, = 2, while A; = 32 and A, = 2 is considered for the latter.

For the calculation of metastable bound state energies all the combinations of basis set (a, b, c) are used while for the resonance states, only
the choice (b) is considered. The reason behind such choice of the basis sets is to span the entire radial space in a flexible manner so that the
desirable accuracy of the energy levels can be achieved for bound as well as resonance states. The efficacy of each of the three basis sets are dis-
cussed in details in Section 3.

In case of nine-exponent basis sets the nonlinear parameters for pf and dd configurations are taken in a geometrical sequence following p; =

pi — 171 and o; = o6 _ 172, respectively. y4 and y, are the geometrical ratio of the sequences. The higher p values are responsible for spanning the
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space near the nucleus whereas the lower one spans the space far away from the nucleus. Thus, wavefunction can be squeezed or diffused by
changing the geometrical ratios y4 or y, by keeping p4 or ¢4 constant throughout.!*!
The energy eigenvalues are obtained by solving the generalized eigenvalue equation involving the Hamiltonian (H) and overlap (S) matrices

given by

=

C=EsC ©)

where C is the column vector consisting of the linear variational parameters. Atomic units are used throughout.
The linear variational parameters Ci,x, and Dj,,, as obtained from Equation (5) are used to determine a number of expectation values for
example, repulsive potential (V,), attractive potential (—V,), interelectronic angles (01,) and different one and two-particle moments such as

(re), (r?), (r12), (r3,) of metastable bound as well as resonance °F° states of He atom.

3 | RESULTS AND DISCUSSIONS

Repeated diagonalization of the Hamiltonian matrix in the symmetric nine exponent Hylleraas basis set with N = 1530 is done in the present work
for different values of y, keeping y, constant. We have computed first 250 energy eigenroots for 1840 different values of y4 ranging from 0.456
to 0.732. The highest value of the p sequence that is, ps is fixed at 8.0 while p, of any set differs from that of the previous one by 0.001. All calcu-
lations are carried out in quadruple precision. The plot of each energy eigenroot vs y, produces the stabilization diagram in Figure 1. The closer

look at Figure 1 reveals the fact that there exists two classes of states:

1. Roots which are lying below He*(2p) threshold, are insensitive to the variation in y,. These SFe states are metastable bound that is, stable
against autoionization.
2. Roots lying above He + (2p) threshold are sensitive to the variation in y4 and gives rise to flat plateaus in the vicinity of avoided crossings. It

therefore confirms the presence of 3F® resonance states above He + (2p) threshold.

Detailed structural features of both metastable bound and resonance states are discussed in the following subsections.
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3.1 | Metastable bound states

To estimate the upper-bound energies for metastable bound 3F° states below He + (2p) threshold we have adopted three different types of basis
sets as discussed in Section 2. The energy eigenvalues using such basis sets along with their convergence behavior are given in Table 1. The
energy eigenvalues of 2pnfln = 4-9] 3F¢ states are obtained under the framework of the Ritz variational principle employing symmetric double
exponent basis. For each n, the nonlinear parameters (p4, p») and (64, 65) of pf and dd configurations respectively, are optimized using Nelder-Mead
algorithm.[*? A close look at the Table 1 shows that the energy values converge to 11th place after the decimal for the first three states (2pnf:
n = 4—6) and eighth decimal place for the later three metastable bound states (2pnf; n = 7-9).

As a second choice we have opted for one-shot diagonalization using symmetric and asymmetric nine-exponent basis set. In Table 1 the
fourth and fifth columns show the convergence behavior of the energy eigenvalues of Fé(2pnf, 4 < n < 18) states using symmetric nine-exponent
basis, whereas the last two columns show the same for Fé(2pnf, 4 < n < 22) states by using asymmetric nine-exponent basis set. It is evident from
Table 1 that the choice of asymmetric nine exponent basis set with N = 1530 is better than that of symmetric basis for obtaining the lowest
energy values for all the metastable bound states except 2p4f and 2p5f. The energy eigenvalues for assymetric basis set converge up to 9 or
10 decimal places for the low-lying metastable bound states and the nature of the convergence gradually degrades for the high-lying metastable
bound states.

The previous studies!”** reported the energy values in the range 10 to 13 decimal places. The lowest energy values obtained in the present

[9,11,58,59]

work are compared with other theoretical results in Table 2. The effective quantum numbers n” as given in Table 2 for each of the states

calculated by using the following relation

(&) (G @

where E is the energy of the state, Z is the atomic number, and N; is the inner electron quantum number. It is evident that, the quantum defect

that is, 5n = n-n" remains nearly same (sn ~ 0.05) for the first 15 states and then increases gradually for the next 4 excited states. Kar and Ho!”!

TABLE 1

of terms in the basis sets

Triple exponent

Nine exponent

Energy eigenvalues (—E in a.u.) of metastable bound 3F¢ (2pnf, n = 4) states for different choice of basis sets using different number

Symmetric basis

Asymmetric basis

Configuration N =750 N =900 N =900 N =1530 N=1350 N=1530

2p4f 0.5319913263468  0.5319913263485 0.5319913258284 0.5319913263513 0.5319913261595 0.53199132616450
2p5f 0.5203828592813  0.5203828592853  0.5203828589216  0.5203828613614  0.5203828591643  0.52038285929302
2pé6f 0.5141114291154 0.5141114291191 0.5141114286873 0.5141114291166 0.5141114290354 0.51411142927528
2p7f 0.5103445646194  0.5103445656885  0.5103445628175 0.5103445646815 0.5103445646439 0.51034456470790
2p8f 0.5079067459561  0.5079067462723  0.5079066925246  0.5079067606712  0.5079067461492  0.50790674627610
2p9f 0.5062390860001  0.5062390884513  0.5062386665548  0.5062390870716  0.5062390885034  0.50623908868559
2p10f 0.5050451459782  0.5050483116213  0.5050483206789  0.50504832666688
2p11f 0.5041441160851 0.5041683759270 0.5041685601914  0.50416856783908
2p12f 0.5034118118494  0.5034990626971  0.5035001039946  0.50350020569843
2p13f 0.5028320754932  0.5029766752202  0.5029778169414  0.50298059371759
2pl4f 0.5022960514768  0.5025584256797  0.5025686165973  0.50256887024567
2p15f 0.5012313201500 0.5022112271052 0.5022365435680 0.50223659253604
2p16f 0.5007079126835 0.5018827805313  0.5019648269563  0.50196521180896
2p17f 0.5004688559343  0.5014894480147 0.5017168163780 0.50174013288428
2p18f 0.5003084861460 0.5005964256713  0.5015196531527  0.50155210736964
2p19f 0.5013095900752  0.50139603567465
2p20f 0.5012392360422  0.50126368214833
2p21f 0.5010961347848  0.50115434103934
2p22f 0.5009902068174  0.50105114035136
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Present work Other works Sigemeais (_E1n ) and htecgve

n —E n* —E n" quantum number (n") of metastable

4 0.5319913263513 3.9534 0.5319913263465° 3.953382897° EZ;I‘:i 2pnf °F° [n = 4-22] states of
0.531968° 3.95483°
0.531985¢
0.5319913251¢

5 0.5203828613614 4.9528 0.5203828592839° 4.953382897°
0.520367° 4.95477°
0.520375¢
0.5203828583

6 0.5141114292752 5.9525 0.51411142911807 5.952501354
0.514101° 5.95476°
0.514105¢
0.5141114284¢

7 0.5103445647079 6.9523 0.510344564686° 6952306212
0.51034456422¢

8 0.5079067462761 7.9522 0.5079067461° 7.9521782°
0.50790674595¢

9 0.5062390886855 8.9521 0.506239088° 8.952090°
0.50623908834°

10 0.5050483266668 9.9520 0.50504832108¢

11 0.5041685678390 10.9520 0.50416854777¢

12 0.5035002056984 11.9519 0.50350020079¢

13 0.5029805937175 12.9519 0.50298058847¢

14 0.5025688702456 13.9513 0.50256864290¢

15 0.5022365925360 14.9517 0.50223655040¢

16 0.5019652118089 15.9507 0.50196493112¢

17 0.5017401328842 16.9509 0.50173994653¢

18 0.5015521073696 17.9483 0.5015515014¢

19 0.5013960356746 18.9250 0.5013921¢

20 0.5012636821483 19.8914

21 0.5011543410393 20.8122

22 0.5010511403513 21.8099

2Kar and Ho!®'; 2200 parameter purely exponential correlated basis set.
PLipsky et al %8; truncated diagonalization method with Cl-type basis set.
°Callaway®?’; 240 parameter uncorrelated Cl-type wavefunction.
dEigelsperger et al **; 16000 parameter Coulomb-Sturmenium basis set.

used 2200 terms in their wavefunction to obtain the lowest bound energy eigenvalues for Fé(2pnf, n = 4—9) states. The only calculation available
for 3F(2pnf, n = 10-19) states is due to Eiglsperger et all**! where 16 000 terms in the wavefunction were used. A comparison with other theoret-
ical results as shown in Table 2 reveals that the present energy eigenvalues are lowest yet obtained. It is remarkable that the energy eigenvalues
using only 900 terms in the symmetric double exponent basis set (as shown in Table 1) are better than those available in the literature. Even
750 terms in the symmetric double exponent basis set yields better energy eigenvalues than that of Kar and Ho'! for the 2p4f state. Thus, the
substantial reduction of the number of terms in the basis set is a clear advantage of the present method. The superiority of the present
wavefunction over the other studies lies in the explicit inclusion of the dd configuration, expanded in the Hylleraas basis set. For instance, the
energy position for the 2p4f state as calculated by using 900 terms in the 9 exponent wavefunction without dd configuration is —0.53198567 a.u.
while the energy position improves to —0.53199132 a.u. for the same state upon the inclusion of dd configuration. Thus, the inclusion of the dd
configuration contributes 0.001% to the energy value of the 2p4f state. This contribution decreases as we move toward the He + (2p) threshold,
for example, it decreases to 0.0002% for the 2p9f state.
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TABLE 3 The virial-factor ¢,

expectation values of interelectronic n £ (ra) (r %> (r12) (r %2> (012)
angles (in degree), different one and 4 1.28 [-11] 9.96 [+0] 1.73 [+2] 1.77 [+1] 3.47 [+2] 90.761
tWO-partidesmoments of metastable 5 5.45 [-11] 1.66 [+1] 5.42 [+2] 3.09 [+1] 1.08 [+3] 90.388
Ez;r“: f,Z”I ( 2F; )[:hreih;i] states of He 6 6.87 [-11] 248 [+1] 1.26 [+3] 472[+1] 2.53 [+3] 90.223
7 4.35[-12] 3.45 [+1] 2.50 [+3] 6.66 [+1] 5.00 [+3] 90.140
8 3.56 [-10] 4.57 [+1] 4.45 [+3] 8.89 [+1] 8.89 [+3] 90.094
9 1.62 [-10] 5.84 [+1] 7.33 [+3] 1.14 [+2] 1.47 [+4] 90.065
10 1.12 [-09] 7.25 [+1] 1.14 [+4] 1.43 [+2] 2.28 [+4] 90.048
11 2.30 [-09] 8.82 [+1] 1.69 [+4] 1.74 [+2] 3.39 [+4] 90.036
12 4.59 [-08] 1.05[+2] 2.43 [+4] 2.08 [+2] 4.85 [+4] 90.027
13 1.03 [-07] 1.24 [+2] 3.37 [+4] 2.46 [+2] 6.74 [+4] 90.021
14 243 [-07] 1.44 [+2] 4.57 [+4] 2.86 [+2] 9.13 [+4] 90.017
15 2.52 [-07] 1.66 [+2] 6.05 [+4] 3.29 [+2] 1.21 [+5] 90.014
16 3.76 [-06] 1.89 [+2] 7.88 [+4] 3.76 [+2] 1.58 [+5] 90.011
17 1.88 [-05] 2.14 [+2] 1.01 [+5] 4.25 [+2] 2.02 [+5] 90.009
18 1.43 [-05] 2.41 [+2] 1.28 [+5] 4.79 [+2] 2.56 [+5] 90.008
19 2.59 [-04] 2.66 [+2] 1.59 [+5] 5.30 [+2] 3.19 [+5] 90.008
20 1.51 [-03] 3.11 [+2] 2.32 [+5] 6.19 [+2] 4.65 [+5] 90.014
21 1.13 [-04] 3.55 [+2] 2.81 [+5] 7.07 [+2] 5.61 [+5] 90.006
22 9.03 [-04] 3.90 [+2] 3.65 [+5] 7.78 [+2] 7.30 [+5] 90.009

Note: The notation P[+Q] stands for P x 10*?. All values are given in atomic units.

—0.325 a.u. to —0.225 a.u. showing series 0.235

: —
of resonances below He + (3p) threshold 0240 1T— ﬁ_f‘ﬁ://f‘—/f_/f_‘_/_{“_/ 4 =]
using N = 1530 number of terms in the 0.245 -] ﬁ_J //,_J J
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FIGURE 2 Stabilization plot for 3F° 0.225 —
states of He in the energy range -0.230 —%_ﬁ _/;_%Zf’—fﬁ—?%

-E(a.u.)

The wavefunction with 9 exponent basis corresponding to the best energy values have been used to calculate the expectation values of
(012), {r1), (r3), (r12) and (r2,) as given in Table 3. It can be seen from Table 3 that the one- and two-particle moments for 2pnf (n = 4-22)
increase gradually while the interelectronic angle (01,) decreases very slowly within 1°. In order to check the accuracy of the wavefunction the

virial-factor, defined as
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6 FIGURE 3 Calculated DOS (hollow circles) and
the fitted Lorentzian (red line) for the first 3F¢
] resonance states of He atom below He*(3p)
threshold
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has been estimated; where (V) and (T) are the expectation values of potential and kinetic energies, respectively. It is evident from the value of &
that the accuracy of the metastable bound state quantum properties for 2p4f configuration is at least of the order of 107! a.u. and gradually

decreases for the higher excited states.

3.2 | Resonance states

A portion of the stabilization diagram in the energy range —0.325 a.u. to —0.225 a.u., that is, lying between He + (2p) and He + (3p) thresholds is
given in Figure 2 where a series of resonance states can be seen. The inverse of tangent at different points near the stabilization plateau for each
energy eigenroot gives rise to the density of states (DOS) as

i+1_ i-1

V1" Tn

S N BN )

Finally, the resonance parameters (E,, I') are obtained by Lorentzian fitting of the DOS as

pr(E)=yo+tL/2 9

7 (E-E,)* +(r/2)°

where yq is the baseline background, A is the total area under the curve from the baseline, E, gives the position of the center of the peak of the
curve, and I" represents the full width of the peak of the curve at half height. All plots and fitting procedure are carried out in Microcal Origin soft-
ware package and least 2 fitting is being taken. As an example, the resonance parameters E, = —0.31075 a.u. and I" = 0.00198 a.u. are obtained
from 13th root is shown in Figure 3 where the hollow black circles and the red line represent the estimated DOS and the best fit Lorentzian,
respectively.

In Table 4, the convergence behavior of first 12 3F¢ resonance states below He*(3p) threshold are shown. The sensitivity of the resonance
parameters (E,, I') to the parameter N is as follows. From Table 4 it can be seen that the values of resonance parameters (E,, I') for N = 900 and
N = 1530, remain unchanged up to at least fourth decimal place. A comparison between the present calculated resonance parameters (E,, I') and
those of the other works®>8-4Y for the states lying below He*(3p) threshold is given in Table 5. It is evident from the comparison that the values

of the present resonance parameters below He*(3p) threshold are in excellent agreement with those available in the literature.
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TAB LF .4 Conv.ergence behE?VIOI’ fo.r State N E, r
the position (—E, in a.u.) and width (T in a.
u.) of 3F® resonance states below He*(3p) 1 900 0.31077 1.98[-3]
threshold 1530 0.31075 1.98 [-3]
2 900 0.26284 4.5 [-4]
1530 0.26284 4.5[-4]
3 900 0.25827 1.7 [-4]
1530 0.25826 1.7 [-4]
4 900 0.24681 2.1[-4]
1530 0.24680 2.4 [-4]
5 900 0.24439 1.1 [-4]
1530 0.24438 1.2 [-4]
6 900 0.24130 8.5 [-9]
1530 0.24130 6.9 [-11]
7 900 0.23871 1.2 [-4]
1530 0.23871 1.1 [-4]
8 900 0.23730 7.0 [-5]
1530 0.23730 7.0 [-5]
9 900 0.23559 5.3 [-11]
1530 0.23560 3.1[-12]
10 900 0.23403 8.0 [-5]
1530 0.23404 6.0 [-5]
11 900 0.23315 4.0 [-5]
1530 0.23315 4.0[-5]
12 900 0.23207 5.8 [-9]
1530 0.23210 5.6 [-10]

Note: The notation P[+Q] stands for P x 10*<.

The individual angular momentum does not commute with the two-electron Hamiltonian. As a result, the assignment of the individual angular
momentum to the electrons is the indicator of the dominant configuration in the wavefunction of the two-electron atom. Previous studies!®¢"!
classified the 3F€ resonance states below He*(3p) threshold according to dominant configurations 3dnd [n = 3], 3pnf [n = 4], and 3dng [n 2 5] that
are denoted as classes A, B, and C, respectively as shown in Table 5. It is relevant to mention that the effective quantum numbers (n”) are less than
the outer electron quantum number (n) for classes A and B, whereas n” is greater than n for class C states. A comparison between the widths of
the resonance states of classes A and B having the same outer electron quantum number (n) shows that the width of the states in class A is
greater than that of class B states. For example, the width of 3d4d (class A) is 0.00045 a.u. while that for 3p4f (class B) is 0.00017 a.u. as given in
Table 5. The energy distance from the threshold [¢ = Ey, — E;] and the ratios R, = % and Rr = %1[2,3] show a certain pattern for each of the clas-

ses with a few exceptions for states near the He*(3p) threshold. The reason behind these exceptions may be due to appreciable contributions
from more than one configuration.

It is interesting to note that the present method enables to compute extremely narrow widths for a series of states (class C) as shown in
Table 5. The only available estimation for the width of 3d5g state (class C) done by Bachau et al'®") shows that the autoionization lifetime is almost
10° times greater than that of other resonance states lying below He + (3p) threshold. The present reported width of the state is in good agree-
ment with that of Bachau et al.’™ The narrow widths of the resonance states (class C) indicate that the fluorescence decay may dominate over
autoionization. Detailed investigations are needed in this direction for arriving at a definite conclusion. In this context, it is to be mentioned that
presence of such fluorescence active resonance states for 1P° symmetry arising from pd configuration was reported earlier.[1444-47]

Vi)
(=Va)

The expectation values of repulsive potential (V,), attractive potential (—V,), their ratio [;1 = ] interelectronic angles (01,) (in degree) and

different one and two-particle moments for example, (r1), <r%> (ri2), <r§2> for different 3F® resonances states below He + (3p) threshold are listed
in Table 6. The expectation values of the aforementioned quantities are calculated by using the resonance wavefunction corresponding to the res-
onance position of the root having least 2. Table 6 shows that for each class of states, 7 gradually decreases as the resonance states come closer
to the He + (3p) threshold. Thus the repulsive part of the potential decreases in comparison to the attractive part. This explains the fact of gradual

decreasing width of resonance states as the repulsion between two electrons is responsible for autoionization. On the other hand the one- and



10 of 17 UANTUM DUTTAET AL.
WI LEY— HEMISTRY

TABLE 5 Positions (—E, in a.u.), widths (I" in a.u.), effective quantum number (n"), the energy gap between the threshold and resonance energy
values (ey), relative energies (R.) and relative widths (Rp) of resonance states of (°F%) below He + (3p) threshold

Other works
Class n —E, r n* €k Rc Rr —E, r
A 3 0.31075 1.98 [-3] 2.37654 0.08853 0.31069° 1.98 [-3]°
0.3111° 2.131[-3]°
0.310725¢ 1.95 [-3]°
0.309915¢
0.310749°
4 0.26284 45 [-4] 3.50854 0.04062 218 4.40 0.2628252 45 -4
0.2628° 477 [-4]°
0.26283¢ 4.4 -4
0.26264¢
0.262598°
5 0.24680 2.4[-4] 4.51039 0.02458 1.65 1.87 0.2468052 21 -4
0.2468° 2.27 [-4)°
0.246715°
0.246653¢
6 0.23871 1.1 [-4] 5.50686 0.01649 1.49 218 0.238705° 1.1 [-4]
0.238645¢
0.238597°
7 0.23404 6.0 [-5] 6.50455 0.01182 1.39 1.83 0.234035° 6.6 [-5]°
0.233963°
8 0.23110 40[-5] 7.50469 0.00878 1.34 1.50
9 0.22914 3.0[-5] 8.50162 0.00692 1.26 1.33
10 0.22754 7.0 [-5] 9.69661 0.00532 1.30 0.42
B 4 0.25826 1.7 [-4] 3.72483 0.03604 0.25826° 1.68 [-4]°
0.2583° 1.83 [-4]°
0.258275¢ 1.5 [-4]°
0.258205¢
0.258199°
5 0.24438 1.2 [-4] 475031 0.02216 1.62 1.42 0.244385° 1.1 [-4P°
0.2444° 1.14 [-4]°
0.244345¢
0.244341°
6 0.23730 7.0 [-5] 5.75859 0.01508 1.47 1.71 0.237295% 6.6 [-5]°
0.237265¢
0.237255°
7 0.23315 40[-5] 6.76424 0.01093 1.38 1.75 0.233155%
0.233113¢
8 0.23051 3.0[-5] 7.76723 0.00829 1.32 1.34
9 0.22885 1.7 [-4] 8.68562 0.00663 1.25 0.18
C 5 0.24130 6.9 [-11] 511942 0.01908 0.2413?
0.2413° 1.61 [-11]°
0.24124¢
0.241293¢

(Continues)
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TABLE 5 (Continued)
Other works
Class n —E, r n’ = R. Rr —E, r
6 0.23560 3.1[-12] 6.11354 0.01338 143 22.26 0.2356?
0.235535¢
0.235563¢
7 0.23211 5.6 [-10] 7.11468 0.00988 1.35 0.01 0.23217
8 0.22982 4.3[-9] 8.11226 0.00759 1.31 0.13
9 0.22824 1.9 [-8] 9.14566 0.00598 1.27 0.23

Note: Present results are compared with the available theoretical estimates. Classes A, B, and C represent the dominant configurations 3dnd [n = 3], 3pnf
[n = 4], and 3dng [n = 5], respectively. The notation P[+Q] stands for P x 10*<.

2Kar and Ho!®!: stabilization method.

PBachau et al'®Y; pseudo-potential Feshbach projection operator method.

°Ho and Callway!®®’; complex rotation method.

dCallway™*"; hard wall strategy of stabilization method.

®Lipsky et al'®®; truncated diagonalization method.

Vi)
(=Va)

(in degree) and different one and two-particle moments for example, (r1), <r§> (ri2), <r§2> for different 3F® resonances states of He below He
+(3p) threshold

TABLE 6 The expectation values of repulsive potential (V,), attractive potential (-V,,) [their ratio = ], interelectronic angles (012)

Class n (Vi) (=Va) n (r1) (r3) (ra2) (r32) (012)

A 3 1.10[-1] 7.54 [-1] 1.46 [-1] 6.84 [+0] 6.56 [+1] 1.08 [+1] 1.46 [+2] 97.776
4 6.67 [-2] 5.98 [-1] 1.12 [-1] 1.07 [+1] 1.61 [+2] 1.83 [+1] 3.77 [+2] 103.335
5 4.34[-2] 5.39 [-1] 8.03 [-2] 1.65 [+1] 4.39 [+2] 2.94 [+1] 9.73 [+2] 104.469
6 299 [-2] 5.09 [-1] 5.88 [-2] 2.39 [+1] 1.02 [+3] 4.42 [+1] 2.19 [+3] 105.469
7 2.18[-2] 4.91[-1] 444 [-2] 3.28 [+1] 2.05 [+3] 6.21 [+1] 4.32 [+3] 105.932
8 1.66 [-2] 4.79 [-1] 346 [-2] 4.33 [+1] 3.69 [+3] 8.30 [+1] 7.71 [+3] 106.243
9 1.30 [-2] 472 [-1] 2.76 [-2] 5.54 [+1] 6.19 [+3] 1.07 [+2] 1.28 [+4] 106.413
10 1.11[-2] 4.68 [-1] 2.37 [-2] 6.97 [+1] 1.03 [+4] 1.34 [+2] 2.05 [+4] 89.384

B 4 6.50 [-2] 5.84 [-1] 1.11[-1] 1.11 [+1] 1.71[+2] 1.74 [+1] 3.34 [+2] 89.435
5 412 [-2] 5.31[-1] 7.76 [-2] 1.75 [+1] 5.05 [+2] 2.97 [+1] 9.93 [+2] 88.397
6 2.85[-2] 5.04[-1] 5.66 [-2] 2.53 [+1] 1.17 [+3] 4.53 [+1] 2.31 [+3] 87.902
7 2.09 [-2] 4.88 [-1] 4.28 [-2] 3.48 [+1] 2.33 [+3] 6.41 [+1] 4.61 [+3] 87.667
8 1.59 [-2] 4.77 [-1] 3.34 [-2] 4.57 [+1] 4.16 [+3] 8.58 [+1] 8.27 [+3] 87.424
9 1.63 [-2] 4.78 [-1] 341[-2] 5.34 [+1] 6.16 [+3] 1.02 [+2] 1.23 [+4] 90.249

C 5 4.07 [-2] 5.24 [-1] 7.77 [-2] 1.67 [+1] 4.45 [+2] 2.73 [+1] 8.17 [+2] 79.635
[¢) 2.83[-2] 4.99 [-1] 5.65 [-2] 2.51 [+1] 1.14 [+3] 4.37 [+1] 2.16 [+3] 78.277
7 2.06 [-2] 4.85[-1] 4.26 [-2] 3.52 [+1] 2.41 [+3] 6.37 [+1] 4.62 [+3] 77.478
8 1.58 [-2] 4.75[-1] 3.31[-2] 4.68 [+1] 4.42 [+3] 8.68 [+1] 8.56 [+3] 77.139
9 1.26 [-2] 4.69 [-1] 2.68 [-2] 5.99 [+1] 7.46 [+3] 1.13 [+2] 1.46 [+4] 76.877

Note: Classes A, B, and C represent the dominant configurations 3dnd [n 2 3], 3pnf [n = 4], and 3dng [n = 5] respectively. The notation P[+Q] stands for
P x 10*. All values are given in atomic units.

two-particle moments increase gradually for resonance states approaching He + (3p) threshold. It appears that the electrons are moving apart from
each other as well as from the nucleus that establishes the diffused nature of the resonance states as they approach He +(3p) threshold. The last
column of Table 6 shows that the expectation values of (61,) increase for class A and decrease for classes B and C, as the resonance states come
closer to He +(3p) threshold.

We have estimated the two particle probability density [p(rq, r2)] for a better understanding of the classification of states. The probability den-

sity plrq, ro) is being calculated by using the formula as,
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FIGURE 4 Two particle probability density p(r,, r,) for the three 3F¢ resonance states of He atom [lying below He*(3p) threshold] having
dominant 3d? (left), 3p4f (middle), and 3d5g (right) configurations
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where, the volume element is dr = sindd@dgdyr,drq,. Two particle radial probability density p(r4, r») for the 3F€ resonance states of He having con-

figurations 3d? (class A), 3p4f (class B), and 3d5g (class C) lying below He*(3p) threshold are plotted in Figure 4. The density plot for 3d? configura-

tion exhibits similar behavior as that of the helium ground state, that is, the density plot shows a maximum along the symmetry line ry = r,. In

contrast, the maximum probability density appears at two different regions on the either sides of the symmetry line for both 3p4f and 3d5g con-

figurations. The difference of the features of two particle radial probability density between the 3p4f and 3d5g configurations lies in the fact that

there is a small probability density along ry = r, for the former state, while vanishes for the latter in Figure 4.

Figure 5 shows the stabilization diagram in the energy range —0.325 a.u. to —0.225 a.u. by using 900 terms in the nine exponent wavefunction

where dd configuration is excluded. The necessity of the inclusion of the dd configuration in the wavefunction would be realized if we compare the
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TABLE 7 Positions (—E, in a.u.), widths (" in a.u.), effective quantum number (n”), the ratio between expectation values of repulsive potential
(V,), attractive potential (—V,) [17= <<_V\;z>], interelectronic angles (012) (in degree) and different one and two-particle moments for example,

(r1), {r}), (r12), (r3,) for different ®F° resonances states of He below He +(4p) threshold

States —E, r n’ 7 (ry) () (r12) (r3,) (012)

1 0.22207 1.8 [-4] 2.26956 3.28 [-2] 5.73 [+1] 7.72 [+3] 1.09 [+2] 1.54 [+4] 89.085

2 0.2187 2.1[-4] 2.31001 4.02 [-2] 476 [+1] 5.47 [+3] 9.02 [+1] 1.09 [+4] 89.448

3 0.21389 3.1 [-4] 2.37169 476 [-2] 4.02 [+1] 3.98 [+3] 7.56 [+1] 7.96 [+3] 90.454

4 0.20705 3.7 [-4] 2.46857 5.50 [-2] 3.40 [+1] 2.91 [+3] 6.29 [+1] 5.79 [+3] 88.530

5 0.19788 5.3 [-4] 2.61927 6.33 [-2] 2.92 [+1] 2.19 [+3] 5.34 [+1] 4.38 [+3] 89.512

6 0.18903 5.4 [-4] 2.79443 1.04 [-1] 1.67 [+1] 7.45 [+2] 2.95[+1] 1.58 [+3] 104.178
0.18822° 2.78 [-3]*

7 0.18404 2.4 [-4] 2.91012 8.64 [-2] 2.21 [+1] 1.33 [+3] 3.96 [+1] 2.68 [+3] 94.377
0.17834 1.2 [-3] 3.06167 1.27 [-1] 1.49 [+1] 5.32 [+2] 2.39 [+1] 1.07 [+3] 91.943
0.17892° 3.0 [-3]?

9 0.16668 9.2 [-4] 3.46354 9.77 [-2] 1.99 [+1] 1.06 [+3] 3.42 [+1] 2.11 [+3] 89.631
0.16633? 1.33 [-3]*

10 0.15878 6.0 [-5] 3.84729 1.10 [-1] 1.82 [+1] 6.79 [+2] 3.06 [+1] 1.45 [+3] 100.183
0.15879° 2.8 [-5)7

11 0.15778 2.6 [-4] 3.90553 1.07 [-1] 1.79 [+1] 5.09 [+2] 3.15 [+1] 1.23 [+3] 110.336
0.15788° 1.28 [-3]*

12 0.15224 5.9 [-4] 4.28431 1.08 [-1] 2.04 [+1] 8.34 [+2] 3.34 [+1] 1.67 [+3] 90.229
0.152242 1.3 [-3]*

13 0.1476 3.0 [-4] 4.70360 1.24 [-1] 1.81 [+1] 4.57 [+2] 2.83 [+1] 9.18 [+2] 90.594
0.14759° 3.3 [-4)°

14 0.14685 1.2 [-4] 4.78364 1.02 [-1] 2.21 [+1] 9.99 [+2] 3.76 [+1] 2.05 [+3] 93.799

15 0.1455 4.0[-5] 4.93864 9.21[-2] 2.24 [+1] 7.48 [+2] 3.88 [+1] 1.70 [+3] 103.584

16 0.14514 9.0 [-5] 4.98259 1.19 [-1] 1.93 [+1] 5.33 [+2] 2.93 [+1] 1.01 [+3] 85.276

17 0.1434 5.0 [-4] 5.21286 9.03 [-1] 2.19 [+1] 1.01 [+3] 3.82 [+1] 2.11 [+3] 95.959

18 0.14075 4.4 [-4] 5.63436 9.13 [-2] 2.55 [+1] 1.08 [+3] 4.30 [+1] 2.21 [+3] 92.365

19 0.13998 2.4 [-4] 5.77735 9.49 [-2] 2.58 [+1] 1.06 [+3] 4.26 [+1] 2.08 [+3] 88.699

20 0.13925 1.7 [-4] 5.92348 7.72 [-2] 2.97 [+1] 1.47 [+3] 5.40 [+1] 3.35 [+3] 109.571

21 0.13877 3.6 [-4] 6.02584 8.38 [-2] 2.80 [+1] 1.31 [+3] 4.88 [+1] 2.79 [+3] 97.637

22 0.13747 9.0 [-5] 6.33215 7.27 [-2] 3.48 [+1] 2.48 [+3] 6.18 [+1] 491 [+3] 88.794

23 0.13564 5.0 [-5] 6.85510 5.97 [-2] 3.97 [+1] 2.75[+3] 7.47 [+1] 6.24 [+3] 115.556

25 0.13314 8.0 [-5] 7.83741 6.02 [-2] 4.52 [+1] 3.91 [+3] 8.15 [+1] 7.88 [+3] 92.945

26 0.13154 1.0 [-4] 8.74371 5.39 [-2] 5.54 [+1] 6.14 [+3] 1.01 [+2] 1.23 [+4] 89.327

27 0.13032 2.0 [-4] 9.69458 5.54 [-2] 6.19 [+1] 8.14 [+3] 1.14 [+2] 1.63 [+4] 88.458

28 0.12878 2.9 [-4] 11.50109 497 [-2] 7.26 [+1] 1.16 [+4] 1.35 [+2] 2.32 [+4] 89.766

29 0.12766 2.1 [-4] 13.71021 4.86 [-2] 7.24 [+1] 1.18 [+4] 1.35 [+2] 2.35 [+4] 88.858

30 0.12588 1.8 [-4] 23.83656 5.90 [-2] 5.76 [+1] 8.03 [+3] 1.07 [+2] 1.62 [+4] 96.553

Note: The notation P[+Q] stands for P x 10*2. All values are given in atomic units.
2Using the products of Slater-orbital type wave functions with expansion lengths up to 319 terms by complex coordinate method./”!

stabilization diagrams for the same energy range as given in Figures 2 and 5. In Figure 2 the first appearance of the flat plateau above He*(2p)
threshold is at —0.31075 a.u. corresponding to the 3d? configuration while the same appears at —0.26607 a.u. in Figure 5. Hence, it is clear that the
inclusion of the dd configuration in the wavefunction contributes 14% to the resonance energy value for the 3d? configuration. We have found that
the above contribution decreases as we move toward the He*(3p) threshold for example, it decreases to 3% for the sixth resonance state below the
He*(3p) threshold. It is known that the higher configurations can be included in the wavefunction through the powers of rq,. Bhatia®? opined that

for D° states arising from pd configuration, the inclusion of the df configuration will facilitate the convergence of the metastable bound energies.
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Such improvement of convergence is also observed in the present work, where the dd configuration contributes 0.001% to the energy of the meta-
stable bound 2p4f state as mentioned in Section 3.1. The fact that the contribution of dd configuration rises to 14% while calculating resonance
parameters of 3d? state indicates the absolute necessity of the inclusion of dd configuration in the wavefunction. We are of the opinion that it is
not possible to include dd configuration by just increasing the powers of ry, in the pf configuration, because the resonance position of 3d state is
lower than that of 3p4f state. This insight will be useful while calculating the resonance parameters of such higher symmetry states in future.
Resonance energy (E,) and width () of first 30 3F® resonance states between He + (3p) and He + (4p) thresholds are summarized in Table 7. The 3F¢
resonances below He + (4p) threshold can arise from 4dnd [n = 4], 4pnf [n = 4], 4fnf [n = 4], 4fnh [n = 6], and 4dng [n = 5] dominant configurations. Differ-

ent structural parameters, for example, n*, (V,), (-V,), = %, (012), (r1), (r?), (r12) and {r2,) of the respective resonance states are also given

in Table 7 with a view to classify them according to the dominant configurations. It is clear from Table 7 that in contrast to the resonances below

He + (3p) threshold, any such systemic trend of the structural parameters can hardly be found for the classification of resonance states below He
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TABLE 8 Positions (—E, in a.u.), widths (I" in a.u.), effective quantum number (n") for different 3F¢ resonances states of He below He + (5p), He
+ (6p), and He + (7p) threshold

Below He + (5p) Below He + (6p) Below He + (7p)
States  —E, r n* —-E, r n* —-E, r n*
1 0.12385 6.2 [-5] 3.37676 0.07941 6.0 [-5] 4.57825 0.05346 2.5[-4] 6.28851
0.12408° 2.52 [-3]°
2 0.12187 1.5[-5] 3.45568 0.07723 4.3 [-4] 4.80298 0.05297 2.6 [-4] 6.41403
3 0.12058 2.3 [-4] 3.51017 0.07604 3.8 [-4] 4.94052 0.05104 3.3[-4] 6.99328
4 0.11920 3.8 [-4] 3.57142 0.07557 1.3[-4] 4.99819 0.05082 3.8 [-4] 7.06976
0.11944° 3.44 [-3)°
5 0.11898 2.5[-4] 3.58149 0.07445 3.0 [-4] 5.14420 0.05024 1.0[-4] 7.28408
6 0.11760 5.1[-4] 3.64662 0.07292 2.8 [-4] 5.36604 0.05005 1.4 [-4] 7.35864
7 0.11656 6.5 [-4] 3.69812 0.07175 7.1[-4] 5.55650 0.04859 1.2[-4] 8.01995
0.11537° 2.61[-3]°
8 0.11427 6.7 [-5] 3.81968 0.06709 7.4 [-4] 6.58395 0.04686 1.5[-4] 9.09566
9 0.11312 6.7 [-4] 3.88543 0.06686 3.0 [-4] 6.65059 0.04516 1.6 [-4] 10.72893
10 0.11224 3.5 [-4] 3.93810 0.06494 2.1[-4] 7.29929 0.04290 1.7 [-4] 15.49066
11 0.11085 5.5 [-4] 4.02584 0.06438 2.9 [-4] 7.52733
12 0.10926 7.0 [-4] 4.13378 0.06263 1.3[-4] 8.40695
0.1094° 2.99 [-3)°
13 0.10822 1.3[-4] 4.20926 0.06228 2.6 [-4] 8.62296
14 0.10638 1.2 [-4] 4.35359 0.06139 8.0 [-5] 9.25731
0.10676° 0.92 [-4]°
15 0.10539 2.6 [-4] 4.43765 0.06007 5.2[-4] 10.52404
0.10577° 1.48 [-3]*
16 0.10394 2.6 [-4] 4.57007 0.05819 7.0 [-4] 13.77655
17 0.10227 2.0 [-4] 4.73832 0.05717 3.6 [-4] 17.59841
0.10252° 0.89 [-3]°
18 0.10191 2.2 [-4] 477709 0.05564 1.2 [-4] 76.94837
19 0.10008 8.4 [-5] 4.99002
20 0.09803 2.1[-4] 5.26651
21 0.09753 8.8 [-5] 5.34064
22 0.09572 2.5 [-4] 5.63901
23 0.09285 2.0 [-4] 6.23831
24 0.09044 3.3 [-4] 6.91880
25 0.08871 1.4 [-4] 7.57706
26 0.08775 8.7 [-5] 8.03167
27 0.08691 1.1[-4] 8.50578
28 0.085845 6.8 [-5] 9.24895
29 0.085052 1.2 [-4] 9.94840
30 0.084614 1.9 [-4] 10.40989
31 0.083472 7.6 [-5] 12.00038
32 0.082917 1.4 [-4] 13.09232
33 0.08171 2.1[-4] 17.09963

Note: The notation P[+Q] stands for P x 10*2. All values are given in atomic units.
2Using the products of Slater-orbital type wave functions with expansion lengths up to 319 terms by complex coordinate method.!!
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+(4p) threshold. Hence, it can be concluded that as we move toward the continuum above He*(3p) threshold the contributions of different config-
urations become appreciable to an extent such that it is impossible to assign a dominant configuration to the resonance state. Figure 6 shows the
stabilization diagram between He*(3p - 4p) threshold. The resonance parameters E, = —0.12588 a.u. and I" = 0.00018 a.u. obtained from 67th root

is shown in Figure 7. Finally, the resonance parameters for resonance states lying between He*(4p-7p) threshold are given in the Table 8.

4 | CONCLUSIONS

In the present work, we have investigated the doubly excited 3F® metastable bound and resonance states of neutral helium atom using explicitly
correlated Hylleraas type wavefunctions in the framework of the Ritz variational principle and stabilization method, respectively. The explicit
inclusion of dd configuration results in better convergence of the energy values of metastable bound states. The effect of such inclusion in the
wavefunction is remarkable in determining the parameters of the resonance states. A justification of the classification of the resonance states is
given by estimating several structural properties. It can be concluded that the use of “soft wall” strategy of the stabilization method with a suffi-
cient number of terms in the Hylleraas basis set may yield accurate resonance parameters as well as provide useful structural information for a
wide range of resonance states of helium. The present method may be extended for other resonances of different symmetries where such kind of

explicit configuration mixing is extremely necessary.
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Abstract Precise energy eigenvalues of metastable bound doubly excited 1'*F¢ states originating from 2pnf (n=4-
6) configuration of helium-like ions (Z = 2-4) under weakly coupled plasma (WCP) environment have been estimated
within the framework of Ritz variational method. The wavefunction is expanded in explicitly correlated Hylleraas type
basis set. The screened Coulomb potential is consideredas mimic the WCP environment. The atomic systems tend
towards gradual instability and the number of excited metastable bound states reduces with increasing plasma strength.
The wavelengths corresponding to 2pnf (**F¢) — 2pn’d (**D°) (n = 4-6; n’ = 3-6) transitions occurring between

doubly excited states of plasma embedded two-electron ions are also reported.
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1 Introduction

Doubly excited states (DESs) of two-electron atom is
a topic of active interest in recent times, both from the-
oretical and experimental aspects.!'=9 The abundance of
such DESs is noted in various astrophysical observations
as well as in high temperature laboratory plasma.['0—19]
The DESs of two-electron atom having unnatural parity
(m = (=1)E*1, L is the total angular momentum quantum
number) and lying below the second ionization threshold,
are metastable bound. These states favorably can decay
to a lower state via radiative process rather than decaying
through non-radiative autoionization channel. Examples
of such DESs of unnatural parity are :3P¢, 1.3De, L3Fe
states arising out of dominant pp, pd, pf configurations
respectively.

Atomic systems under external environments have
been studied by various researchers during the past sev-
eral decades, as they provide useful information about
the environment. A large number of investigations/20—30]
are there in the literature on the modified properties
of plasma embedded atomic systems. FExtensive review
articles®1732] are available on this topic. Plasma cou-
pling strength (I") is defined as the ratio between aver-
age inter-particle electrostatic energy to the average ther-
mal kinetic energy. The high temperature and low den-
sity classical plasma are categorized as weakly coupled

(' < 1). According to the Debye-Hiickel theoryl®? a
short range Yukawa-type or screened Coulomb model po-
tential is considered to mimic the modified inter-particle
interaction under WCP environment. Due to its sim-
plicity and effectiveness, such screened Coulomb poten-
tial has been used widely by researchers for the inves-
tigation of spectral and structural properties of atomic
systems under WCP environment. In this model, plasma
electron density (n.) and temperature (T') are combinedly
expressed through the plasma screening length (D).[33] As
the screened Coulomb potential is more positive in nature
than the “pure” Coulomb potential, in general, with the
decrease of plasma screening length (D), the energy levels
are pushed up and the gap between two successive en-
ergy level decreases.[?! This causes the transition energy
to decrease and a red shift!?!l may be observed. However,
it is remarkable that for some specific transitions between
two doubly excited energy levels, the wavelengths get blue
shifted or show a pattern with both red and blue shift
w.r.t. the plasma screening length (D).

In the present work, we have estimated the non-rel-
ativistic energy eigenvalues of doubly excited metastable
bound 2pnf (n = 4-6) (}3F¢) states of two-electron ions
(Z = 2-4) as well as the 2s and 2p states of the respective
one-electron ions under WCP environment. According to
the Debye-Hiickel theory,®3 in a two-electron Hamilto-
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nian, the effect of plasma screening should be reflected
in both the one-particle electron-nucleus attraction terms
and the electron-electron repulsion term of the total po-
tential. Although the effect of screening on the electron-
nucleus attraction term predominates overthe electron-
electron repulsion term in determining the properties of
plasma embedded two electron atom, we have considered
the effect of screening on both attractive electron-nucleus
part and repulsive electron-electron part in the poten-
tial. Computationally, it is difficult to include the effect
of screening in repulsive electron-electron part even for a
partially correlated CI type basis constructed with Slater-
type orbitals as the analytic solution of the correspond-
ing basis integrals becomes extremely cumbersome.[34—3%]
However, we have been able to develop the methodology
to estimate the basis integral for the trial wavefunction
is expanded in multi-exponent Hylleraas type basis set in
a way that the effect of screening in repulsive electron-
electron part has been considered fully without any per-
turbative approximation. Ritz variational method is used
to determine the energy eigenroots. The wavelengths
for the dipole allowed transitions between doubly excited
metastable bound states 2pnf [n = 4-6] (1:3F¢) and 2pn’d
(n’ = 3-6) (1*D°) are determined for different values of
plasma screening length (D). The non-relativistic energy-
eigenvalues of 2pnd (n = 3-6) (13D°) states are taken
from an earlier work of Saha et al.?'! The details of the
methodology are given in Sec. 2 followed by the discussion
on the results in Sec. 3 and finally concluded in Sec. 4.

2 Method

The non-relativistic Hamiltonian (in a.u.) of a two-
electron atom immersed in WCP environment may be
written as

—r;/D

2
He) (mg¥- 7
i=1

where, in case of screening by both ions and electrons, the
Debye screening length (D) reads as[®l
kT 1/2
(47r(1 + Ze)ne> 2)
For a fully ionized plasma comprising of a single nuclear
species, the effective nuclear charge is Z. = Z whereas in
case of screening by electrons only, Z, = 0. After sepera-
tion of the centre of mass coordinates, the wave function
of 3F¢ states due to dominant pf configuration of a two-

electron atom can be written in terms of six co-ordinates
(r1,72,012;6,0,1)) as,136=57)

U = f3D3 + fiTD3T + f37 D5, (3)
where, Dzi are the rotational harmonics and functions of
three Eulerian angles (6, ¢, 1) that define the orientation
of the triangle formed by the two electrons and the nucleus

in space; k is the angular momentum quantum number
about the body fixed axis of rotation.!3®! The radial parts

e—’l‘lz/D
+ , 1
) T12 ( )

of the wavefunction are given by f = —F} sin 1, f§+ =
(V15/6)Fysin 2015 and f3~ = (v/15/6)Fa(1 — cos2612);
where, Fi = (f T f), F» = (f + f) with the condition
f = f(ra,7r1) and 615 is the angle between 7 and 7. The
upper sign corresponds to the singlet state and the lower
sign to the triplet state. The trial radial wave function
corresponding to pf configurations is expanded in Hyller-
aas basis set as

A
_ li+3 , mi+1  n,
f(7’1,7‘2,7"12)*§ YTyt g
=1

X [ Z Citer ey My (1)1, (2)

ki=1

P D
30D Comntai Wmea(2)] (4)
ki=1ko=1
with the features: (a) The powers of 71, ro and ri9
satisfies (I;,m;,n;) > (0,0,0); (b) A is the total num-
ber of (I;,m;,n;) set considered in the calculation; (c)
7;(j) = e Pi"i are the Slater-type orbitals where p’s are
the non-linear parameters; (d) p denotes the total num-
ber of non-linear parameters; (e) In the double sum of
Eq. (4), k1 < ko; (f) Cikyk, are the linear variational pa-
rameters. The effect of the radial correlation is incorpo-
rated through different p’s in the wave function whereas,
the angular correlation effect is taken care of through dif-
ferent powers of ri5. The number of terms in the ba-
sis set expansions for the trial radial wave function f is
therefore N = [p(p +1)/2] x A. In the present case, we
have considered a nine-exponent (p = 9) basis set where
the non-linear parameters are taken in a geometrical se-
quence following p; = p;—17, v is the geometrical ratio.
After choosing the proper trial radial wave function, the
energy eigenvalues are obtained by solving the generalized
eigenvalue equation.®8] The details regarding the analytic
evaluation of the correlated basis integrals are discussed
in Dutta et al.38
The variational equation for the nl-state of the respec-
tive one-electron atoms under WCP environment can be
written as

5/[(3—]0)2+Z(ZH) —E+Z%T/D}dr:0. (5)

Oor r2

The radial function f(r) is expanded in terms of a pure
exponential basis set as

fr) = Zcie—w. (6)

We have used 101 number of terms in the basis set and the
exponents are taken in a geometrical sequence o; = 0;_10,
[ is the geometrical ratio. The energy eigenvalues E’s and
linear variational coefficients C;’s are determined by ma-
trix diagonalization procedure. All calculations are car-
ried out in quadruple precision. Such procedure is re-
peated for different plasma screening length (D) consid-
ered in the present case.
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3 Results and Discussion

Table 1 shows the convergence behavior of the en-
ergy eigenvalues of 2pnf (n = 4-6) (}3F¢) states of He
with respect to the total number of terms N = 540 and
N = 675 in the 9-exponent basis set for three different De-
bye screening lengths D = 100, 50, and 20 (in a.u.). It can
be seen from Table 1 that, all the energy eigenvalues con-
verge at least up to sixth decimal place for D = 100 a.u.
and D = 50 a.u. whereas, energies of 2p5f and 2p6 f con-
verge up to fourth and third decimal places respectively
for D = 20 a.u. The energy values of 2pnf (n = 4-6)
(13F¢) states of two-electron ions (Z = 2-4) in the pres-
ence of WCP environment are given in Tables 2—4 respec-
tively. Only the values obtained from the wave function
of maximum basis size (N = 675; A = 15) are reported in
Tables 2—4. It is observed that as the plasma screening

pushed towards the continuum. Such behaviour is quite
consistent with the fact that the screened Coulomb po-
tential becomes more and more positive with respect to
the decrease in plasma screening length (D). Moreover,
Tables 2—4 show that for all the ions the singlet states are
more bound than the triplet states from low to moder-
ate plasma screening. At high screening (i.e. at low val-
ues of screening length D), we see that the singlet and
triplet states become exactly or nearly degenerate. As the
plasma screening increases, the two-electron energy lev-
els become largely affected by the continuum embedded
states through configuration interactions. At very high
screening region, the energy values of two-electron states
come very close to the one-electron continuum and tend to
merge into the 2p threshold of the respective one-electron

length (D) decreases, the two-electron energy levels are | system.

Table 1 Energy eigenvalues (—E) for the 2pnf (n = 4-6) 13F¢ states of He for different number of terms N in
the basis set with respect to different Debye screening length (D). All quantities are given in a.u.
—F
1Fe SFe
D N 2pdf 2p5 f 2p6 f 2pd f 2p5 f 2p6 f
100 540 0.503 055 0.492 022 0.486 401 0.503 047 0.492 017 0.486 397
675 0.503 055 0.492 022 0.486 401 0.503 047 0.492 017 0.486 397
50 540 0.476 090 0.466 543 0.462 494 0.476 083 0.466 539 0.462 493
675 0.476 090 0.466 543 0.462 494 0.476 083 0.466 539 0.462 493
20 540 0.406 087 0.405 792 0.405 550 0.406 086 0.405 792 0.405 550
675 0.406 087 0.405 856 0.405 709 0.406 086 0.405 856 0.405 709

Table 2 Variation of energy eigenvalues (—FE) for the 2pnf (n = 4-6) *F¢ states of He and 2s, 2p states of He™ w.r.t. the

Debye screening length (D). All quantities are given in a.u.

lFe 3Fe
D 2p4f 2p5f 2p6 f 2p4f 2p5 f 2p6 f He™t(2s) He™ (2p)
100 0.503 055 0.492 022 0.486 401 0.503 047 0.492 017 0.486 397 0.480 296  0.480 247
0.502 956> 0.491 9282 0.486 314 5 0.502 9522 0.491 925 52 0.486 313
0.503 060 68P 0.503 052 113P
90 0.499 965 0.489 058 0.483 572 0.499 957 0.489 052 0.483 569 0.478 143 0.478 083
80 0.496 136 0.485 400 0.480 100 0.496 128 0.485 394 0.480 097 0.475 462  0.475 386
70 0.491 267 0.480 775 0.475 736 0.491 259 0.480 770 0.475 733 0.472 031  0.471 932
0.491 0742 0.480 599 5*  0.475 583 52 0.491 070 5 0.480 5972 0.475 580 5*
60 0.484 869 0.474 742 0.470 087 0.484 862 0.474 737 0.470 085 0.467 484  0.467 350
50 0.476 090 0.466 543 0.462 494 0.476 083 0.466 539 0.462 493 0.461 173 0.460 981
0.475 737 5% 0.466 241 5*  0.462 223 52 0.475 733 5 0.466 2372 0.462 1972
0.476 090 624 0.476 087 092P
40 0.463 300 0.454 773 0.451 782 0.463 293 0.454 770 0.451 781 0.451 823  0.451 525
0.462 7842 0.454 3512 0.462 782 0.454 3342
30 0.442 973 0.436 545 0.435 913 0.442 968 0.436 543 0.435 913 0.436 545  0.436 025
0.442 158 5 0.442 148 5
20 0.406 087 0.405 856 0.405 709 0.406 086 0.405 856 0.405 709 0.407 104  0.405 970
0.406 087 6P 0.406 087 1P
10 0.322 848 0.322 699 0.321 485 0.322 848 0.322 699 0.321 485 0.327 085  0.322 761

aRef. [34], PRef. [35].
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Table 3 Variation of energy eigenvalues (—E) for the 2pnf (n = 4-16) 13F€¢ states of Li™ and 2s, 2p states of Li*T w.r.t.

the Debye length (D). All quantities are given in a.u.

lFe SFe
D 2pAf 205 f 206 f 2pAf 25 f 26 f Li2 T (2s) Li%t(2p)
100 1.203 600 1.158 000 1.133 734 1.203 510 1.157 937 1.133 693 1.095 298 1.095 248
90 1.198 297 1.152 835 1.128 727 1.198 207 1.152 772 1.128 687 1.092 033 1.091 973
80 1.191 703 1.146 433 1.122 542 1.191 614 1.146 371 1.122 503 1.087 964 1.087 887
70 1.183 284 1.138 288 1.114 706 1.183 195 1.138 227 1.114 668 1.082 748 1.082 648
60 1.172 159 1.127 578 1.104 457 1.172 071 1.127 517 1.104 420 1.075 823 1.075 687
50 1.156 775 1.112 862 1.090 478 1.156 688 1.112 803 1.090 442 1.066 182 1.065 987
40 1.134 107 1.091 381 1.070 283 1.134 022 1.091 326 1.070 251 1.051 840 1051 537
30 1.097 393 1.057 098 1.038 579 1.097 312 1.057 048 1.038 553 1.028 251 1.027 719
20 1.027 813 0.993 914 0.982 019 1.027 745 0.993 879 0.982 008 0.982 227 0.981 057
10 0.848 931 0.846 906 0.844 900 0.848 912 0.845 428 0.841 774 0.852 947 0.848 554
2+

Table 4 Variation of energy eigenvalues (—E) for the 2pnf (n = 4-6) M®F¢

states of Be?' and 2s, 2p states of Be>™ w.r.t.

the Debye screening length (D). All quantities are given in a.u.

Ipe 3pe
D 2p4df 2p5f 2p6 f 2pdf 2p5 f 2p6 f Be?t(2s) Be?t(2p)
100 2.216 939 2.114 095 2.058 854 2.216 686 2.113 923 2.058 745 1.960 298 1.960 249
90 2.216 938 2.114 095 2.051 646 2.209 165 2.106 546 2.051 536 1.955 923 1.955 862
80 2.200 052 2.097 554 2.042 712 2.199 800 2.097 382 2.042 603 1.950 465 1.950 388
70 2.188 072 2.085 861 2.031 351 2.187 821 2.085 691 2.031 243 1.943 464 1.943 364
60 2.172 202 2.070 428 2.016 417 2.171 952 2.070 259 2.016 311 1.934 159 1.934 022
50 2.150 179 2.049 114 1.995 905 2.150 086 2.048 951 1.995 806 1.921 186 1.920 990
40 2.117 577 2.017 784 1.965 994 2.117 332 2.017 621 1.965 895 1.901 848 1.901 543
30 2.064 350 1.967 188 1.918 278 2.064 110 1.967 033 1.918 192 1.869 937 1.869 400
20 1.961 936 1.871 780 1.830 341 1.961 713 1.871 646 1.830 273 1.807 292 1.806 102
10 1.685 196 1.628 246 1.623 064 1.685 048 1.628 199 1.619 216 1.628 414 1.623 879
—0.406 : — | compared to the 2p level as D decreases. Figure 1 illus-
—0.408 - i (;i k) — trates the comparative behavior of different doubly excited
—0.410 : gzjz Eigj; triplet 2pdp (P¢), 2pdd (D°) and 2pdf (F€) states below
- . 3pe
o _ g - He+(2§) threshold. The. energy values o'f 2pdp (°P ) and
5 - 2 — 2pdd (°D°) states of helium, immersed in WCP environ-
% _0.46 . ment have been taken from Refs. [20] and [21] respectively.
é _ In Fig. 1, we have shown the position of triplet 2p4p, 2p4dd,
04817 —— — 2pAf energy levels of helium along with the 2s and 2p
om0l thresholds of He't at different plasma screening strength.
— We note that at low screening regions when the system
100 50 30 20

Debye screening length/a.u.

Fig. 1 Relative positions of 2p4f (3F¢), 2pdd (*D°) and
2p4p (*P*) energy levels of He and 2s, 2p levels of He™
in different plasma conditions.

The 2s and 2p threshold energies of respective one-
electron atoms are also included in Tables 2—4 for a com-
prehensive analysis of the position of two-electron energy
levels. The departure from Coulomb potential facilitates
the removal of [-degeneracy in the one-electron atoms
and it is evident that the 2s level remains more bound

is almost equivalent to a free system, the one-electron
2s and 2p levels are merged on each other due to their
l-degeneracy. These levels are split when [-degeneracy
is sufficiently lifted at a higher screening in presence of
plasma environment which is evident from the diagram.
It is seen from Fig. 1 that the 2pdp (3P¢) and 2p4d (3D°)
states always lie below both the 2s and 2p thresholds of
He™, but the 2p4f (3F¢) level crosses the 2s threshold of
He™ when the plasma screening length (D) is sufficiently
small. Hence, at a low value of D, the 2p4f (3F¢) level of
helium merges to the one-electron continuum.
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Table 5  Absolute values of the 2pnf(*3F¢) — 2pn’d(**D°) (n = 4-6; n’ = 3-6) transition energies (in meV) of plasma
embedded He below the He™ (2p) threshold under Debye screening.

Debye screening length (D) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1pe — 1po

2pAf — 2p3d 854.25 851.72 848.21 843.20 835.57 823.21 801.09 754.79 623.78
— 2p4d 71.70 72.01 72.44 73.01 73.81 75.06 76.97 79.81 77.62
— 2p5d* 264.68 360.44 381.82 413.23
— 2p6d* 433.29

2p5f — 2p3d 1154.46 1148.52 1140.35 1128.69 1111.15 1082.97 1033.10 929.71 630.08
— 2p4d 371.91 368.81 364.58 358.50 349.40 334.82 308.98 254.73 83.92
— 2p5d* 35.53 63.63 89.69 127.74
— 2p6d* 133.06

2p6f — 2p3d 1307.43 1297.78 1284.57 1265.82 1237.82 1193.17 1114.51 946.91 634.08
— 2p4d 524.89 518.07 508.80 495.63 476.06 445.02 390.38 271.94 87.92
— 2p5d 188.50 85.62 54.53 9.39
— 2p6d 19.89

3pe _y 3Do

2p4f — 2p3d 734.25 732.05 729.02 724.65 718.03 707.29 688.04 647.69 532.15
— 2p4d 21.93 22.59 23.48 24.75 26.60 29.49 34.28 42.84 55.08
— 2pbd* 288.62 284.67 279.28 271.66
— 2p6d* 445.89

2p5f — 2p3d 1034.40 1028.79 1021.08 1010.07 993.54 966.98 919.97 822.52 538.40
— 2pdd 322.07 319.32 315.55 310.17 302.12 289.18 266.21 217.67 61.33
— 2p5d 11.53 12.07 12.79 13.77
— 2p6d* 145.74

2p6f — 2p3d 1187.31 1177.99 1165.24 1147.14 1120.14 1077.10 1001.31 839.68 542.41
— 2pdd 474.99 468.52 459.71 447.24 428.72 399.29 347.55 234.83 65.34
— 2p5d 164.44 161.26 156.95 150.84
— 2p6d 7.17

*pf level lines energetically lower than the pd level.

7,000
% % 5907 \\*‘Q—H—'_’
g 7 g
~ ~ -
5 e . &
g 66004 T 2pAf (1) = 2pad (DY) g 2507 g Do
g S 2p4f (Z%F::) N 2p3d (:SDu) g —— 2[)4'[ ( Fe¢ — 2p4d ( D )
g a g —— 2P4f (SF(:) N 2p4d (ISDO)
= £ 150+
2] 2]
g 6,200 % b .\-\'\‘b————_._,__‘_‘
& &
T T T T T 50_ T T T T T
20 40 60 80 100 20 40 60 80 100
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£ < ]
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Fig. 2 Variation of transition energies (meV) for 2p4f (}*F¢) — 2pnd(**D°) transitions (n = 3-6) of Be*" in
presence of weakly coupled plasma.
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Table 6

Absolute values of the 2pnf(**F°) — 2pn’d(**D°) (n = 4-6; n' = 3-6) transition energies (in meV) of plasma

embedded LiT below the Li*T(2p) threshold under Debye screening.

Debye screening length (D) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1pe _y 1o

2p4f — 2p3d 3229.53 3226.99 3223.50 3218.43 3210.71 3198.09 3175.37 3127.69 2997.69
— 2p4d 190.39 190.91 191.65 192.69 194.25 196.75 201.14 209.82 230.55
— 2p5d* 1148.05 1143.86 1138.06 1129.78 1117.30 1097.24
— 2p6d* 1848.71 1840.33 1828.78 1812.33 1787.67

2p5f — 2p3d 4470.37 4464.07 4455.36 4442.83 4423.82 4393.02 4338.01 4224.17 3920.13
— 2p4d 1431.23 1427.99 1423.51 1417.09 1407.36 1391.68 1363.78 1306.30 1152.99
— 2pbd 92.79 93.22 93.80 94.62 95.81 97.69
— 2p6d* 607.87 603.24 596.92 587.93 574.56

2p6f — 2p3d 5130.68 5120.08 5105.47 5084.53 5052.98 5002.12 4912.11 4728.10 4243.81
— 2p4d 2091.54 2084.00 2073.62 2058.79 2036.52 2000.78 1937.88 1810.23 1476.67
— 2p5d 753.10 749.23 743.90 736.32 724.96 706.79
— 2p6d 52.44 52.77 53.18 53.77 54.59

3pe _y 3po

2pdf — 2p3d 2839.04 2836.78 2833.64 2829.13 2822.23 2810.97 2790.70 2748.17 2632.07
— 2pdd 44.19 44.97 46.07 47.64 49.99 53.78 60.47 73.87 107.00
— 2p5d* 1216.58 1212.10 1205.91 1197.05 1183.72 1162.29
— 2p6d* 1885.17 1876.47 1864.50 1847.42 1821.85

2p5f — 2p3d 4079.14 4073.13 4064.77 4052.77 4034.61 4005.14 3952.52 3843.81 3553.62
— 2p4dd 1284.29 1281.32 1277.19 1271.28 1262.37 1247.95 1222.29 1169.51 1028.54
— 2pbd 23.52 24.25 25.21 26.59 28.65 31.88
— 2p6d* 645.07 640.12 633.38 623.78 609.48

2p6f — 2p3d 4738.85 4728.51 4714.25 4693.84 4663.11 4613.62 4526.00 4347.08 3876.64
— 2p4d 1944.00 1936.71 1926.67 1912.35 1890.87 1856.42 1795.77 1672.79 1351.57
— 2p5d 683.23 679.64 674.69 667.67 657.15 640.35
— 2p6d* 14.64 15.27 16.10 17.29 19.02

*pf level lines energetically lower than the pd level.

We have also estimated the energy (in meV) corre-
sponding to the

2pnf (M3F€) — 2pn/d (13D°)

transitions (n = 4-6; n’ = 3-6) for different two-electron
atoms (Z = 2-4) embedded in WCP environment. The
2pn/d (1*D°) energy values are taken from Saha et al.[*!]
and the results are exhibited in Tables 57 for Z = 2—
4 respectively. We mention that the absolute values of
the difference between the position of the energy levels
are given. The sequence for transition we maintain in the
table is 2pnf — 2pnd whereas in all the cases the 2pnf
states are not high lying. For instance, in the case of
triplet states of Lit, 2p4f state lies energetically higher
than 2p3d and 2p4d states but lower than the 2p5d and
2p6d states. We have used the conversion relation 1 a.u.
of energy = 27.21138 V.39 It is worthwhile to mention

| that for 2pn’d (3D°) — 2p3p (*P¢) transitions in WCP
environment, an initial blue shift followed by a red shift
with respect to decreasing plasma screening length was
reported in Ref. [21] whereas in the present case no such
behavior is seen for

2pnf (*F¢) — 2pn’d (*D°)

transitions. The transition energies, in a systematic man-
ner, follow either a blue shift or a red shift for a partic-
ular transition scheme. For example, the 2pdf (3F¢) —
2p3d (3D°) line for Z = 4 gets a gradual red shift with
respect to decreasing plasma screening length (D) and a
blue shift is observed for the 2p4f (3F¢) — 2p4d (3D°) of
the same ion under similar conditions. Such features are
evident from Fig. 2 where the 2p4 f(13F¢) — 2pnd(13D?)
transition energies (n = 3-6) of Z = 4 are plotted as a
function of Debye screening length (D).
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Table 7  Absolute values of the 2pnf(**F¢) — 2pn’d(**® D°) (n = 4-6; n’ = 3-6) transition energies (in meV) of plasma
embedded Be?T below the Be®*T (2p) threshold under Debye screening.

Debye screening length (D) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1pe — 1pe

2pdf — 2p3d 6948.14 6945.64 6942.18 6937.13 6929.45 6916.18 6894.02 6845.82 6713.53
— 2p4d 309.27 309.91 310.81 312.08 314.03 317.18 322.84 334.38 364.21
— 2p5d* 2649.02 2644.54 2638.32 2629.38 2615.82 2593.85
— 2p6d* 4217.37 4208.40 4196.01 4178.25 4151.41

2p5f — 2p3d 9746.64 9740.19 9731.29 9718.44 9698.86 9666.27 9609.52 9489.74 9166.80
— 2p4d 3107.77 3104.46 3099.92 3093.38 3083.44 3067.28 3038.34 2978.29 2817.48
— 2pbd 149.48 150.02 150.80 151.92 153.59 156.24
— 2p6d* 1418.87 1413.85 1406.90 1396.94 1382.00

2p6f — 2p3d 11249.80 11238.81 11223.59 11201.73 11168.58 11114.14 11018.80 10820.54 10294.42
— 2p4dd 4610.93 4603.07 4592.22 4576.68 4553.16 4515.14 4447.62 4309.09 3945.09
— 2pbd 1652.63 1648.63 1643.10 1635.21 1623.30 1604.11
— 2p6d 84.29 84.76 85.40 86.35 87.71

3Fe s 3po

2p4f — 2p3d 6267.78 6265.49 6262.34 6257.71 6250.67 6509.08 6218.23 6174.16 6053.13
— 2p4dd 68.33 69.63 70.35 72.00 74.54 77.13 86.03 101.20 140.68
— 2p5d* 2758.91 2754.21 2747.67 2738.34 2724.12 2705.26
— 2p6d* 4274.57 4265.36 4252.62 4234.40 4206.86

2p5f — 2p3d 9064.10 9057.90 9049.27 9036.81 9017.88 8987.00 8931.50 8815.76 8503.97
— 2p4d 2864.65 2862.04 2857.28 2851.10 2841.75 2829.15 2799.30 2742.80 2591.53
— 2p5d 37.41 38.20 39.26 40.76 43.08 46.77
— 2p6d* 1478.25 1472.95 1465.69 1455.30 1439.65

2p6f — 2p3d 10565.57 10554.80 10539.88 10518.41 10485.88 10433.15 10339.04 10144.79 9629.79
— 2p4d 4366.12 4358.94 4347.90 4332.71 4309.75 4275.30 4206.84 4071.83 3717.34
— 2pbd 1538.88 1535.10 1529.87 1522.37 1511.08 1492.91
— 2p6d 23.22 23.95 24.93 26.31 28.35

*pf level lines energetically lower than the pd level.

4 Conclusion

We report the behaviour of doubly excited energy levels of helium-like ions in WCP environment considering
screened Coulomb potential. The two-electron energy levels as well as the respective one-electron thresholds become
more positive as the plasma screening length decreases. The position of different doubly excited states has been
compared extensively. The transition wavelengths between doubly excited states are found to undergo a gradual
blue shift or a red shift with respect to the variation in plasma screening length. Such features have implications in
interpreting complex atomic spectra like those of laboratory plasma experiments or astrophysical observations.

References [7] A. Miiller, E. Lindroth, S. Bari, et al., Phys. Rev. A 98
(2018) 033416.

[8] R. Si, S. Li, K. Wang, et al., Astron. Astrophys. 600
(2017) AS5.

[9] J. M. N. Djiokap and A. F. Starace, J. Optics 19 (2017)

[1] M. A. Albert, S. Laulan, and S. Barmaki, Can. J. Phys.97
(2019) 317, https://doi.org/10.1139/cjp-2018-0222.

[2] D. Busto, L. Barreau, M. Isinger, et al,, J. Phys. B 51

044002, (2018).

[3] F. F. Goryaev, L. A. Vainshtein, and A. M. Urnov, At.
Data Nucl. Data Tables 113 (2017) 117.

[4] S. Kajita, K. Suzuki, H. Tanaka, and N. Ohno, Phys.
Plasmas. 25 (2018) 063303.

[5] S. Kar, Y. Wang, W. Li, and X. Sun, Few-Body Sys. 56
(2015) 10.

[6] A. Miiller, A. Borovik Jr., K. Huber, et al., Phys. Rev. A
97 (2018) 022709.

09.

[10] S. Nakazaki, K. Sakimoto, and Y. Itikawa, Phys. Scr. 47
(1993) 350.

[11] W. Schwanda and K. Eidman, Phys. Rev. Lett. 69 (1992)
3507.

[12] St. Boddeker, S. Gunter, A. Konies, et al., Phys. Rev. E
47 (1990) 2785.

[13] A. B. C. Walker Jr. and H. R. Rugge, Astrophys. J. 164
(1971) 181.



860

Communications in Theoretical Physics

Vol. 71

[14]
[15]
[16]
[17]
18]

[19]
[20]

21]

[22]
[23]
[24]
[25]
[26]

[27]

G. A. Doschek, P. Meekins, R. W. Kerplin, et al., Astro-
phys. J. 164 (1971) 165.

J. L. Culhane, et al., Sol. Phys. 136 (1991) 89.

U. Feldman, Phys. Scr. 46 (1992) 202.

RESIK & Diogeness NEWS, Week 42 (2002), website:
http://www.cbk.pan.wroc.pl/resik_archive/resik_weekly_
14.20_Oct/News.htm.

J. Sylwester, B. Sylwester, and K. J. H. Phillips, Astro-
phys. J. 681 (2008) L117.

C. Chang and W. Cui, Astrophys. J. 663 (2007) 1207.
J. K. Saha, S. Bhattacharyya, T. K. Mukherjee, and P.
K. Mukherjee, J. Phys. B 42 (2009) 245701.

J. K. Saha, S. Bhattacharyya, T. K. Mukherjee, and P.
K. Mukherjee, J. Quant. Spectrosc. Radiat. Transfer 111
(2010) 675.

J. K. Saha, T. K. Mukherjee, P. K. Mukherjee, and B.
Fricke, Eur. Phys. J. D 62 (2011) 205.

J. K. Saha, T. K. Mukherjee, P. K. Mukherjee, and B.
Fricke, Eur. Phys. J. D 66 (2012) 43.

J. K. Saha, S. Bhattacharyya, and T. K. Mukherjee, Int.
Rev. At. Mol. Phys. 3 (2012) 1.

J. K. Saha, T. K. Mukherjee, P. K. Mukherjee, and B.
Fricke, Phys. Plas. 20 (2013) 042703.

S. Bhattacharyya, J. K. Saha, and T. K. Mukherjee, Phys.
Rev. A 91 (2015) 042515.

S. Dutta, J. K. Saha, S. Bhattacharyya, and T. K.
Mukherjee, Int. Rev. At. Mol. Phys. 6 (2015) 73.

28]
29]
[30]

(31]

32]

33]

(34]

(35]
(36]

37]
(38]

(39]

S. Dutta, J. K. Saha, and T. K. Mukherjee, Phys. Plas.
22 (2015) 062103.

S. Dutta, J. K. Saha, R. Chandra, and T. K. Mukherjee,
Phys. Plas. 23 (2016) 042107.

J. K. Saha, S. Bhattacharyya, and T. K. Mukherjee, Phys.
Plas. 23 (2016) 092704.

A.N. Sil, S. Canuto, and P. K. Mukherjee, Adv. Quantum
Chem. 58 (2009) 115 and references therein for compre-
hensive list of works till (2009).

S. Dutta, J. K. Saha, S. Bhattacharyya, and T. K. Mu-
kherjee, Asian J. Phys. 25 (2016) 1331.

A. 1. Akhiezer, I. A. Akhiezer, R. A. Polovin, et al., Plas-
ma Electrodynamics Linear Response Theory, Pergamon,
Oxford (1975) 1.

S. Kar and Y. K. Ho, Int. J. Quantum Chem. 108 (2008)
1491.

S. Kar and Y. K. Ho, Phys. Rev. A 79 (2009) 062508.

A. K. Bhatia and A. Temkin, Rev. Mod. Phys. 36 (1964)
1050.

T. K. Mukherjee and P. K. Mukherjee, Phys. Rev. A 50
(1994) 850.

S. Dutta, A. N. Sil, J. K. Saha, and T. K. Mukherjee, Int.
J. Quantum Chem. 118 (2017) e25577.

NIST, Scientific and Technical Databases, Atomic and
Molecular Physics.



Journal of Atomic, Molecular, Condensate & Nano Physics

Vol. 7, No. 1, pp. [THB0} 2020 RGN

ISSN 2349-2716 (online); 2349-6088 (print)

Published by RGN Publications http://www.rgnpublications.com

DOI:10.26713/jamcnp.v7i1.1389

Resonance States of Hadronic Three-Body
lons: Stabilization Method | Research Article |

S. Dutta', J. K. Saha™?, S. Bhattacharyya® and T. K. Mukherjee*

1 Belgharia Texmaco Estate School, Belgharia, Kolkata 700056, India

2 Department of Physics, Aliah University, IIA/27, Newtown, Kolkata 700156, India

3 Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700131, India
4Department of Physics, Narula Institute of Technology, Agarpara, Kolkata 700109, India
*Corresponding author: jsaha84@gmail.com

Abstract. Bound and resonance states of symmetric three-body exotic pX X negative atomic ions
(X =p ,n ,K") as well as exotic ppX positive molecular ions for total angular momentum J =0,
are studied in details under the framework of Stabilization method. The resonance states under
consideration lie below N = 2 ionization threshold of the corresponding pX atom. The wave-function
is expanded in correlated multi-exponent Hylleraas type basis set for explicit incorporation of p-p,
-, -1 or K-K correlations. The methodology has been tested by estimating the parameters of the
resonance states of (puu)~, (ppu)*, (pnmw)~ and (ppn)* and comparing with the results existing in the
literature. The interparticle interactions for all the systems under consideration are purely Coulombic.

Keywords. Three-body systems; Stabilization method; Hylleraas coordinate; Resonance state;
Correlation

PACS. 31.15ac; 31.15ve; 36.10Gv

Received: April 4, 2020 Accepted: April 28, 2020

Copyright © 2020 S. Dutta, J. K. Saha, S. Bhattacharyya and T. K. Mukherjee. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The non-separability of the dynamical equation of motion of three body systems in both
classical and quantum mechanics, draws a considerable attention by the researchers around the
globe [9,35]. From the very beginning of quantum mechanics various approximation methods
had been used to study the structural properties of such systems. Being a quintessential
quantum mechanical three body system, the non-relativistic upper bound energy eigenvalue
of helium atom was estimated by Hylleraas [17] in the year 1929, using variational approach.
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In this work [[17] Hylleraas used a new coordinate system to expand the wavefunction in
terms of inter-particle (electron-nucleus and electron-electron) distances. After this pioneering
work of Hylleraas [17]], different variants of this correlated variational framework has been
evolved [12,13}(16}17,20,21,27,29.[32,33] which adequately account for the effect of inter-particle
correlation in the basis set.

Quantum mechanical three body system with arbitrary comparable masses bounded via
Coulomb interaction also drags considerable attention in recent years. In general, there are
two class of energy levels for these systems: the bound states lying below the first ionization
threshold (IV = 1) and the resonant states embedded in the continuum. Thus the bound states
are stable against autoionization, while the resonant states decays to an neutral atomic
configuration by ejecting particle due to the autoionizing process and thus posses a finite lifetime.
It has been observed that when massive negatively charged particles, such as antiprotons (p),
kaons (K), pions (), and muons (u), enters into matter, they slow down as they excite and
ionize the atoms or molecules of the matter and at the end the particles being captured by
the positive ions present in the medium, form the bound or resonance states of exotic atoms
[2,|11,/30,36]. Thus during the decay of these three-body ions, X-rays are emmited during
bound-bound transition or one of the particle is ejected from it via Augey process [[30]. Such
investigations are going into full swing in case of muonic-, pionic- and kaonic-hydrogen atoms
[1,/3,15,25,26,31].

Although the structural properties of bound states of these systems have extensively been
studied by adopting various quantum chemical methods [5,/7,8, 10, 14,18,/22,/24], but the same
for the resonance states are rather considerably less in number [18,,19]]. In the present work, we
have made an attempt to estimate the energy eigenvalues of ground states and the parameters
(position and width) of first three resonant states of ppX positive molecular ions and first
two resonant states of pXX negative atomic ions (X = y~,n7,K"), below the 2s threshold
of pX atom. For this purpose, we have expanded the basis set in the explicitly correlated
multi-exponent Hylleraas type basis set and carried out calculations under the framework of
Stabilization method [28,/34]. In order to check the consistency of the present methodology, we
have compared the resonance parameters (position and width) with few existing theoretical
data [18,19].

2. Method

Here we use the designation of two identical particles (pp or XX) as particle 3 and the
non-identical one (p or X) as particle 3. Due to translation symmetry of the Hamiltonian of
three-body system, it is possible to describe the motion of the system with respect to their center
of mass in six co-ordinates. If the distances of the particles 1 and 2 with respect to the 3rd
particle are r; and r9 and the distance between particles 1 and 2 is r12, then r1, r9 and r19 form
the sides of a triangle. Besides these three coordinates (r1, ro and ri2), the remaining three
coordinates are the Eulerian angles [4] defining the orientation of the triangle in space. For
the spherically symmetric ground state (1S€), the three-body general variational equation [23]

reduces to
5[ 1(1+1){(0\?)2+(a\1’)2}+1(a\1’)2+1 ( )a\y 0¥
—_— —_— —_— — — —_— — —_— r r —_— . ——
2\m M) |\\or; ors m \0ris M L2 ory Org

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 1, pp. @ 2020




Resonance States of Hadronic Three-Body Ions: Stabilization Method: S. Dutta et al. 53

1 oY ov¥ oY ov¥Y
+— {cos(rg,rlg)— — +cos(ri,rig)— —} +(V-E)¥Y?|dr=0 (2.1)
Org 0rig ory 0rig
where the volume element is d7 =rireriadridrodris and the potential is given by
1 1 1
Ve —+ — (22)
ry rg ri2
and we have defined
P2 r2 o2
cos(r;,rj) = (2.3)
2r;r;

where, the indices (i,/,k) =(1,2,12) and the m and M are the masses of the identical and
non-identical particles respectively. The masses (in a.u.) of p and X (X =pu~,n7,K ") particles
are taken as m, = 1836.152 6675, m , = 206.768 262, m, = 273.132 426 and mg = 966.101 6949
respectively. The trial radial wave function W(r1,r9,r12) can be written as,

\P(rlyrZ,rIZ) = Z rl 7‘2 r12 Z Ckllnl(l)nz(2)+ Z Z Ckl]nl(l)n](2) (2.4)
i=1j=1

In the second sum i < j and n;(m) = e Pi"»_ p being the non-linear parameter. p denotes
the number of non-linear parameters which are taken in a geometrical sequence following
pi = pi-1Y; Y being the geometrical sequence. The function g(1,2) containing correlation terms,
is expanded into Hylleraas basis set as follows, the effect of the radial correlation is incorporated
through different p’s in the wave function whereas, the angular correlation effect is taken
care of through different powers of r15. The dimension of the full multi-exponent basis (V) is
L@ X Z] , where s is the number of terms involving ri2 and p is the number of exponents.
or a fixed number of basis, p and s should be chosen in such a manner that the effect of radial
as well as angular correlation is properly incorporated in the wavefunction.
After choosing the proper trial radial wave function, the energy eigenvalues are obtained by
solving the generalized eigenvalue equation involving the Hamiltonian and overlap matrices
given by

HC=ESC, (2.5)

where H and S are Hamiltonian and overlap matrices respectively. The necessary basis integrals

of the form
ritrg
A(m,n,l;a1,a9) = f ry r2r12e_a1r1 @2"2dr1drodris (2.6)
r1=0Jrg=0J|r1—rg|

with the condition, m =0, n =0,/ =0 and a1,a9 > 0. This integral has been evaluated following
Calais and Lowdin [6]. All calculations are carried out in quadruple precision in order to have a
better numerical accuracy. Repeated diagonalization of the Hamiltonian matrix in the Hylleraas
basis set of 675 parameters is done in the present work for 200 different values of y. The plot of
each energy eigenroot versus y produces the stabilization diagram. The density of resonance
states is then calculated from the stabilization diagram and by fitting with a Lorentzian profile
we have estimated the parameters of a particular resonance state.

3. Results and Discussions

A portion of the stabilization diagram for 1S¢ states originating from two negatively charged
kions (K) of exotic pKK ion is given in Figure |1l In this diagram we have plotted first 40
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eigenroots of 1S¢ symmetry of exotic pKK ion for 200 different values of y ranging from 0.63058
a.u. to 0.74954 a.u. From Figure[l] one can see that there exist two classes of states:

(1) There exists only one energy level below N =1 ionization threshold of pK at —316.515
a.u., formed due to ground state (1s2) configuration remains invariant with the variation
in y. The energy eigenvalue of this level is —330.800637 which is consistent with the
value obtained by Dutta et al. [10] using 990 terms in the multi-exponant Hylleraas type
basis set.

(2) Roots lying above N =1 but below N =2 ionization threshold of pK at —79.129 a.u. are
sensitive with the variation in y and give rise to flat plateau in the vicinity of avoided
crossings of the energy eigenroots for some particular energy value which is a clear
signature of resonance states.

Similar classes of states are also observed for the other exotic systems like puu, ppu, prn,
pp7n and ppK. The ground state energies of atomic (pXX)~ ion and molecular (ppX)* ion
[X = u,n,K] are given in Table [1]and the present results are compared with the lowest energy
eigenvalues available in literature [5],10,/18].

-50

N=2

-100

-150

-200

E (a.u.)

A

-250

-300
N=1

-350 ——

T T T T
0.64 0.66 068 070 0.72 0.74
y (a.u)

Figure 1. Stabilization diagram for 1S¢ states of exotic pKK ion

Table 1. Bound states energies (—E in a.u.) of atomic (pXX)~ ion and molecular (ppX)* ion below
pX (1s) threshold E ,x = —% a.u.; A being the reduced mass of the exotic pX atom

E,, =-92.920 408 E,,=-118.882 182 E,x =-316.514 843
JJu PP P ppm pKK ppK
97.566 983 102.223 503 124.690 678 129.718 076 330.798 993  334.575 390

97.566 984 59° 102.223 503 6° 124.690 674¢ 129.718 073¢ 330.800 637¢ 334.575 377°¢

@ [5; ® [18]; ¢ [10]

Enlarged view of the stabilization diagram (Figure|1) for 1S¢ state of exotic pKK ion in the
energy range -100 a.u. to —78.5 a.u. is given in Figure [2| From a closer look at Figure [2| one
can see that for a short range of y each eigenroot becomes almost flat in the vicinity of avoided
crossings in the neighborhood of a particular resonance state. The density of states p,(E) is
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calculated by evaluating the inverse of the slope at a number of points near the flat plateau of
each energy eigenroot using the formula [28,34]] given by:

Yi+1—Yi-1 . (3.1)
En(Yi+1) - En(Yi—l) En(y)=E;
The calculated density of resonance states p,(E) is then fitted to the following Lorentzian form
[28,34],

pn(E) =

A r,/2

pn(E) = yo + T E-—EP+T/2° (3.2)
where y is the baseline background, A is the total area under the curve from the baseline, E,
gives the position of the centre of the peak of the curve and I', represents the full width of the
peak of the curve at half height. Among different fitting curves for each eigenroot corresponding
to a particular resonance state, the fitting curve with least y? and the square of correlation
closer to unity leads to the desired resonance energy (E,) and width (I') as mentioned in ref. [28].
For example, from the stabilization plot of Figure [2|for the first 1.S¢ resonance state below N = 2
ionization threshold of pK, we have calculated the inverse of the slope by using at different
points near the flat plateau of 24th eigenvalues in the interval of y = 0.724 —0.738.

[ fk “

| | | |

il

954 F/, aly
|

T T T T T T T T
0.64 0.66 068 070 0.72 0.74
y(a.u.)

E (au.)

Figure 2. Enlarged view of the Stabilization diagram for 1S° states of exotic pKK ion below N =2
ionization threshold of pK

The corresponding fitted curve is obtained by using and is shown in Figure |3 The
circles in Figure |3| are the calculated values of p,(E) while the solid line (red) corresponds to
the fitted curve. Repeated calculations of p,(E) near the flat plateau of each of the eigenroot for
first 18¢ resonance state resulted Lorentzian fitted curve similar to that of Figure|3l Among all
this fitting curve, we have found that 24th eigenroot corresponds to the best fit and from which
—-E,=95.06738(a.u.) and I', =0.31004(a.u.) are obtained. Similarly, the best fits for the second
and third 1S¢ resonance states are shown in Figure [4| and 5] respectively.

Table [2| shows all the resonance energies (E, in a.u.) and widths (I'; in a.u.) of 1S¢ states
of exotic atomic (pXX)~ ions and molecular (ppX)* ions [X = u,7,K] below N = 2 ionization
threshold of pX atom. The results are being compared with those available in literature
[18,19] for (pXX)~ and (ppX)* [X = u,n] ions. The comparison shows that resonance energies
and widths are in very good agreement with the available results [18,/19]]. To the best of our
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knowledge the present calculated resonance energies and widths of (pKK)~ and (ppK)* ions
are given for the first time in the literature. Table 2] shows that the widths of the negative
ions (p X X) are higher than the corresponding three body positive counterpart (p pX), which
indicates that the resonance states of the molecular (ppX)* ions are more long lived than that
of the atomic (pXX)™ ions.

0.035

0.030
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0.020

0.015

Density of resonance states (p)

0.010

T T T T T
-95.3 -95.2 -95.1 -95.0 -94.9 -94.8
E(a.u.)

Figure 3. Calculated density (circles) and the fitted Lorentzian (solid line in red) for the 1S resonance
state [-E, =95.06738(a.u.) and I', = 0.31004(a.u.)] of exotic pKK ion
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0.00
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E (a.u.)

Figure 4. Calculated density (stars) and the fitted Lorentzian (solid line in red) for the 1Se resonance
state [-E, =80.0428(a.u.) and I', =0.03131(a.u.)] of exotic pKK ion
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o o 4
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1 1 1

Density of resonance states (p)
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Figure 5. Calculated density (diamonds) and the fitted Lorentzian (solid line in red) for the 1S resonance
state [-E, =79.1798(a.u.) and I', = 0.0084(a.u.)] of exotic pKK ion
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4. Conclusion

In the present work we have adopted extended Hylleraas type basis set to estimate the ground
state energy eigenvalues of exotic atomic (pXX)~ ions and molecular (ppX)* ions [X = u,7,K]
below N = 1 ionization threshold of pX atom. Stabilization method is used to calculate the
resonance energies and widths of the above mentioned exotic systems below N = 2 ionization
threshold of pX atom. The present results consistent with those available in literature. The
advantage of the present method lies in the fact that a single methodology enables us to predict
reasonably accurate bound state energies and resonance parameters with much lesser number
of terms in the basis set expansion thus minimizing the computational time. The resonance
parameters for ppK and pKK ions are given for the first time in the literature. We hope the
present results will be useful for the future references.

Acknowledgments

JKS acknowledges the partial financial support from the Department of Science and Technology,
Govt. of West Bengal, India under grant number 249(Sanc.)/ST/P/ S& T/16G-26/2017.
SB acknowledges the partial financial support from the Department of Science and Technology,
Govt. of West Bengal, India under grant number 23(Sanc.)/ST/P/ S& T/16G-35/2017.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References

[1]1 D. F. Anagnostopoulos, S. Biri, G. Borchert, W. Breunlich, M. Cargnelli, J.-P. Egger, H. Fuhrmann,
D. Gotta, M. Giersch, A. Gruber, M. Hennebach, P. Indelicato, T. S. Jensen, F. Kottmann, Y.-W. Liu,
B. Manil, V. M. Markushin, J. Marton, N. Nelms, G. C. Oades, G. Rasche, P. A. Schmelzbach,
L. M. Simons and J. Zmeskal, The pionic hydrogen experiment at PSI, Hyperfine Interactions, 138
(2001), 131, DOI: 10.1023/A:1020815220597.

[2] G. Backenstoss, in Progress in Atomic Spectroscopy (eds. W. Hanle and H. Kleinpoppen), 1385,
Plenum, New York (1979).

[3] G. Beer, A. M. Bragadireanu, M. Cargnelli, C. Curceanu-Petrascu, J.-P. Egger, H. Fuhrmann,
C. Guaraldo, M. Iliescu, T. Ishiwatari, K. Itahashi, M. Iwasaki, P. Kienle, T. Koike, B. Lauss,
V. Lucherini, L. Ludhova, J. Marton, F. Mulhauser, T. Ponta, L. A. Schaller, R. Seki, D. L. Sirghi,
F. Sirghi and J. Zmeskal, Measurement of the kaonic hydrogen X-ray spectrum, Physical Review
Letters 94 (2005), 212302, DOI:10.1103/PhysRevLett.94.212302.

[4] A. K. Bhatia and A. Temkin, Symmetric euler-angle decomposition of the two-electron fixed-nucleus
problem, Reviews of Modern Physics 36 (1964), 1050, DOI: 10.1103/RevModPhys.36.1050.

[5] S. Bhattacharyya, J. K. Saha, P. K. Mukherjee and T. K. Mukherjee, Three-body negative ions under
Coulomb interaction, Physica Scripta 85 (2012), 065305, DOI:/10.1088/0031-8949/85/06/065305.

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 1, pp. @ 2020


http://doi.org/10.1088/0031-8949/85/06/065305
http://doi.org/10.1103/RevModPhys.36.1050
http://doi.org/10.1103/PhysRevLett.94.212302
http://doi.org/10.1023/A:1020815220597

Resonance States of Hadronic Three-Body Ions: Stabilization Method: S. Dutta et al. 59

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

dJ. L. Calais and P. O. Lowdin, A simple method of treating atomic integrals containing functions of
rig, Journal of Molecular Spectroscopy 8 (1962), 203, DOI: 10.1016/0022-2852(62)90021-8.

d. C. Cohen, Review of Fundamental Processes and Applications of Atoms and Ions, 61, World
Scientific, Singapore (1993).

C. Cohen-Tannoudji, B. Diu and F. E. Lalo, Quantum Mechanics, Vol. 1, 811, Wiley, New York
(2005).

N. Daldosso and L. Pavesi, Nanosilicon, Chapter 1, (ed. V. Kumar), Elsevier, New York (2005).

S. Dutta, J. K. Saha, S. Bhattacharyya, P. K. Mukherjee and T. K. Mukherjee, Exotic systems under
screened Coulomb interactions: a study on Borromean windows, Physica Scripta 89 (2014), 015401,
DOI:10.1088/0031-8949/89/01/015401.

E. Fermi and E. Teller, The capture of negative Mesotrons in matter, Physical Review 72 (1947),
399, DOI:10.1103/PhysRev.72.399.

K. Frankowski and C. L. Pekeris, Logarithmic terms in the wave functions of the ground state of
two-electron atoms, Physical Review 146 (1966), 46, DOI: 10.1103/PhysRev.146.46.

K. Frankowski, Logarithmic terms in the wave functions of the 21S and 23S states of two-electron
atoms, Physical Review 160 (1967), 1, DOI:10.1103/PhysRev.160.1.

P. Froelich, Muon catalysed fusion Chemical confinement of nuclei within the muonic molecule dtp,
Advances in Physics 41 (1992), 405, DOI:/10.1080/00018739200101533.

D. Gotta, F. D. Amaro, D. F. Anagnostopoulos, A. Buhler, D. S. Covitab, H. Gorke,
A. Gruber, M. Hennebach, A. Hirtl, P. Indelicato, T. Ishiwatari, E.-O. Le Bigot, J. Marton,
M. Nekipelov, J. M. F. dos Santos, S. Schlesser, Ph. Schmid, L. M. Simons, Th. Strauch,
M. Trassinelli, J. F. C. A. Veloso, J. Zmeskal, Pionic hydrogen, Physics Procedia 17 (2011), 69,
DOI:/10.1016/j.phpro.2011.06.019.

E. A. Hylleraas and B. Undheim, Numerische Berechnung der 2S-Terme von Ortho- und Par-
Helium, Zeitschrift fiir Physik 65 (1930), 759, DOI:10.1007/BF01397263.

E. A. Hylleraas, Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten
Terms von Ortho-Helium, Zeitschrift fiir Physik 54 (1929), 347, DOI:10.1007/BF01375457.

S. Kar and Y. K. Ho, Bound states and resonance states of the plasma-embedded ppu molecular
ion, Physical Review A 75 (2007), 062509, DOI:|10.1103/PhysRevA.75.062509.

S. Kilic, J.-P. Karr and L. Hilico, Coulombic and radiative decay rates of the resonances of
the exotic molecular ions ppu, ppr, ddu, ddn and dtu, Physical Review A 70 (2004), 042506,
DOI: 10.1103/PhysRevA.70.042506.

W. Kolos, C. C. J. Roothaan and R. A. Sack, Ground state of systems of three particles with coulomb
interaction, Reviews of Modern Physics 32 (1960), 178, DOI: 10.1103/RevModPhys.32.178.

V. 1. Korobov, Nonrelativistic ionization energy for the helium ground state, Physical Review A 66
(2002), 024501, DOI:10.1103/PhysRevA.66.024501.

dJ. Kulpa and S. Wycech, On the formation of Pionium, Acta Physica Polonica B 27 (1996), 941,
URL: https://www.actaphys.uj.edu.pl/R/27/4/941/pdf.

T. K. Mukherjee and P. K. Mukherjee, Variational equation of states of arbitrary angular momenta
for three-particle systems, Physical Review A 51 (1995), 4276, DOI:|10.1103/PhysRevA.51.4276.

M. Pawlak, M. Bylicki and P. K. Mukherjee, On the limit of existence of Borromean binding in
three-particle systems with screened Coulomb interactions, Journal of Physics B: Atomic, Molecular
and Optical Physics 47 (2014), 095701, DOI: 10.1088/0953-4075/47/9/095701.

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 1, pp. @ 2020


http://doi.org/10.1088/0953-4075/47/9/095701
http://doi.org/10.1103/PhysRevA.51.4276
https://www.actaphys.uj.edu.pl/R/27/4/941/pdf
http://doi.org/10.1103/PhysRevA.66.024501
http://doi.org/10.1103/RevModPhys.32.178
http://doi.org/10.1103/PhysRevA.70.042506
http://doi.org/10.1103/PhysRevA.75.062509
http://doi.org/10.1007/BF01375457
http://doi.org/10.1007/BF01397263
http://doi.org/10.1016/j.phpro.2011.06.019
http://doi.org/10.1080/00018739200101533
http://doi.org/10.1103/PhysRev.160.1
http://doi.org/10.1103/PhysRev.146.46
http://doi.org/10.1103/PhysRev.72.399
http://doi.org/10.1088/0031-8949/89/01/015401
http://doi.org/10.1016/0022-2852(62)90021-8

60

Resonance States of Hadronic Three-Body Ions: Stabilization Method: S. Dutta et al.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Pohl, H. Daniel, F. J. Hartmann, P. Hauser, F. Kottmann, V. E. Markushin, M. Miihlbauer,
C. Petitjean, W. Schott, D. Taqqu and P. Wojciechowski-Grosshauser, Observation of long-
lived Muonic hydrogen in the 2S state, Physical Review Letters 97 (2006), 193402,
DOI:10.1103/PhysRevLett.97.193402.

W. W. Repko and D. A. Dicus, Muonic hydrogen and the proton size, Physical Review D 98 (2018),
013002, DOI:10.1103/PhysRevD.98.013002.

M. B. Ruigz, J. T. Margraf and A. M. Frolov, Hylleraas-configuration-interaction analysis of the
low-lying states in the three-electron Li atom and Be* ion, Physical Review A 88 (2013), 012505,
DOI:10.1103/PhysRevA.88.012505.

J. K. Saha and T. K. Mukherjee, Doubly excited bound and resonance (3P°) states of helium,
Physical Review A 80 (2009), 022513, DOI: 10.1103/PhysRevA.80.022513.

C. Schwartz, Experiment and theory in computations of the he atom ground state, International
Journal of Modern Physics E 15 (2006), 877, DOI: 10.1142/S0218301306004648.

I. Shimamura, Moleculelike metastable states of antiprotonic and mesic helium, Physical Review A
46 (1992), 3776, DOI:|/10.1103/PhysRevA.46.3776.

SIDDHARTA Collaboration, M. Bazzi, G. Beer, L. Bombelli, A. M. Bragadireanua, M. Cargnelli,
G. Corradi, C. Curceanu (Petrascu), A. d’Uffizi, C. Fiorini, T. Frizzi, F. Ghio, B. Girolami, C. Guaraldo,
R. S. Hayano, M. Iliescua, T. Ishiwatari, M. Iwasaki, P. Kienlee, P. Levi Sandri, A. Longoni,
V. Lucherini, J. Marton, S. Okada, D. Pietreanua, T. Ponta, A. Rizzo, A. Romero Vidal, A. Scordo,
H. Shi, D. L. Sirghia, F. Sirghia, H. Tatsuno, A. Tudorache, V. Tudorache, O. Vazquez Doce,
E. Widmann and J. Zmeskal, A new measurement of kaonic hydrogen X-rays, Physics Letters B
704 (2011), 113, DOI:10.1016/j.physletb.2011.09.011.

dJ. S. Sims and S. Hagstrom, Combined configuration-interaction-Hylleraas-type wave-function
study of the ground state of the Beryllium atom, Physical Review A 4 (1971), 908,
DOI:10.1103/PhysRevA.4.908.

K. Szalewicz, H. J. Monkhorst, W. Kolos and A. Scrinzi, Variational calculation of the energy levels
for the tdu ion, Physical Review A 36 (1987), 5494, DOI:|10.1103/PhysRevA.36.5494.

S. S. Tan and Y. K. Ho, Determination of resonance energy and width by calculation of the density
of resonance states using the stabilisation method, Chinese Journal of Physics 35 (1997), 701,
https://www.ps-taiwan.org/cjp/download. php?type=paper&vol=35&num=6-I&page=701.

G. Tanner, K. Richter and J. M. Rost, The theory of two-electron atoms: between
ground state and complete fragmentation, Reviews of Modern Physics 72 (2000), 497,
DOI: 10.1103/RevModPhys.72.497.

A. S. Wightman, Moderation of negative mesons in hydrogen I: moderation from high energies to
capture by an Hy molecule, Physical Review 77 (1950), 521, DOI:(10.1103/PhysRev.77.521.

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 1, pp. @ 2020


http://doi.org/10.1103/PhysRev.77.521
http://doi.org/10.1103/RevModPhys.72.497
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=35&num=6-I&page=701
http://doi.org/10.1103/PhysRevA.36.5494
http://doi.org/10.1103/PhysRevA.4.908
http://doi.org/10.1016/j.physletb.2011.09.011
http://doi.org/10.1103/PhysRevA.46.3776
http://doi.org/10.1142/S0218301306004648
http://doi.org/10.1103/PhysRevA.80.022513
http://doi.org/10.1103/PhysRevA.88.012505
http://doi.org/10.1103/PhysRevD.98.013002
http://doi.org/10.1103/PhysRevLett.97.193402

Atomic Data and Nuclear Data Tables 158 (2024) 101649

Atomic Data and Nuclear Data Tables

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/adt

»

Check for

Precise structure calculations of 3 F¢ states of helium atom under s
exponentially screened Coulomb potential
A.N. Sil?, S. Dutta ¢, D. Ghosh ¢, J.K. Saha ¢, S. Bhattacharyya ¢, T.K. Mukhopadhyay "

a Department of Physics, Jogamaya Devi College, Kolkata 700026, India
b Belgharia Texmaco Estate School, Belgharia, Kolkata 700056, India

¢ Jadavpur University, Kolkata 700032, West Bengal, India

d Department of Physics, Bangabasi Evening College, Kolkata 700009, India
¢ Aliah University, lI-A/27, Action Area II, Newtown, Kolkata, West Bengal 700160, India
f Department of Physics, Narula Institute of Technology, Agarpara, Kolkata 700109, India

ARTICLE INFO

Keywords:

Classical weakly coupled plasma
Exponentially screened Coulomb potential
Helium atom

Doubly excited 3F¢ states

Explicitly correlated multi-exponent
Hylleraas-type wavefunction

Stabilization method

ABSTRACT

The structural properties of doubly excited ! F¢ metastable-bound and resonance states of neutral helium
atom under exponentially screened Coulomb potential are studied using explicitly correlated multi-exponent
Hylleraas type basis set. Precise energy eigenvalues of 2pnf (!> F¢) states [n =4 — 15] are estimated in the
framework of Ritz variational principle. Stabilization method has been employed to calculate the resonance
parameters (energy and width) of ' F¢ states below He*(3p) and He*(4p) thresholds for different screening
conditions. The resonance parameters above He'(3p) threshold under screened Coulomb environment are
reported for the first time in literature. Furthermore, pioneering calculations for the variation of structural
properties such as one- and two-particle moments and inter-electronic angles are carried out for both
metastable-bound and resonance '} F¢ states of He atom under screened Coulomb potential. The present results
may serve as benchmark for future references.

* Corresponding author.

E-mail addresses: ansil05@gmail.com (A.N. Sil), sayantand.physics.rs@jadavpuruniversity.in (S. Dutta), deepanwita.ghosh@gmail.com (D. Ghosh),
jksaha.phys@aliah.ac.in (J.K. Saha), sukhamoyb.physics@jadavpuruniversity.in (S. Bhattacharyya), tapan.mukherjee@nit.ac.in (T.K. Mukhopadhyay).

https://doi.org/10.1016/j.adt.2024.101649

Received 9 October 2023; Received in revised form 24 November 2023; Accepted 31 March 2024

Available online 21 April 2024
0092-640X/© 2024 Published by Elsevier Inc.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.adt.2024.101649&domain=pdf
https://doi.org/10.1016/j.adt.2024.101649
https://doi.org/10.1016/j.adt.2024.101649
mailto:tapan.mukherjee@nit.ac.in
mailto:sukhamoyb.physics@jadavpuruniversity.in
mailto:jksaha.phys@aliah.ac.in
mailto:deepanwita.ghosh@gmail.com
mailto:sayantand.physics.rs@jadavpuruniversity.in
mailto:ansil05@gmail.com
https://www.elsevier.com/locate/adt
https://www.elsevier.com/locate/adt

A.N. Sil et al.

Contents

A wWN R
-~
9]
2]
=
=N
=
17
)
=1
o
o
=
17
o
=
17
2.
(=}
j=]
7]

CRediT authorship contribution statement .............cceeueereereunereerenneneenenns
Declaration of competing iNterest.........cuueerereeueereeeenereerenueneereenereeeennens
Data availability ......cceuueiieiemiiieiiiien et
ACKNOWIEAZGEMENLS ...cevnueieiirniieiieieieeiiiee et ertene e e renaeeeereene s eenenaens
REfEIeNCES...civiiiiiiiiiiiiiiiien e

Atomic Data and Nuclear Data Tables 158 (2024) 101649

1. Introduction

Atomic systems confined under various external environments like
plasma [1-26], quantum dot [27,28], fullerene cages [29-31], zeolite
sieves [32,33], helium droplets [34] etc., have become an attractive
field of research over the years. Such investigations are significant
because they offer an excellent testing ground for many quantum chem-
ical approximation techniques, such as variation, perturbation, various
numerical techniques, etc., and they provide a wealth of information
about the confining environment. Among these different confinements
plasma is being widely studied due to its abundance in both natural
and laboratory scenario [35]. Depending on the Coulomb coupling
parameter (I'c) defined by the ratio of average potential energy to
average kinetic energy of the plasma particles, plasma can be classified
into two category — weakly coupled plasma (I < 1) and strongly
coupled plasma (I'; > 1). The Debye-Hiickel potential or exponentially
screened Coulomb potential (ESCP) [36], is mostly used to mimic
the interactions between the particles within weakly coupled plasma
environment while various other types of potentials are used in case of
strongly coupled plasma [37]. Precise atomic data, particularly of H-
like and He-like ions produced by using such model potentials serve as
important tools for plasma diagnostics. Ionization potential depression,
level shifting phenomena, line merging, vanishing of spectral lines
etc. of He-like systems provide useful information [24,26,38-42] about
different physical properties of plasma like density, temperature etc.

The study of doubly excited states (DES) of He-like systems have
acquired a lot of attention because of their importance in the field
of plasma physics, astrophysics, laser technology etc. [43-46]. Lot
of investigations [21,47-57] for S, P, D— symmetry states have been
conducted to determine the structural properties of DES of He-like
systems in plasma environments. Similar type of calculation for the
next higher angular momentum F* states are quite limited [9,25,58].
Using Cl-type basis functions, Kar and Ho calculated energies of meta-
stable bound '3 F¢ states below n = 2 ionization threshold [9,58]
and the resonance parameters (energy and width) of '3 F¢ resonance
states below n = 3 ionization threshold [9] of He-atom embedded in
the weakly coupled plasma environment modelled by ESCP. Kar and
Ho [9,58] approximated the screened electron—electron repulsion term
by Taylor expansion for the sake of simplicity in their calculations. In
our earlier investigation [25], we estimated the energy eigenvalues of
meta-stable bound '3 F¢ states and the transition wavelengths between
2pnf (13 F¢) and 2pn’d (3 D°) states (n = 4 —6;n’ = 3 —6) of two-electron
systems like He, Li* and Be’* under ESCP where the screening was
considered in both electron—-electron and electron-nucleus parts of the
potential without any approximation. The wavefunction used in that
work [25] consists of only pf configuration. In another work [59] we
took the explicit effect of pf and dd configurations in the wavefunction
while studying the meta-stable bound and resonance 3 F¢ states of free
He-atom. We showed that the mixing of pf and dd configurations
in the wavefunction expedite the convergence rate of the meta-stable
bound state energies. In comparison to the meta-stable bound states, it
was demonstrated that the dd configuration significantly adds to the
computations of the resonance parameters [59]. Thus it is necessary

to investigate the structural properties of meta-stable bound and reso-
nance '3 F¢ states using a complete wavefunction containing both pf
and dd configurations explicitly under the ESCP where the screening
is to be considered in both the parts of the potential without any
approximation.

In this communication, we have made an extensive investigation on
the structural properties of '3 F¢ states of He-atom under ESCP using
wavefunction consisting of both pf and dd configurations expanded
in multi-exponent Hylleraas-type basis set. Energies of the meta-stable
bound '3 F¢ states are calculated using Ritz variation principle for
different screening conditions of the potential. “Soft wall” strategy [59—
61] of the stabilization method [62] has been used to determine the
resonance parameters of !> F¢ states of He atom lying below He*(3p)
and He™" (4p) thresholds for various screening of ESCP. The basis integral
arising in the matrix elements for both the attractive and repulsive parts
of ESCP are calculated analytically in a closed form without any ap-
proximation although the effective potential to describe the interaction
is not being constructed from the first principle. The resonance parame-
ters above He*(3p) threshold under screened Coulomb environment are
reported for the first time in literature for '3 F¢ states of He-atom. Other
structural properties like one- and two-particle moments, expectation
values of inter-electronic angles etc. under ESCP are also estimated to
study how the overall structure of the atom alters as screening changes.
Atomic units are used throughout unless otherwise specified.

2. Method

The general variational equation of a two-electron system can be
written as

6/[H—E]¥’dr=0 (@)

where the volume element is dz =r| r, ry5 dr, dr, dr|, sinf do d¢ dy;
r; and r, being the respective distances of the electrons from the
nucleus, r|, being the inter-electronic distance and (0, ¢, y) being the
Eulerian angles [63] which specify the rotation of the triangle formed
by r;,r, and r|, in space. E is the energy eigenvalue of the atom
considered. The Hamiltonian (H) of the two-electron system is given
by,

1o, 1
H = —EVI - E
where V,,, is the effective potential of the two-electron system which
takes the following form under ESCP

VitV 2

Zerlip  Zer2/Ap  e~ri2/ip
I/eff = - - + (3)
r r V)

where Z is the nuclear charge and Aj is the plasma screening length
[25].

The wavefunction of the !> F¢ state can be written as the sum of the
products of the radial and the angular parts [59] as given below,

W = fIDY+ f7P DY + f5 DY 4

The angular parts D}* (L being the angular momentum of the state) are
the real symmetric Wigner functions [63] which are the eigenfunctions
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of the two-electron angular momentum operator. The explicit forms of
Dg, D%* and D%‘ as a function of the Eulerian angles (0, ¢, w) [63] are
given by

Do = 5cos® 6 —3cosf

3 2
V15
D§+ = =5 cos 2y sin® 6 cos 0 ®
V15
Dg_ == sin 2y sin® @ cos 0

The radial parts f;* consist of two most dominant configurations pf
and dd. The explicit forms of f Zi [59] are given by

2 /10 o
fé) =—(fFf)sinf, — 7(g¢g)51n012c05612

15 ~ /
= \/_G_(f T f)sin26,, + %(g F&)sinb, ©®)
V1s

= T(fif)(l —co0s20},)

Upper and lower signs in the parentheses correspond to singlet and
triplet states respectively. Here 6,, is the angle between 7| and 7.
In Eq. (6), f(ry,ry,rp) and g(ry,r,,r;,) functions are associated with
pf and dd configurations respectively where f = f(r,,r,r;,) and
& = g(ry,r|.ryy). The trial radial functions f and g are expanded in
nine-exponent Hylleraas type basis set as given below

Imax

0 9 9
a; b ¢ - + - -
S = Yy [Z Ciaae 1) + 3 N Cigge ™" pﬁrz]
=1 al

i a=1 p=1

9 9
Diaaeiaa(rlﬁ—Z) + 2 Z Diaﬂe%rlaﬂrz]
1

a=1 p=1

)

i 9

mx

-_— i i i

g(r,ry,rp) = Zrl ry TS
i=1

a=

In Eq. (7), the powers (a;, b;, ¢;) and (a?, bg, c,.’ ) are positive integers and
inax 1S the maximum number of the set of powers of r|,r, and r,. In the
above equation p, and p; are the non-linear parameters for electrons 1
and 2 respectively. The first summation for f in Eq. (7) corresponds to
a = p and that of the second summation corresponds to a # f. In the
double sum of Eq. (7), a < f is being taken while f takes care of the
terms with « > §. Similar notations are being used for g functions. C;,;
and D, are the linear expansion coefficients of f and g respectively.
The number of terms in the summation of « and g is 9(9 + 1)/2 i.e. 45.
Hence, combining f and g, the total number of terms in the basis set
is N = 90 X i, In the present calculation we have taken N = 900.
The non-linear parameters of pf and dd configurations are produced in
a geometrical progression using the relations p;, = p;,_,7 and ¢; = 6,_,7/,
where y and y’ are geometrical progression ratios in f and g functions
respectively. The energy eigenvalues (E) are derived by solving the
generalized eigenvalue equation,

HC=ESC ®

where H is the Hamiltonian matrix, S is the overlap matrix and C is a
column matrix made up of linear variational coefficients. To estimate
the matrix elements of H and .S, one need to evaluate the basis integrals
of the following form :~

s o ri+ry
A(m,n,lay,ay) = / / / r'I"r;r’ue_“"‘_azrzdrldrzdrlz 9
r1=0Jr=0J|r

1-72l
The analytic forms of A(m,n,l;a;,a,) are given in our previous work
[64]. The linear variational parameters as obtained from Eq. (8) are
used to determine different one and two-particle moments such as
(r1)s {r?), (riz), {r2,) and inter-electronic angles (9,,) by estimating
(cos 0,,) and using the following relation [65]

3
(012) » % - 7” (cos 0;,) (10)

These expectation values altogether contribute to understand the ge-
ometry of the atom quite clearly.
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To explore the behaviour of two-electron energy levels under ESCP,
it is essential to calculate the respective one-electron threshold energy
(E;;,) under ESCP. The radial variational equation for 2p state of He*
ion under the ESCP environment can be written as

dy 2 2 5
5 e =
/{<0r> +r2)(+

The radial function y(r) is expanded in the following type of basis set
as

x(r) = Z C; rli ebir (12)

—r/A
2‘2—D}(2—E,h)(2}dr=0 an

In the present work, the basis set in Eq. (12) contains 44 terms, and
the exponents are taken in a geometrical sequence, & = &_,¢; ¢
being the geometrical ratio. The matrix diagonalization approach using
Eq. (8) determines the energy eigenvalues E,, and linear variational
coefficients C;’s. In the current situation, this technique is repeated for
each different screening length (1p). All computations are performed
with quadruple precision.

3. Results and discussions

A typical stabilization diagram for *F¢ state of He atom (4, = 70
a.u.) is given in Fig. 1. For a fixed value of y’ repeated diagonalization
has been done for 432 different values of y. The plot 1 up to Het(4p)
threshold energy —0.098644 a.u. shows two classes of states:

(i) The energy eigenroots which are insensitive to the variation of
y lies below He*(2p) threshold energy —0.471931 a.u. are the
metastable bound states (MBS) having dominant configurations
2pnf [4 <n<8].

(ii) Above the Het(2p) threshold energy, the variation of energy
eigenroots with y show avoided crossings and plateaus which
indicates the presence of resonance states (RS).

The convergence of the energy eigenvalues of 2pnf (n = 4 — 6) MBS
(13 F®) for two different screening lengths A, = 100 a.u. and 4p = 40
a.u. are shown in the table Table A. It is clear from Table A that the
energy eigenvalues are converged at least up to 7th decimal place. For
the free He atom, the convergence behaviour of the energy eigenvalues
was shown in our earlier work [59]. In the succeeding tables we have
given the energy eigenvalues up to 6th decimal place.

The optimized MBS ('3 F¢) energy eigenvalues of He atom for
different A, are given in Tables B and C. With the decrease in 4p,
the MBSs gradually move towards the respective dressed threshold of
He'*(2p) under plasma. As a consequence the number of MBS decreases
sharply. It is noticeable that below 4, = 20 a.u., there exists no MBS of
3 F¢ symmetry of He atom. The comparison of the present results with
those of Kar and Ho [58,66] as shown in Tables B and C reveals that
the present energy eigenvalues of metastable bound 2pnf (n = 4 — 6)
states for A, = oo are consistent up to sixth decimal place. In fact,
we find that under the plasma scenario (Ap < 100 a.u.), our present
calculated energy values for MBS are lowest yet obtained as evident
from Tables B and C. The Ritz variational calculation provides an upper
bound to the exact energy eigenvalues for bound states, and hence, the
present results are more accurate in a sense that they are supposed to
be closer to the exact values, as compared to other existing results. The
reason behind this accuracy of the present method lies in the fact that
Kar and Ho [58,66] used an approximated form of the screened inter-
electronic repulsion by expanding it in a Taylor series truncated up to
a finite limit as

r’]’_

2 m 1
e~12/4p

~ Z(_l)n /1'!2 ]

r four !

1

In contrast we have used the exact analytic form of the screened inter-
electronic repulsion and estimated the matrix element analytically.
Tables D and E show different structural properties like repulsive
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Fig. 1. Stabilization plot of first 250 diagonalized energy eigenroots using N =900 terms in the basis set for 3 F¢ state of He-atom in the energy range —0.5 a.u. to —0.098644 a.u.
for A, =70 a.u. showing existence of both metastable bound and resonance states.

Table A

Convergence table for the energy eigenvalues (E in a.u.) of 2pnf (n=4—6) MBS ('3 F¢) for screening lengths 4, = 100 a.u. and 1, =40 a.u.
and basis sizes N = 720,810 and 900.

Ap = 100

JFe lFe
N 2p4f 2051 2061 2p4f 25f 2061
720 ~0.50305211 ~0.49202045 —0.48639964 ~0.50305606 ~0.49202303 ~0.48640116
810 ~0.50305211 —0.49202045 ~0.48639965 ~0.50305606 ~0.49202304 ~0.48640117
900 ~0.50305211 ~0.49202047 ~0.48639966 ~0.50305606 ~0.49202305 ~0.48640117
Ap =40

3FL’ 1 Fe
N 2p4f 205f 206f 2p4f 205f 206F
720 ~0.46329714 —0.45477196 ~0.45178121 ~0.46330037 ~0.45477358 ~0.45178169
810 ~0.46329714 ~0.45477196 -0.45178123 ~0.46330037 —0.45477358 ~0.45178170
900 ~0.46329714 —0.45477197 ~0.45178124 —0.46330037 —0.45477359 ~0.45178172

Table B
Energy eigenvalues (E in a.u.) of metastable bound 2pnf *F¢ [n > 4] states of He below He*(2p) threshold and 2p state of He* ion for different screening length 4, in a.u.
States  4p
o 100 70 50 40 30 25 20 15 12
He*(2p) -0.5 —0.480247 —0.471931 —0.460980 —0.451525 —0.436025 —0.423853 —0.405969 —0.377135  —0.349478
2p4f —0.531991 —0.503052 —0.491264 —0.476087 —-0.463297 —0.442971 —0.427595 —0.406086
—0.5319915% —0.502952? —0.4910705% —0.4757335% —0.46278* —0.442148 —0.426497¢
—-0.531991326"  -0.503052113" —0.476087092° -0.4060871"
2p5f —0.520383 —0.492020 —0.480773 —0.466541 —0.454771 —0.436544
—0.520383* —0.491925% —0.480597* —0.466237* —0.454334*
2p6f —0.514111 —0.486399 —0.475734 —0.462493 —0.451781
—-0.514111° —0.486313° —0.475580° —-0.462197°
2p7f —0.510344 —0.483338 —-0.473276 —0.461041
2p8f —0.507906 —0.481645 —0.472187
209 f —0.506238 —0.480744
2p10f —0.505044 —0.480330
2p11f —0.504144
2pl12f —0.503410
2pl13f —0.502832

(continued on next page)
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Table B (continued).

States Ap
o0 100 70 50 40 30 25 20 15 12
2plaf —-0.502296
2p15f —-0.501224
a [66].
b [58].
Table C

Energy eigenvalues (E in a.u.) of metastable bound 2pnf 'F¢ [n > 4] states of He below He*(2p) threshold and 2p state of He* ion for different screening length A, in a.u.

States A,

) 100 70 50 40 30 25 20 15 12
He*(2p) -0.5 —0.480247 —0.471931 —0.460980 —0.451525 —0.436025 —0.423853 —0.405969 —0.377135  —0.349478
2p4f —0.531995 —-0.503056 —0.491268 —0.476090 —0.463300 —0.442973 —0.427597 —0.406087
—0.5319955% —0.502956* —0.491074* —0.4757375% —0.462784* —0.4421585% —0.426532*
—0.531995436" —0.503056068" —-0.476090624" —0.4060876"
2p5f —0.520385 —0.492023 —0.480775 —0.466543 —0.454773 —0.436545
—0.5203855% —0.491928¢ —0.4805995° —0.4662415" —0.454351°
2p6 f —0.514113 —0.486401 —0.475736 —0.462494 —0.451781
—0.514113* —0.4863145" —0.4755835% —0.4622235"
2p7f —0.510345 —0.483339 —0.473276 —0.461042
2p8f —0.507907 —0.481645 —0.472187
2p9f —0.506239 —0.480745
2pl10f —0.505045 —0.480330
2p11f —0.504144
2p12f —0.503411
2p13f —0.502832
2p14f —0.502296
2p15f -0.501230
a [66].
b [58].
Table D
V)

Expectation values of repulsive potential (V,), attractive potential (V,), ratio of attractive to repulsive potential n =

, {cos@,,), inter-electronic angles (#,,) (in degree) usin:
A 12 8 12 8 8

(10), different one and two-particle moments of metastable bound 2pnf 3F¢ [n =4 - 15] states of He atom below He*(2p) threshold for different screening length A,. The notation
A[+B] stands for A x 10¥. All values are given in atomic units.

States 4p V) Vo) n ) () (ri2) () (cos6,,) (012
2p4f o 6.38[-2] -1.12[+0] 17.65 9.96[+0] 1.72[+2] 1.76[+1] 3.47[+2] -1.32[-2] 93.59
100 5.39[-2] —1.08[+0] 20.17 1.00[+1] 1.78[+2] 1.79[+1] 3.57[+2] -1.28[-2] 93.47
70 4.97[-2] —1.07[+0] 21.53 1.02[+1] 1.83[+2] 1.81[+1] 3.67[+2] -1.24[-2] 93.36
50 4.41[-2] —1.04[+0] 23.74 1.04[+1] 1.93[+2] 1.86[+1] 3.88[+2] -1.17[-2] 93.17
40 3.93[-2] —-1.02[+0] 26.15 1.07[+1] 2.06[+2] 1.91[+1] 4.13[+2] -1.09[-2] 92.95
30 3.13[-2] —9.96[-1] 31.78 1.14[+1] 2.39[+2] 2.05[+1] 4.79[+2] —9.34[-3] 92.52
25 2.48[-2] —9.69[-1] 38.96 1.23[+1] 2.86[+2] 2.24[+1] 5.73[+2] -7.76[-3] 92.09
20 1.41[-2] -9.28[-1] 65.49 1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] —4.64[-3] 91.25
2p5f oo 4.07[-2] —1.08[+0] 26.56 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] —-6.77[-3] 91.82
100 3.08[-2] —1.04[+0] 33.79 1.71[+1] 5.79[+2] 3.19[+1] 1.15[+3] —-6.27[-3] 91.69
70 2.67[-2] —1.02[+0] 38.36 1.77[+1] 6.19[+2] 3.30[+1] 1.23[+3] —-5.81[-3] 91.56
50 2.13[-2] —1.00[+0] 46.93 1.88[+1] 7.03[+2] 3.52[+1] 1.40[+3] —5.02[-3] 91.35
40 1.67[-2] —9.83[-1] 58.64 2.02[+1] 8.27[+2] 3.81[+1] 1.65[+3] -4.17[-3] 91.12
30 8.98[-3] —9.51[-1] 105.83 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] —2.41[-3] 90.65
2p6f oo 2.81[-2] —1.05[+0] 37.48 2.48[+1] 1.26[+3] 4.72[+1] 2.52[+3] —3.90[-3] 91.05
100 1.84[-2] —1.01[+0] 55.18 2.64[+1] 1.43[+3] 5.04[+1] 2.87[+3] —3.34[-3] 90.90
70 1.44[-2] —1.00[+0] 69.09 2.81[+1] 1.64[+3] 5.39[+1] 3.28[+3] —2.86[-3] 90.77
50 9.42[-3] -9.78[-1] 103.87 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] —2.04[-3] 90.55
40 5.01[-3] -9.60[-1] 191.34 4.06[+1] 3.52[+3] 7.89[+1] 7.05[+3] -1.15[-3] 90.31
2p7f © 2.06[-2] —1.04[+0] 50.39 3.44[+1] 2.50[+3] 6.65[+1] 5.00[+3] —2.45[-3] 90.66
100 1.10[-2] —1.00[+0] 90.45 3.86[+1] 3.14[+3] 7.48[+1] 6.28[+3] -1.85[-3] 90.50
70 7.34[-3] -9.86[-1] 134.26 4.37[+1] 4.04[+3] 8.50[+1] 8.08[+3] -1.35[-3] 90.36
50 2.53[-3] —9.65[-1] 381.10 6.40[+1] 8.91[+3] 1.25[+2] 1.78[+4] -5.17[-4] 90.13
2p8f o 1.57[-2] —1.03[+0] 65.32 4.56[+1] 4.45[+3] 8.89[+1] 8.90[+3] —-1.64[-3] 90.44
100 6.43[-3] -9.92[-1] 154.20 5.53[+1] 6.51[+3] 1.08[+2] 1.30[+4] -1.01[-3] 90.27
70 2.95[-3] -9.77[-1] 331.09 7.15[+1] 1.09[+4] 1.40[+2] 2.18[+4] —5.20[-4] 90.14
209f o 1.24[-2] —1.02[+0] 82.20 5.83[+1] 7.33[+3] 1.14[+2] 1.46[+4] -1.16[-3] 90.31
100 3.38[-3] -9.86[-1] 291.23 8.00[+1] 1.37[+4] 1.57[+2] 2.74[+4] -5.12[-4] 90.13
2p10f © 9.99[-3] —1.02[+0] 102.05 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] —8.09[-4] 90.21
100 1.33[-3] —9.82[-1] 733.41 1.25[+2] 3.38[+4] 2.48[+2] 6.76[+4] —-1.96[-4] 90.05
2p11f o 7.99[-3] —1.01[+0] 127.19 9.15[+1] 1.81[+4] 1.80[+2] 3.63[+4] -5.13[-4] 90.14
2p12f oo 6.15[-3] —1.01[+0] 164.69 1.17[+2] 3.00[+4] 2.33[+2] 6.00[+4] —-3.16[-4] 90.08
2p13f © 6.75[-3] —1.01[+0] 149.84 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] -5.17[-4] 90.14
2pl4f o 5.08[-3] —1.00[+0] 198.36 1.83[+2] 7.49[+4] 3.63[+2] 1.49[+5] -3.51[-4] 90.09
2p15f oo 7.02[-3] —1.00[+0] 142.97 2.12[+2] 1.11[+5] 4.22[+2] 2.23[+5] —7.68[-4] 90.20
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Table E

Expectation values of repulsive potential (V,), attractive potential (V,), ratio of attractive to repulsive potential n =
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vV,
%’, {cos 0,,), inter-electronic angles (6,,) (in degree) using

"

(10), different one and two-particle moments of metastable bound 2pnf ' F¢ [n =4 — 15] states of He atom below He*(2p) threshold for different screening length A,. The notation

A[+B] stands for A x 10¥2, All values are given in atomic units.

States Ap V) Vo) n (r) <’%> (ri2) <’%2> (cos0y,) (012)
2p4f © 6.39[-2] —1.12[+0] 17.64 9.96[+0] 1.72[+2] 1.76[+1] 3.46[+2] -1.28[-2] 93.46
100 5.39[-2] —1.08[+0] 20.15 1.00[+1] 1.77[+2] 1.78[+1] 3.57[+2] -1.24[-2] 93.36
70 4.97[-2] —1.07[+0] 21.52 1.02[+1] 1.83[+2] 1.81[+1] 3.67[+2] -1.20[-2] 93.25
50 4.41[-2] —1.04[+0] 23.73 1.04[+1] 1.93[+2] 1.86[+1] 3.87[+2] -1.13[-2] 93.07
40 3.93[-2] —1.02[+0] 26.14 1.07[+1] 2.06[+2] 1.91[+1] 4.13[+2] -1.06[-2] 92.87
30 3.13[-2] -9.96[-1] 31.76 1.14[+1] 2.39[+2] 2.05[+1] 4.79[+2] -9.11[-3] 92.45
25 2.49[-2] —-9.69[-1] 38.93 1.23[+1] 2.86[+2] 2.24[+1] 5.73[+2] —7.59[-3] 92.05
20 1.41[-2] —9.28[-1] 65.43 1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] —4.57[-3] 91.23
2p5f 0 4.07[-2] —1.08[+0] 26.55 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] —6.43[-3] 91.73
100 3.08[-2] —1.04[+0] 33.76 1.71[+1] 5.79[+2] 3.19[+1] 1.15[+3] —5.96[-3] 91.61
70 2.67[-2] —1.02[+0] 38.33 1.77[+1] 6.18[+2] 3.30[+1] 1.23[+3] —5.53[-3] 91.49
50 2.13[-2] —1.00[+0] 46.90 1.88[+1] 7.03[+2] 3.52[+1] 1.40[+3] —4.80[-3] 91.29
40 1.67[-2] —9.83[-1] 58.59 2.02[+1] 8.27[+2] 3.81[+1] 1.65[+3] —4.00[-3] 91.08
30 8.99[-3] —9.51[-1] 105.71 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] —2.33[-3] 90.63
2p6f ) 2.82[-2] —1.05[+0] 37.46 2.48[+1] 1.26[+3] 4.72[+1] 2.52[+3] -3.67[-3] 90.99
100 1.84[-2] —1.01[+0] 55.14 2.64[+1] 1.43[+3] 5.04[+1] 2.87[+3] —-3.15[-3] 90.85
70 1.44[-2] —1.00[+0] 69.04 2.81[+1] 1.64[+3] 5.39[+1] 3.28[+3] —2.70[-3] 90.73
50 9.43[-3] —9.78[-1] 103.78 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] —1.94[-3] 90.52
40 5.02[-3] -9.60[-1] 191.11 4.06[+1] 3.52[+3] 7.88[+1] 7.05[+3] -1.10[-3] 90.29
2p7f [ 2.06[-2] —1.04[+0] 50.37 3.44[+1] 2.50[+3] 6.65[+1] 5.00[+3] —2.29[-3] 90.61
100 1.10[-2] —1.00[+0] 90.38 3.86[+1] 3.14[+3] 7.48[+1] 6.28[+3] -1.74[-3] 90.46
70 7.35[-3] -9.86[-1] 134.16 4.37[+1] 4.04[+3] 8.50[+1] 8.08[+3] -1.27[-3] 90.34
50 2.53[-3] —9.65[-1] 380.59 6.40[+1] 8.91[+3] 1.25[+2] 1.78[+4] —4.91[-4] 90.13
2p8f © 1.57[-2] —1.03[+0] 65.29 4.56[+1] 4.44[+3] 8.89[+1] 8.90[+3] -1.53[-3] 90.41
100 6.44[-3] -9.92[-1] 154.09 5.52[+1] 6.51[+3] 1.08[+2] 1.30[+4] —9.50[-4] 90.25
70 2.95[-3] -9.77[-1] 330.77 7.14[+1] 1.09[+4] 1.40[+2] 2.18[+4] —4.89[-4] 90.13
2p9f © 1.24[-2] —1.02[+0] 82.17 5.83[+1] 7.33[+3] 1.14[+2] 1.46[+4] -1.07[-3] 90.29
100 3.39[-3] —9.86[-1] 291.01 8.00[+1] 1.37[+4] 1.57[+2] 2.74[+4] —4.78[-4] 90.12
2p10f © 9.99[-3] —1.02[+0] 102.02 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] —7.48[-4] 90.20
100 1.34[-3] —-9.82[-1] 732.32 1.25[+2] 3.38[+4] 2.48[+2] 6.76[+4] —1.83[-4] 90.04
2pl11f © 7.99[-3] —1.01[+0] 127.14 9.14[+1] 1.81[+4] 1.80[+2] 3.63[+4] —4.70[-4] 90.12
2p12f o 6.15[-3] —1.01[+0] 164.66 1.17[+2] 3.00[+4] 2.33[+2] 6.00[+4] —2.85[-4] 90.07
2p13f [ 6.74[-3] —1.01[+0] 150.09 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] —4.67[-4] 90.13
2pl4f © 5.07[-3] —1.00[+0] 198.97 1.83[+2] 7.49[+4] 3.64[+2] 1.49[+5] —3.09[-4] 90.08
2p15f © 6.76[-3] —1.00[+0] 147.92 2.15[+2] 1.13[+5] 4.27[+2] 2.26[+5] —6.59[-4] 90.17

potential (V,), attractive potential (V,), (cos 01,), (612), (r1), {r}), (ri2)
and (r2,) of *F¢ and ' F* MBSs for different A, values. It can be seen
from Tables D and E that both the one and two-particle moments (r,)
and (r,) increase when 4, decreases for ! F¢ states. This indicates that
the size of the atom increases with the decrease of 4, i.e. expansion of
the atom occurs.

We have used the “soft-wall” technique [59,60,67] of the well
celebrated stabilization method [61,62] to estimate the energy (E,) and
width (I,) of the RSs. Firstly we calculate the density of states (DOS)
of a single RS as the inverse of the slope of the stabilization plot, taking
points from the plateau region as given in the following formula,

Viel — Vi-1
E(vie1) — Ex(rizy)

Finally, the resonance parameters (E,, I,) are obtained by Lorentzian
fitting of the DOS as

A r./2
B =00t B 4 (127
where y, is the baseline background, A is the total area under the
curve from the baseline, E, gives the position of the centre of the peak
of the curve, and I, represents the full width at half maximum. For
example, Fig. 2 shows the plot of DOS of the 9-th root with respect to
energy values (E) which is fitted by Lorentzian curve using Eq. (14).
The fitting gives the resonance parameters as E, = —0.026947 a.u. and
I, =0.00195 a.u. All plotting and fitting operations are done using the
QtiPlot software, and the plot with least »? fitting is considered.

The values of E, and I, of resonance > F¢ states below the He*(3p)
threshold for various 4, are provided in Tables F and G, respectively.
The feature of the decrease of the number of RS with respect to
the decrease in Ap is similar to that of MBS. Estimated resonance

P(E) = 13

14

parameters (E,, I,) are compared with the only available values of
Kar and Ho [66] below the Het(3p) threshold in the Tables F and G.
We have obtained a greater number of RSs than reported by Kar and
Ho [66] for each Ap. The resonance 3Fe¢ state can originate from the
electronic configurations 3dnd [n > 31, 3pnf [n > 4] and 3dng [n > 5].
The identification [59,66] of the configurations are given below:

(i) 3Fe(1),3 Fe(2),2 Fe(4),® F°(7), F°(10),3 F¢(13),> F°(16) and 3 F¢(19)
states originate from the dominant 3dnd [3 < n < 10] configura-
tions.

(ii) 3F°¢(3),> F¢(5), Fe(8),® Fe(11),> F¢(14),3 F¢(17) and 3 F¢(20) states
originate from the dominant 3pnf [4 < n < 10] configurations.

(iii) 3Fe(6),? Fe(9),? F¢(12),> F¢(15) and 3 F¢(18) states originate from
the dominant 3dng [5 < n < 9] configurations.

From Table G it can be seen that the width I, of RS decreases with the
decrease of A;, for most of the states except the RSs having dominant
configurations 3dng [5 < n < 9]. Fig. 3 depicts the variation of T,

with respect to /IL for the 3F¢(1),> F¢(3) and > F¢(6) RS, corresponding

to the dominant [e)lectronic configurations 3d?,3p4f and 3d5g respec-
tively. A similar feature for the resonance widths of 3 P symmetry of
two-electron systems are reported in literature [68,69].

We have estimated the changes of the structural properties with the
change of screening length 4. The structural properties like (V,), (V,),
n <= EI;”; >, (cos 8;,), (0;,) using (10), {r;), (r%), (ri») and <r%2> of
resonancze 3Fe¢ states of He atom below He*(3p) threshold are given
in the Table H. Like the MBSs, (V,) and (V,) decrease while the ratio
n increases with the decrease of Ap. Table H shows that similar to
MBS, (r,), (r?), (r;,) and (/2 ) increases as i, decreases. From the
last column of Table H it can be seen that, (0,,) values of 3dnd and
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Table F
Resonance energy E, (a.u.) of >F¢ states of He atom below He*(3p) threshold and energy of 3p state of He* ion for different screening length 4, in a.u.
States Ap
oo 100 70 50 40 30 25 20 15 12
He*(3p) —-0.222222 —0.202835 —0.194885 —0.184610 —-0.175918 —-0.162017 —-0.151409 —-0.136315 —-0.113232 —0.092587
3Fe(1) —-0.31072 —-0.28159 —0.26947 —0.25385 —0.24059 —0.21926 —-0.20291 —0.17953 —0.14352 -0.11113
—0.31069¢ —0.28135% —0.269175% —0.253315% -0.23978 —0.217945% -0.2011¢ —0.176905% —0.139385% —0.10523
3Fe(2) —-0.26283 —0.23404 —-0.22239 —0.20750 —0.19505 —0.17546 —0.16080 —0.14047
—-0.262825" —-0.23388* -0.22211* —0.206995" —0.194305% —0.17426* —-0.159195% —-0.138115"
3Fe(3) —0.25826 —0.22956 —0.21801 —0.20327 —0.19098 -0.17171 -0.15734 -0.13759
—0.25826* —0.229345" —-0.217605* —0.202535" —-0.1899* —0.16996" —-0.155015*
3Fe4) —0.24681 —0.21852 —-0.20739 —0.19338 —-0.18188 —-0.16426
—0.246805* —0.218385* —-0.20712% —0.192915% -0.18122% -0.16309%
3F(5) —0.24438 —-0.21621 —-0.20524 —0.19145 —-0.18018 —0.16300
—0.244385" —0.21604" —0.20485% —-0.19077% —-0.179205%
3Fe(6) —-0.2412 -0.21318 -0.20213 —0.18840 -0.17724
-0.2413° -0.2129% -0.2017¢ -0.1876 -0.1762°
3Fe(7) —-0.23871 -0.21104 —0.20046 —0.18741 —-0.17691
—-0.238705* —0.210905* —-0.20022* —0.186985"
3F(8) —0.23730 —0.20979 —0.19936 —0.18655 -0.17631
—-0.237295% —0.209605" —0.199015% —0.18593*
3F(9) —-0.23560 —0.20815 -0.19776 —0. 18513
-0.2356 -0.2079* -0.19735%
3Fe(10) —0.23403 —0.20705 —-0.19705 —0.18494
—0.234035" —0.20693* —0.196835"
3Fe(11) -0.23314 —0.20636 —0.19650
—0.233155% —0.206175% —0.19618
3Fe(12) —-0.23207 —0.20526 —0.19559
-0.2321¢ —-0.2052* —-0.19525%
3Fe(13) —0.23108 —0.20483 —0.19543
3Fe(14) —-0.23071 —0.20443 —0.19518
3Fe(15) —-0.22975 —0.20340
3Fe(16) —0.22906
3Fe(17) —0.22882
3Fe(18) —0.22743
3Fe(19) -0.22624
3F¢(20) —0.22401
a [66].
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Fig. 2. Calculated DOS (hollow black circles) and the fitted Lorentzian (red line) for the first resonance 3 F¢ state of He-atom below He*(3p) threshold for i, = 70 a.u. which
gives the resonance energy and width E, = —0.026947 a.u. and I, = 0.00195 a.u. respectively.
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Fig. 3. The variation of resonance widths for the 3F¢(1),> F¢(3) and 3 F¢(6) states corresponding to the dominating configurations 3d2,3p4f and 3d5g respectively, with respect to

the reciprocal of screening lengths <%)
D

Table G
Resonance width T, (a.u.) of 3F¢ states of He below He*(3p) threshold for different screening length 4, in a.u. The notation A[+B] stands for A x 10=5.
States Ap
© 100 70 50 40 30 25 20 15 12
3Fe(1) 1.97[-3] 1.98[-3] 1.95[-3] 1.93[-3] 1.88[-3] 1.83[-3] 1.77[-3] 1.66[-3] 1.47[-3] 1.23[-3]
1.98[-3]* 1.975[-3]* 1.965[-3]* 1.945[-3]* 1.925[-3]* 1.88[-3]* 1.835[-3]* 1.76[-3]* 1.61[-3]° 1.4[-3]°
3Fe(2) 4.50[-4] 4.49[-4] 4.37[-4] 4.31[-4] 4.12[-4] 3.80[-4] 3.46[-3] 2.79[-41
4.515[-4]* 4.47[-4]* 4.425[-4]" 4.33[-4]* 4.205[-4]" 3.905[-4]* 3.575[-4]* 3.01[-4]*
3Fe(3) 1.67[-4] 1.60[-3] 1.46[-4] 1.37[-4] 1.14[-4] 8.58[-5] 6.52[-5] 4.21[-5]
1.68[-4]* 1.57[-4]* 1.465[—4]* 1.29[-4]* 1.115[-4]* 8.25[-5]* 0.615[—4]°
3Fe4) 2.08[-4] 1.99[-4] 1.92[-4] 1.83[-4] 1.68[-4] 1.14[-4]
2.065[-4]* 2.005[-4]* 1.945[-4]* 1.805[—4]1* 1.635[—-4]* 1.305[-4]1*
3F(5) 1.12[-4] 1.04[-4] 8.10[-5] 6.63[-5] 5.04[-5] 4.09[-5]
1.06[-4]° 9.25[-5]* 8.1[-5]* 6.4[-5]* 5.05[-5]*
3F(6) 1.29[-9] 2.49[-8] 5.08[-7] 1.48[-6] 2.37[-6]
3Fe(T) 1.09[-4] 9.55[-5] 9.26[-5] 7.43[-5] 4.48[-5]
1.105[-4]* 1.035[-4]* 9.45[-5]* 7.75[-5]*
3Fe8) 6.61[-5] 5.24[-5] 3.94[-5] 3.64[-5] 2.75[-5]
6.6[-5]° 5.2[-5]? 4.15[-5]* 3.0[-5]*
3Fe(9) 1.18[-8] 1.73[-71] 1.22[-5] 1.73[-5]
3Fe(10) 5.96[-5] 5.37[-5] 4.39[-5] 1.41[-5]
6.6[-5]* 5.95[-5]*
3Fe(11) 5.37[-5] 2.71[-5] 1.07[-5]
3Fe(12) 2.45[-7] 2.91[-6] 1.16[-5]
3Fe(13) 1.84[-4] 1.11[-4] 4.36[-5]

(continued on next page)
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Table G (continued).

States Ap
0 100 70 50 40 30 25 20 15 12
3Fe(14) 1.61[-4] 3.05[-5] 1.16[-5]
3Fe(15) 4.06[-6] 9.0[-5]
3Fe(16) 6.53[-5]
3Fe(17) 1.06[—4]
3Fe(18) 7.46[-5]
3Fe(19) 1.60[—4]
3Fe(20) 1.83[-4]
a [66].
Table H
Va)

Expectation values of repulsive potential (V,), attractive potential (V,), ratio of attractive to repulsive potential n = ‘ , (cos@,,), inter-electronic angles (6,,) (in degree) using

)
(10), different one and two-particle moments of resonance > F¢ states of He atom below He*(3p) threshold. The notation A[+B] stands for A x 10=5. All values are given in atomic
units.

States A V) (Vo) n () () (i) () (cos 6y,) (012)
3Fe(1) © 1.11[-1] -7.49[-1] 6.75 6.70[+0] 5.70[+1] 1.04[+1] 1.28[+2] -1.36[-1] 126.85
100 1.01[-1] -7.10[-1] 7.01 6.63[+0] 5.46[+1] 1.03[+1] 1.24[+2] -1.37[-1] 127.06
70 9.74[-2] —6.93[-1] 7.12 6.62[+0] 5.42[+1] 1.03[+1] 1.23[+2] -1.36[-1] 126.86
50 9.23[-2] -6.71[-1] 7.26 6.61[+0] 5.39[+1] 1.02[+1] 1.22[+2] —-1.35[-1] 126.69
40 8.84[-2] —6.49[-1] 7.35 6.59[+0] 5.27[+1] 1.02[+1] 1.20[+2] -1.37[-1] 127.12
30 8.13[-2] -6.18[-1] 7.60 6.62[+0] 5.38[+1] 1.02[+1] 1.22[+2] -1.35[-1] 126.68
25 7.60[-2] —5.93[-1] 7.79 6.64[+0] 5.42[+1] 1.03[+1] 1.23[+2] —-1.35[-1] 126.64
20 6.86[-2] —5.55[-1] 8.09 6.71[+0] 5.51[+1] 1.04[+1] 1.25[+2] -1.36[-1] 126.77
15 5.69[-2] —4.94[-1] 8.68 6.88[+0] 5.83[+1] 1.07[+1] 1.32[+2] —-1.35[-1] 126.50
12 4.63[-2] —4.32[-1] 9.33 7.14[+0] 6.34[+1] 1.11[+1] 1.44[+2] -1.35[-1] 126.52
3F(2) © 6.67[-2] —5.96[-1] 8.93 1.07[+1] 1.59[+2] 1.82[+1] 3.74[+2] -2.31[-1] 152.41
100 5.70[-2] -5.57[-1] 9.76 1.08[+1] 1.62[+2] 1.83[+1] 3.80[+2] -2.29[-1] 152.03
70 5.30[-2] —-5.40[-1] 10.17 1.09[+1] 1.66[+2] 1.85[+1] 3.87[+2] —-2.28[-1] 151.71
50 4.79[-2] -5.17[-1] 10.80 1.10[+1] 1.71[+2] 1.88[+1] 3.99[+2] -2.26[-1] 151.04
40 4.35[-2] -4.98[-1] 11.43 1.12[+1] 1.79[+2] 1.91[+1] 4.15[+2] —2.24[-1] 150.50
30 3.65[-2] -4.66[-1] 12.77 1.16[+1] 1.95[+2] 1.99[+1] 4.47[+2] -2.19[-1] 149.18
25 3.11[-2] -4.41[-1] 14.18 1.20[+1] 2.13[+2] 2.07[+1] 4.85[+2] —2.15[-1] 148.05
20 2.33[-2] —4.03[-1] 17.30 1.30[+1] 2.56[+2] 2.25[+1] 5.75[+2] -2.10[-1] 146.73
3F¢(3) o 6.50[-2] —-5.83[-1] 8.96 1.10[+1] 1.70[+2] 1.73[+1] 3.34[+2] 9.91[-3] 87.32
100 5.53[-2] —5.43[-1] 9.81 1.11[+1] 1.73[+2] 1.74[+1] 3.39[+2] 1.11[-2] 86.99
70 5.13[-2] —5.26[-1] 10.24 1.12[+1] 1.76[+2] 1.76[+1] 3.45[+2] 1.17[-2] 86.83
50 4.63[-2] —5.04[-1] 10.89 1.13[+1] 1.82[+2] 1.79[+1] 3.56[+2] 1.39[-2] 86.22
40 4.19[-2] —4.84[-1] 11.56 1.15[+1] 1.89[+2] 1.82[+1] 3.71[+2] 1.53[-2] 85.84
30 3.48[-2] -4.53[-1] 12.99 1.20[+1] 2.08[+2] 1.90[+1] 4.05[+2] 2.05[-2] 84.46
25 2.93[-2] -4.27[-1] 14.57 1.25[+1] 2.31[+2] 1.99[+1] 4.50[+2] 2.70[-2] 82.68
20 2.08[-2] -3.89[-1] 18.69 1.39[+1] 3.01[+2] 2.25[+1] 5.81[+2] 4.78[-2] 77.07
3Fe4) oo 4.32[-2] —-5.38[-1] 12.46 1.65[+1] 4.41[+2] 2.95[+1] 9.81[+2] —2.54[-1] 158.78
100 3.37[-2] -4.99[-1] 14.79 1.67[+1] 4.58[+2] 3.00[+1] 1.01[+3] —2.44[-1] 155.89
70 2.97[-2] -4.82[-1] 16.24 1.72[+1] 4.86[+2] 3.09[+1] 1.07[+3] —2.48[-1] 156.97
50 2.47[-2] —4.60[-1] 18.61 1.78[+1] 5.29[+2] 3.21[+1] 1.16[+3] -2.41[-1] 155.25
40 2.05[-2] -4.41[-1] 21.45 1.86[+1] 5.85[+2] 3.37[+1] 1.27[+3] —-2.35[-1] 153.64
30 1.38[-2] -4.10[-1] 29.54 2.09[+1] 7.57[+2] 3.80[+1] 1.62[+3] —2.28[-1] 151.75
3Fe(5) oo 4.12[-2] —-5.30[-1] 12.88 1.74[+1] 5.05[+2] 2.97[+1] 9.95[+2] 2.79[-2] 82.44
100 3.19[-2] -4.92[-1] 15.40 1.77[+1] 5.23[+2] 3.01[+1] 1.02[+3] 4.34[-2] 78.25
70 2.76[-2] -4.74[-1] 17.17 1.83[+1] 5.61[+2] 3.13[+1] 1.10[+3] 3.78[-2] 79.77
50 2.26[-2] -4.52[-1] 20.01 1.91[+1] 6.20[+2] 3.28[+1] 1.21[+3] 4.89[-2] 76.79
40 1.83[-2] —4.33[-1] 23.58 2.02[+1] 7.01[+2] 3.48[+1] 1.36[+3] 6.31[-2] 72.94
30 1.14[-2] —4.02[-1] 35.09 2.34[+1] 9.83[+2] 4.09[+1] 1.90[+3] 1.00[-1] 62.83
3F¢(6) o 4.04[-2] -5.23[-1] 12.93 1.68[+1] 4.55[+2] 2.75[+1] 8.35[+2] 1.81[-1] 40.86
100 3.04[-2] —4.83[-1] 15.89 1.73[+1] 4.85[+2] 2.85[+1] 8.96[+2] 1.77[-1] 42.11
70 2.59[-2] —4.65[-1] 17.98 1.79[+1] 5.31[+2] 2.98[+1] 9.85[+2] 1.72[-1] 43.44
50 2.00[-2] —4.43[-1] 22.13 1.92[+1] 6.26[+2] 3.24[+1] 1.17[+3] 1.63[-1] 45.81
40 1.40[-2] —4.21[-1] 30.12 2.25[+1] 9.20[+2] 3.89[+1] 1.75[+3] 1.35[-1] 53.29
3Fe(T) © 2.98[-2] —5.08[-1] 17.01 2.39[+1] 1.02[+3] 4.42[+1] 2.20[+3] —-2.65[-1] 161.74
100 2.04[-2] -4.69[-1] 22.95 2.49[+1] 1.12[+3] 4.62[+1] 2.40[+3] -2.56[-1] 159.20
70 1.66[-2] -4.52[-1] 27.17 2.61[+1] 1.23[+3] 4.86[+1] 2.64[+3] -2.56[-1] 159.15
50 1.20[-2] —4.31[-1] 35.91 2.84[+1] 1.49[+3] 5.31[+1] 3.16[+3] —2.49[-1] 157.30
40 8.87[-3] -4.13[-1] 46.62 3.08[+1] 1.81[+3] 5.78[+1] 3.81[+3] -2.22[-1] 150.06
3Fe®) o 2.85[-2] -5.03[-1] 17.67 2.53[+1] 1.17[+3] 4.53[+1] 2.31[+3] 3.58[-2] 80.32
100 1.90[-2] —4.64[-1] 24.32 2.65[+1] 1.29[+3] 4.75[+1] 2.54[+3] 5.54[-2] 75.03
70 1.51[-2] —4.47[-1] 29.51 2.81[+1] 1.46[+3] 5.05[+1] 2.87[+3] 5.94[-2] 73.93
50 1.14[-2] -4.29[-1] 37.65 3.01[+1] 1.72[+3] 5.52[+1] 3.44[+3] 1.09[-3] 89.70
40 6.73[-3] —4.08[-1] 60.73 3.57[+1] 2.44[+3] 6.53[+1] 4.78[+3] 1.15[-1] 58.94
3Fe(9) © 2.80[-2] -4.99[-1] 17.76 2.52[+1] 1.16[+3] 4.40[+1] 2.20[+3] 2.04[-1] 34.77
100 1.79[-2] —4.59[-1] 25.59 2.71[+1] 1.36[+3] 4.78[+1] 2.58[+3] 1.91[-1] 38.17
70 1.37[-2] -4.42[-1] 32.17 2.92[+1] 1.60[+3] 5.20[+1] 3.06[+3] 1.81[-1] 40.89

(continued on next page)
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States A V) Vo) n (ry) <’f> (ria) <’?2> (cos0y,) (012)
50 6.80[-3] -4.18[-1] 61.46 3.96[+1] 3.12[+3] 7.32[+1] 6.15[+3] 7.65[-2] 69.33

3Fe(10) © 2.17[-2] —4.90[-1] 22.52 3.29[+1] 2.05[+3] 6.21[+1] 4.33[+3] 2.71[-1] 163.34
100 1.25[-2] —4.51[-1] 35.86 3.55[+1] 2.41[+3] 6.73[+1] 5.06[+3] —2.56[-1] 159.16
70 8.99[-3] —4.35[-1] 48.40 3.89[+1] 2.93[+3] 7.41[+1] 6.12[+3] -2.57[-1] 159.57
50 4.71[-3] -4.14[-1] 88.03 4.91[+1] 4.87[+3] 9.33[+1] 9.76[+3] -2.41[-2] 96.51

3Fe(11) oo 2.09[-2] —4.87[-1] 23.27 3.47[+1] 2.32[+3] 6.39[+1] 4.60[+3] 5.16[-2] 76.04
100 1.14[-2] —4.48[-1] 38.99 3.82[+1] 2.84[+3] 7.08[+1] 5.61[+3] 6.04[-2] 73.67
70 7.94[-3] —-4.32[-1] 54.41 4.24[+1] 3.52[+3] 7.88[+1] 6.94[+3] 8.98[-2] 65.72

3Fe(12) oo 2.08[-2] —4.84[-1] 23.20 3.48[+1] 2.36[+3] 6.30[+1] 4.52[+3] 2.21[-1] 30.16
100 1.11[-2] —4.45[-1] 39.99 3.96[+1] 3.12[+3] 7.28[+1] 6.04[+3] 1.93[-1] 37.76
70 6.24[-3] —4.28[-1] 68.58 4.97[+1] 5.04[+3] 9.30[+1] 9.84[+3] 1.63[-1] 45.72

3Fe(13) © 1.64[-2] —4.78[-1] 29.07 4.36[+1] 3.76[+3] 8.36[+1] 7.82[+3] -2.69[-1] 162.69
100 7.54[-3] —4.40[-1] 58.37 5.00[+1] 4.97[+3] 9.62[+1] 1.02[+4] -2.62[-1] 160.82
70 4.50[-3] —4.25[-1] 94.44 5.81[+1] 6.81[+3] 1.12[+2] 1.40[+4] —-2.52[-1] 158.04

3Fe(14) © 1.59[-2] —4.77[-1] 29.87 4.57[+1] 4.16[+3] 8.56[+1] 8.24[+3] 6.26[-2] 73.07
100 7.80[-3] -4.41[-1] 56.58 5.18[+1] 5.46[+3] 9.87[+1] 1.09[+4] -1.20[-2] 93.25
70 3.70[-3] —4.23[-1] 114.22 6.48[+1] 8.56[+3] 1.23[+2] 1.69[+4] 1.19[-1] 57.61

3Fe(15) ) 1.54[-2] —-4.75[-1] 30.69 4.77[+11 4.60[+3] 8.87[+1] 8.93[+3] 2.20[-1] 30.34
100 4.92[-3] —4.35[-1] 88.43 6.93[+1] 9.94[+3] 1.33[+2] 1.98[+4] 4.56[-3] 88.76

3Fe(16) © 1.36[-2] -4.72[-1] 34.67 5.47[+1] 6.13[+3] 1.05[+2] 1.25[+4] -1.98[-1] 143.56

3Fe(17) o 1.32[-2] —4.72[-1] 35.67 5.67[+1] 6.63[+3] 1.08[+2] 1.32[+4] 8.88[-3] 87.60

3Fe(18) oo 1.06[-2] —4.66[-1] 43.76 6.99[+1] 1.01[+4] 1.34[+2] 2.03[+4] 3.25[-3] 89.12

3F¢(19) © 1.46[-2] —4.78[-1] 32.76 6.41[+1] 9.26[+3] 1.23[+2] 1.85[+4] —8.82[-4] 90.23

3F¢(20) ) 1.72[-2] —4.82[-1] 28.01 5.17[+1] 6.17[+3] 9.84[+1] 1.23[+4] —4.61[-3] 91.24

Table I
Resonance energy E, (a.u.) of >F¢ states of He atom below He*(4p) threshold and energy of 4p state of He* ion for different screening length 4, in a.u.

States Ap
oo 100 70 50 40 30 25 20 15 12

He"(4p) -0.125 —0.106103 —0.098644 —-0.089253 —0.081531 —0.069631 —0.060935 —-0.049177 —0.032750 —0.019932

3Fe(1) —-0.22202 —-0.20241 —0.19440 —-0.18395 —-0.17523 —0.16051 —0.15062 -0.13401 —-0.11073 —0.09137

3F(2) —-0.21320 —0.20061 —0.19321 —-0.18309 —0.17463 —-0.15971 —0.14973 -0.13371 —0.10951 —0.09064

3F¢3) —0.20705 —-0.19778 —-0.19119 -0.18161 —0.17354 —0.15838 —0.14921 —-0.13304 —0.10896 —0.08733

3Fe4) —-0.20295 —-0.19311 —0.18794 -0.17923 —-0.17182 —0.15638 —0.14827 -0.13195 —0.10809 —0.08686

3F(5) —0.19788 —0.18588 —0.18301 -0.17563 -0.16924 —0.15354 —0.14684 -0.12799 —0.10680 —0.08622

3Fe(6) —0.17866 —0.17531 —0.17557 -0.17021 —0.16541 —0.14928 —0.14468 —-0.12466 —0.10497 —0.08538

3Fe(7) —-0.16622 —-0.16197 —0.16471 -0.16264 —-0.15979 —0.14329 —0.14158 -0.11989 —-0.10239 —0.08401

3F(8) —0.16420 -0.15717 —0.15082 -0.15122 -0.15167 —0.13470 -0.13712 -0.11320 —0.09869 —0.08201

3F¢(9) —0.15838 —0.15052 —0.14595 -0.13672 —0.14008 —0.12263 —0.13082 —-0.10385 —0.09353 —0.07923

3Fe(10) —-0.15714 —0.14977 —0.13851 -0.13171 —-0.12506 —0.10678 —-0.12189 —0.09086 —0.08634 —0.07530

3Fe(11) —0.15085 —0.13829 —0.12623 -0.12417 —0.11987 —-0.10134 —0.10927 —-0.07409 —-0.06270 —-0.05173

3Fe(12) —-0.14718 —0.13555 —-0.11925 -0.11592 —-0.11225 —0.09445 —0.09317 —0.06865 —0.04578 —0.03751

3Fe(13) —0.14593 —0.13052 —0.11803 -0.11107 —-0.10816 —0.08210 —0.08758 —-0.06165 —0.04131 —0.02294

3Fe(14) —0.14483 —-0.12912 —-0.11197 -0.10546 —0.10009 —0.08083 —0.08012 —-0.05080

3Fe(15) -0.14376 —0.12357 —0.10877 —0.10442 —0.09423 —0.07734 —0.06868 —0.05080

3Fe(16) —0.13969 —0.11937 —0.10799 —0.09849 —0.09310 —0.07613 —0.06503

3Fe(17) —-0.13922 —0.11806 —-0.10675 -0.09486 —0.08839 —-0.07179 —-0.06391

3Fe(18) -0.13823 -0.11733 —0.10265 —0.09394 —0.08451 —0.06995

3Fe(19) —-0.13570 —0.11667 —0.10208 —-0.09293 —0.08377

3Fe(20) —-0.13314 —-0.11257 —0.10017 —-0.09096 —0.08273

3Fe21) -0.13115 -0.11222

3Fe(22) —-0.12967 —-0.11161

3Fe(23) —-0.12827 —0.10936

3Fe(24) —-0.12705 —0.10748

3F(25) —0.12638

3pnf states decrease with the decrease of Ap. The clear difference in
the variation of (6,,) between 3dnd and 3pnf states lies in the fact
that (6,,) is obtuse in case of 3dnd states whereas (6,,) assumes acute
values in case of 3pnf states. The nature of variation of (6,,) for 3dng
states is completely different from those of 3dnd and 3pnf states. In
free case, (0),) of 3dng states are smaller than that of 3pnf states.
(6,,) of 3dng states increase as A;, decreases. Thus it is evident that
the variation of width I, with respect to A, has a clear correlation
with the changes in the inter-electronic angle (6,,). Small acute inter-
electronic angles correspond to small widths ie. higher autoionizing
lifetime. Hence 3dng states are very much stable against autoionization
in free case and become autoionizing prone as 1;, decreases. Resonance
energy and width of 3 F¢ states of He below He* (4p) threshold are given
in Tables I and J respectively for different screening length ;. Unlike
the variation of width for RSs below He*(3p) threshold, the variation
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of resonance widths (I,.) of some RSs below He* (4p) threshold does not
always follow a fixed pattern. The resonance parameters of ' F¢ states
below He*(3p) and He* (4p) thresholds are given in Tables K, L, M and
N. These tables reveal similar features as discussed in case of 3 F¢ states.
Several structural properties like (V,), (V,), (c0s615), {612), (r1), {r1)s
(r1i2) and (r2,) of resonance ' F¢ states below He*(3p) threshold are
given in Table O.

4. Conclusions

In the present investigation, we have estimated the structural prop-
erties of meta-stable bound and resonance - F¢ states of He-atom
where the electron-nucleus and electron-electron interactions are mod-
elled by exponentially screened Coulomb potential. The trial radial
wavefunction is expanded in explicitly correlated multi-exponent
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Table J
Resonance width I, (a.u.) of 3F¢ states of He atom below He*(4p) threshold for different screening length 4, in a.u. The notation A[+B] stands for A x 10*5.
States Ap
) 100 70 50 40 30 25 20 15 12
3Fe(1) 4.32[-4] 9.00[-5] 6.74[-5] 4.29[-5] 2.67[-5] 3.12[-5] 1.00[-4] 2.23[-5] 4.01[-4] 8.83[-5]
3F(2) 4.53[-4] 3.00[-4] 9.27[-5] 7.68[-5] 3.80[-5] 5.51[-5] 1.36[-5] 6.17[-5] 1.52[-5] 3.88[-5]
3Fe(3) 7.05[-4] 2.80[—4] 1.40[-4] 1.50[-4] 1.16[-4] 7.37[-5] 4.16[-5] 6.91[-5] 5.01[-5] 6.04[-7]
3Fe) 6.08[-4] 4.61[-4] 2.87[-4] 1.98[-4] 1.38[-4] 1.51[-4] 6.02[-5] 9.51[-5] 6.09[-5] 2.09[-5]
3Fe(5) 6.15[-4] 6.90[—4] 3.10[-4] 2.19[-4] 1.73[-4] 1.98[-4] 1.14[-4] 1.46[-4] 8.03[-5] 5.46[-5]
3Fe(6) 1.05[-3] 5.65[—4] 4.86[—4] 4.28[-4] 2.29[-4] 2.70[—4] 1.48[-4] 1.65[-4] 1.32[-4] 9.38[-5]
3Fe(T) 1.07[-3] 6.19[-4] 5.76[—4] 6.08[—4] 3.41[-4] 3.23[-4] 1.98[-4] 2.31[-4] 1.28[-4] 1.24[-4]
3F8) 8.00[-4] 6.36[—41 6.37[-4] 5.79[-4] 4.92[-4] 4.70[-4] 2.61[-4] 3.05[-4] 1.47[-4] 1.01[-4]
3Fe(9) 2.73[-4] 1.83[-3] 6.39[-4] 6.49[-4] 5.82[-4] 5.97[-4] 3.14[-4] 4.54[-4] 2.08[-4] 1.06[-4]
3Fe(10) 4.98[-4] 1.18[-3] 1.24[-3] 6.09[—4] 6.58[—4] 6.47[-4] 4.69[-4] 5.90[—4] 2.65[-4] 1.41[-4]
3Fe(11) 3.20[-4] 1.27[-3] 1.03[-3] 1.18[-3] 6.27[-4] 6.06[—4] 4.88[-4] 6.59[-4] 5.82[-4] 3.72[-4]
3Fe(12) 4.99[-4] 7.67[-5] 4.91[-5] 4.31[-5] 1.03[-3] 2.36[-3] 6.77[-4] 5.86[-4] 5.36[-4] 5.68[-4]
3Fe(13) 3.79[-4] 6.02[-5] 1.90[-4] 1.24[-3] 2.39[-5] 7.44[-4] 5.86[—4] 7.41[-4] 5.38[-4] 2.74[-4]
3Fe(14) 5.93[-5] 2.96[-4] 2.37[-4] 4.58[-5] 9.39[-4] 7.31[-4] 8.24[-5] 2.85[—4]
3Fe(15) 2.26[-4] 6.27[-4] 2.67[-4] 2.21[-4] 4.56[-5] 2.51[-5] 6.56[—4] 2.85[-4]
3Fe(16) 9.67[-5] 4.30[-4] 1.31[-4] 1.80[-4] 1.76[-4] 9.53[-5] 1.44[-4]
3Fe(17) 2.25[-5] 2.01[-4] 7.53[-5] 1.06[-4] 2.33[-4] 2.63[-4] 4.07[-4]
3Fe(18) 2.28[-4] 5.96[-5] 4.71[-5] 7.98[-5] 2.48[-4] 1.42[-4]
3Fe(19) 1.71[-4] 9.57[-4] 2.73[-5] 8.27[-5] 8.36[-5]
3F¢(20) 2.50[-4] 1.91[-4] 2.88[-5] 4.15[-5] 1.54[-4]
3Fe21) 1.90[-4] 1.80[-5]
3Fe(22) 3.23[-5] 6.29[-5]
3Fe(23) 9.07[-5] 3.47[-5]
3Fe(24) 2.36[-4] 6.07[-5]
3Fe(25) 3.30[-4]
Table K
Resonance energy E, (a.u.) of ' F¢ states of He atom below He*(3p) threshold and energy of 3p state of He* ion for different screening length A, in a.u.
States Ap
© 100 70 40 30 25 20 15 12
He*(3p) —-0.22222 —0.202835 —0.194885 —0.18461 —-0.1759181 —-0.162017 —0.151409 —-0.136315 —-0.113232 —0.092587
TFe(l) —0.26853 —0.23968 —0.22798 —-0.21299 —0.20040 —0.18051 —0.16554 —0.14459
—0.268535" —0.23953* —-0.22769% —0.21245% —-0.199617 —0.179235" —-0.16384 —0.14222%
'Fe(2) —-0.26096 -0.23215 —-0.22050 —0.20559 —-0.19312 —-0.17350 —0.15885 —-0.13862
—0.26096* —0.231955% —0.220125% —0.204905% —0.192105% —-0.17185* —0.156635
'Fe(3) —0.24883 —0.22050 —0.20931 —0.19519 —-0.18356 —0.16558 —-0.15244
—0.248835" —-0.22035% —0.209025" —0.194695" —0.182855" —-0.16451°
LFe(4) —0.24571 —0.21747 —0.20636 —0.19242 -0.18101 —0.16356
—0.24571° -0.21727? —0.20599° —0.191765" —0.18007°
LFe(5) —-0.24130 -0.21317 —-0.20214 —0.18842 -0.17749
—-0.24131° —-0.21293 —-0.20173" —0.18765% —-0.17685"
LFe(6) —0.23967 —-0.21194 —-0.20129 —0.18811 —-0.17722
—0.239665" —0.21180* —0.20104*
LFe(T) —0.23802 —-0.21041 —-0.19990 —-0.18696 —-0.17660
—0.23803* —0.210235% —0.19961% —0.18625* —0.17615*
'Fe(8) —0.23560 —-0.20813 -0.19777 —0.18526
—-0.23560° —-0.20792° —-0.197365" —0.18475%
LFe(9) —0.23457 —0.20751 -0.19727 —0.18508
—0.23458°
LFe(10) —-0.23358 —-0.20667 —-0.19675 —0.18481
—0.233595" —0.20650" —-0.1963"
LFe(11) —0.23201 —0.20508 —0.19563
-0.2321° —0.2052° —0.1948"
LFe(12) —-0.23106 —0.20456
—0.2314* —0.2045%
'Fe(13) —-0.23078 —0.20350
—-0.2035"
LFe(14) —0.22925
LFe(15) —0.22778
'Fe(16) -0.22670
VFe(17) —0.22518
a [66].

Hylleraas-type basis set having total 900 terms in the basis expansion.
Instead of using truncated electron-electron screening terms, we have
developed analytic closed versions of the electron—electron screening
term for the structural determination of meta-stable bound and reso-
nance '3 F¢ states of He atom. The variation method is used to obtain
energy eigenvalues of the meta-stable bound '3 F¢ states and the results
are in reasonable agreement with those available in the literature
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and many of them are the lowest yet obtained. It is found that, if
Ap decreases, the energies of the meta-stable bound states increases
towards the destabilization limit and as a result the number of bound
states decreases. The resonance parameters i.e. energy and widths of the
resonance '3 F¢ states of He atom are estimated for different A, using
the stabilization method between He*(2p) to He*(4p) thresholds. For
each Ap, most of the resonance parameters below Het(3p) threshold
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Table L
Resonance width I, (a.u.) of ! F¢ states of He atom below He*(3p) threshold for different screening length A, in a.u. The notation A[+B] stands for A x 10+5.
States Ap
© 100 70 50 40 30 25 20
'Fe(1) 1.99[-71] 1.95[-71] 1.91[-7] 1.84[-7] 1.68[-71 1.32[-7] 1.04[-71] 5.76[-8]
3.9[-7]* 3.80[-7]* 3.66[-7]* 3.39[-7]* 2.92[-7]°
'Fe(2) 4.75[-5] 4.68[-5] 4.52[-5] 4.24[-5] 3.94[-5] 3.31[-5] 2.76[-5] 1.83[-5]
9.68[-5]* 9.39[-5]* 9.10[-5]* 8.58[-5]* 8.00[-5]*
LFe(3) 6.20[-8] 4.26[-8] 2.47[-8] 6.20[-9] 5.92[-9] 2.71[-10] 2.38[-12]
'Fe4) 2.92[-5] 2.72[-5] 2.36[-5] 1.93[-5] 1.73[-5] 1.52[-5]
5.41[-5]* 5.04[-5]* 4.69[-5]* 4.07[-5]* 3.42[-5]*
LFe(5) 1.23[-7] 2.03[-7] 8.10[-7] 1.30[-6] 7.97[-6]
LFe(6) 5.49[-4] 1.38[-4] 3.38[-6] 2.15[-6] 9.69[-71
VFe() 1.35[-5] 1.29[-5] 1.14[-5] 1.13[-5] 4.88[-6]
TFe(8) 1.87[-11] 1.01[-10] 1.63[-6] 6.86[-5]
LFe(9) 4.37[-5] 2.48[-5] 2.26[-5] 1.74[-5]
'Fe(10) 3.62[-5] 2.04[-5] 1.24[-5] 3.83[-6]
LFe(1l) 1.09[-10] 2.99[-7] 9.69[-6]
VFe(12) 5.84[-5] 4.83[-7]
'Fe(13) 3.96[-4] 2.66[-5]
LFe(14) 3.59[-5]
LFe(15) 1.57[-5]
LFe(16) 1.37[-5]
YFe(17) 9.44[-5]
a [66].
Table M
Resonance energy E, (a.u.) of ! F¢ states of He atom below He*(4p) threshold and energy of 4p state of He* ion for different screening length A, in a.u.
States Ap
) 100 70 50 40 30 25 20
Het(4p) —0.12500 -0.10610 —0.09864 —0.08925 —0.08153 —0.06963 —0.06093 —0.0492
TFe(1) —-0.21747 —0.20156 —0.19378 —-0.18414 —0.17543 —-0.16117 —-0.15112
1Fe2) —0.20937 —-0.19942 —0.19225 —0.18349 —0.17489 -0.16071 —0.14982
LFe(3) -0.19736 —0.19589 —0.18978 —0.18236 —0.17408 —-0.16008 —0.14945
'Fe4) —-0.18227 —0.19057 —0.18603 —0.18050 —-0.17275 —0.15906 —0.14876
LFe(5) —0.17932 —-0.18204 —0.18029 —-0.17775 —-0.17070 -0.15753 —0.14760
LFe(6) —-0.16237 —-0.16982 —-0.17172 —-0.17361 —-0.16772 -0.15522 —0.14583
LFe(7) -0.15679 —0.15428 —0.15901 -0.16751 -0.16332 —-0.15190 —0.14344
TFe(8) —0.15455 —-0.15149 —0.14244 —0.15860 —-0.15694 —-0.14716 —0.13988
'Fe(9) —-0.15289 -0.13365 —0.14049 —0.14556 —0.14772 -0.14037 —0.13496
LFe(10) —0.15006 -0.12862 -0.12297 -0.12799 —0.13438 -0.13067 -0.12787
'Fe(11) —-0.14773 —-0.12649 -0.11729 —-0.12662 —-0.11595 —0.11680 —-0.11786
LFe(12) —0.14559 —-0.12472 —0.11480 —0.10910 —-0.11514 -0.09711 —0.10367
LFe(13) —0.14433 -0.12205 —0.11355 —0.10354 —0.09772 —0.08014 —0.08358
'Fe(14) —-0.14170 —0.12002 —-0.11182 —-0.10158 —-0.09235 —0.07565 —-0.06799
'Fe(15) —0.14041 -0.11774 —0.10944 —0.09958 —0.09057 —-0.07402 —-0.06335
LFe(16) —-0.13913 -0.11669 —-0.10706 —0.09830 —0.08787 -0.07110 —0.06207
VFe(17) —0.13841 —-0.11433 —0.10627 —0.09646 —0.08732 —-0.07054
'Fe(18) —-0.13640 —-0.11327 —0.10394 —-0.09397 —0.08604
'Fe(19) —0.13609 -0.11191 —0.10329 —0.09346 —0.08384
LFe(20) —0.13592 -0.11175 —0.10214 —0.09177 —0.08310
'Fe21) —-0.13530 —-0.11014 —-0.10174 —0.09124 —-0.08219
1Fe22) —0.13354 -0.10973 —0.10064 —0.09031 —0.08172
LFe(23) -0.13337 —0.10890 —0.10025 —0.08988
'Fe(24) —-0.13110 —0.10692 —0.09969 —0.08943
LFe(25) —-0.12979 —-0.10632 —0.09906
LFe(26) —0.12832
YFe27) —0.12592

agree reasonably well with those available in literature and a few
resonance states are reported for the first time below He*(3p) threshold.
It is found that the resonance energies increase as well as the number of
such states decrease with the decrease of A,. Widths of the resonance
states having dominant configurations 3dnd [3 < n < 10] and 3pnf
[4 < n < 10] decreases with the decrease of 4. The resonance states
having dominant configuration 3dng [5 < n < 9] have very small widths

(~ 1078 = 10~12 a.u.) in free environment and the widths increase with
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respect to the decrease of Ap. In this context, we have shown that if
the inter-electronic angle increases with decrease in 4, the width of
the states will decrease. These theoretical predictions call for studies
to be conducted to determine the widths of resonance 3F¢ states
of both free atoms and atoms embedded in plasma. The resonance
parameters of '3 F¢ states of He atom between the He*(3p) to He*(4p)
thresholds are given for the first time in the literature. The variations of
other structural properties like ratio of attractive to repulsive potential,
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Table N
Resonance width I, (a.u.) of ' F¢ states of He atom below He*(4p) threshold for different screening length A, in a.u. The notation A[+B] stands for A x 10*5.

States Ap

o 100 70 50 40 30 25
LFe(l) 1.06[-4] 2.66[-5] 5.07[-5] 3.67[-5] 3.47[-5] 5.51[-5] 3.28[-5]
LFe(2) 3.72[-4] 3.31[-5] 4.55[-5] 2.09[-5] 1.31[-5] 1.60[-5] 2.06[-6]
IFe(3) 8.25[-5] 2.65[-4] 5.48[-5] 3.43[-5] 1.69[-5] 2.84[-5] 7.91[-5]
Fe(4) 5.83[-4] 9.78[-5] 7.59[-5] 8.47[-5] 6.58[-5] 4.35[-5] 7.28[-5]
LFe(5) 7.33[-5] 3.41[-4] 1.49[-4] 6.47[-5] 7.87[-5] 9.35[-5] 9.33[-5]
LF(6) 2.11[-5] 6.84[-5] 1.19[-4] 8.01[-5] 8.77[-5] 1.47[-4] 8.87[-5]
Fe(7) 1.14[-5] 2.69[-3] 7.31[-5] 9.56[-5] 8.17[-5] 1.49[-4] 1.30[-4]
LFe(8) 2.56[-4] 6.81[-5] 5.34[-4] 7.66[-5] 9.48[-5] 1.57[-4] 1.19[-4]
LFe(9) 9.00[-5] 2.55[-4] 5.29[-5] 6.03[-5] 1.15[-4] 1.04[-4] 8.55[-5]
IF(10) 4.66[-4] 1.10[-5] 1.41[-5] 5.23[-4] 5.82[-5] 1.04[-4] 1.05[-4]
LFe(11) 1.67[-5] 2.60[—4] 9.61[-5] 6.15[-5] 5.60[-4] 4.49[-5] 7.45[-5]
LFe(12) 2.97[-5] 9.17[-5] 3.73[-5] 5.45[-5] 5.63[-5] 4.64[-5] 4.89[-5]
IFe(13) 1.37[-4] 4.29[-4] 2.84[-5] 8.86[-5] 1.21[-5] 7.07[-3] 4.40[-5]
LFe(14) 1.04[-5] 8.39[-6] 1.93[-5] 1.88[-4] 8.71[-5] 1.17[-4] 6.75[-5]
LFe(15) 8.66[-6] 1.66[-5] 8.88[-6] 5.24[-5] 2.13[-4] 3.85[-4] 9.70[-5]
LFe(16) 4.88[-4] 1.65[-4] 2.25[-5] 2.82[-6] 6.28[-5] 2.41[-5] 4.04[-4]
LFe(17) 8.81[-6] 2.10[-4] 1.45[-4] 1.03[-5] 2.87[-6] 2.82[-6]
LFe(18) 2.57[-6] 2.86[-5] 3.16[-5] 3.48[-5] 8.99[-6]
LFe(19) 1.16[-5] 2.94[-4] 3.63[-5] 9.04[-5] 5.74[-5]
I F°(20) 1.66[-4] 1.35[-4] 6.97[-5] 2.81[-5] 3.51[-5]
LFe(21) 2.49[-4] 4.48[-6] 1.34[-4] 1.90[-6] 3.11[-6]
LFe(22) 9.06[-6] 1.49[-5] 1.22[-5] 3.08[-5] 1.48[-5]
IFe(23) 3.33[-5] 9.83[-6] 1.27[-5] 1.72[-5]
LFe(24) 2.51[-4] 4.33[-6] 2.09[-5] 4.81[-6]
LFe(25) 1.75[-4] 4.94[-6] 3.46[-5]
' F¢(26) 1.75[-4]
LFe(27) 1.86[-4]

Table O )

Expectation values of repulsive potential (V,), attractive potential (V,), ratio of attractive to repulsive potential n =

—22|, (cos B, ), inter-electronic angles (,,) (in degree) usin
A 12 8 12 g g

(10), different one and two-particle moments of resonance ' F¢ states of He—atom below He*(3p) threshold. The notation A[+B] stands for Ax 10=2. All values are given in atomic
units.

States Ap V) Vo) n (ry) ) (riz) (r) (cosb,) (012)
'Fe(l) oo 6.55[-2] —6.02[-1] 9.18 1.01[+1] 1.37[+2] 1.68[+1] 3.07[+2] -1.67[-1] 135.10
100 5.60[-2] -5.63[-1] 10.04 1.01[+1] 1.38[+2] 1.68[+1] 3.10[+2] -1.66[-1] 134.91
70 5.22[-2] —5.46[-1] 10.45 1.01[+1] 1.40[+2] 1.69[+1] 3.14[+2] —1.65[-1] 134.74
50 4.74[-2] —5.24[-1] 11.05 1.02[+1] 1.43[+2] 1.71[+1] 3.20[+2] —1.64[-1] 134.47
40 4.34[-2] -5.05[-1] 11.64 1.03[+1] 1.46[+2] 1.73[+1] 3.27[+2] -1.63[-1] 134.21
30 3.71[-2] —4.75[-1] 12.78 1.06[+1] 1.54[+2] 1.77[+1] 3.43[+2] -1.62[-1] 133.78
25 3.24[-2] —4.50[-1] 13.88 1.08[+1] 1.62[+2] 1.81[+1] 3.61[+2] -1.61[-1] 133.49
20 2.59[-2] —4.15[-1] 16.03 1.13[+1] 1.81[+2] 1.90[+1] 3.99[+2] -1.60[-1] 133.32
LFe2) ) 7.01[-2] -5.92[-1] 8.44 1.00[+1] 1.32[+2] 1.58[+1] 2.76[+2] —6.98[-2] 108.87
100 6.04[-2] —5.52[-1] 9.14 1.01[+1] 1.34[+2] 1.59[+1] 2.81[+2] —6.84[-2] 108.47
70 5.64[-2] -5.36[-1] 9.49 1.02[+1] 1.37[+2] 1.60[+1] 2.85[+2] —6.65[-2] 107.96
50 5.12[-2] -5.13[-1] 10.02 1.03[+1] 1.42[+2] 1.63[+1] 2.94[+2] —6.39[-2] 107.26
40 4.68[-2] —4.94[-1] 10.55 1.05[+1] 1.47[+2] 1.65[+1] 3.04[+2] —5.98[-2] 106.16
30 3.96[-2] —4.62[-1] 11.67 1.09[+1] 1.62[+2] 1.72[+1] 3.32[+2] —5.22[-2] 104.11
25 3.38[-2] —4.37[-1] 12.89 1.14[+1] 1.80[+2] 1.80[+1] 3.67[+2] —4.29[-2] 101.59
20 2.49[-2] -3.97[-1] 15.97 1.26[+1] 2.37[+2] 2.03[+1] 4.77[+2] —2.08[-2] 95.63
'Fe(3) ) 4.19[-2] —5.39[-1] 12.86 1.58[+1] 4.03[+2] 2.81[+1] 8.75[+2] -1.86[-1] 140.41
100 3.25[-2] -5.00[-1] 15.37 1.61[+1] 4.18[+2] 2.86[+1] 9.05[+2] —1.84[-1] 139.72
70 2.88[-2] —4.83[-1] 16.76 1.63[+1] 4.33[+2] 2.90[+1] 9.36[+2] -1.82[-1] 139.14
50 2.42[-2] —4.62[-1] 19.05 1.68[+1] 4.62[+2] 2.99[+1] 9.95[+2] —1.78[-1] 138.28
40 2.05[-2] —4.44[-1] 21.66 1.74[+1] 4.99[+2] 3.10[+1] 1.06[+3] -1.76[-1] 137.66
30 1.47[-2] —4.14[-1] 28.17 1.88[+1] 5.95[+2] 3.38[+1] 1.26[+3] -1.76[-1] 137.76
25 1.03[-2] —3.90[-1] 37.80 2.07[+1] 7.47[+2] 3.76[+1] 1.58[+3] -1.87[-1] 140.57
'Fe(4) <) 4.32[-2] —5.34[-1] 12.36 1.62[+1] 4.22[+2] 2.77[+1] 8.60[+2] —5.00[-2] 103.51
100 3.36[-2] —-4.95[-1] 14.72 1.66[+1] 4.44[+2] 2.83[+1] 9.01[+2] —4.47[-2] 102.08
70 2.97[-2] —4.78[-1]1 16.09 1.69[+1] 4.66[+2] 2.90[+1] 9.41[+2] —3.80[-2] 100.27
50 2.47[-2] —4.56[-1] 18.47 1.76[+1] 5.11[+2] 3.02[+1] 1.02[+3] —2.50[-2] 96.76
40 2.04[-2] -4.37[-1] 21.44 1.86[+1] 5.78[+2] 3.20[+1] 1.15[+3] -1.05[-2] 92.85
30 1.36[-2] —4.07[-1] 29.82 2.10[+1] 7.59[+2] 3.64[+1] 1.49[+3] 3.71[-2] 79.96
LFe(5) ) 4.04[-2] —5.23[-1] 12.93 1.68[+1] 4.56[+2] 2.75[+1] 8.35[+2] 1.86[-1] 39.67
100 3.03[-2] —4.83[-1] 15.93 1.74[+1] 4.91[+2] 2.86[+1] 9.04[+2] 1.82[-1] 40.59
70 2.57[-2] —4.65[-1] 18.07 1.80[+1] 5.38[+2] 3.00[+1] 9.97[+2] 1.78[-1] 41.81
50 1.98[-2] —4.42[-1] 22.28 1.94[+1] 6.40[+2] 3.27[+1] 1.19[+3] 1.68[-1] 44.57
40 8.91[-3] —4.15[-1] 46.58 2.88[+1] 1.53[+3] 5.34[+1] 3.18[+3] -1.61[-1] 133.47
LFe(6) ) 2.90[-2] —5.08[-1] 17.52 2.32[+1] 9.53[+2] 4.26[+1] 2.01[+3] -1.98[-1] 143.51
100 1.97[-2] —4.69[-1] 23.73 2.40[+1] 1.03[+3] 4.43[+1] 2.18[+3] -1.92[-1] 141.86

(continued on next page)
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Table O (continued).
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States Ap V) V) n (ry) <r%) (r2) ("%2> (cosb,,) 0,5)
70 1.62[-2] -4.53[-1] 27.86 2.49[+1] 1.11[+3] 4.60[+1] 2.35[+3] -1.88[-1] 140.92
50 1.21[-2] -4.32[-1] 35.59 2.65[+1] 1.28[+3] 4.92[+1] 2.69[+3] —1.80[-1] 138.82
40 1.41[-2] —-4.22[-1] 29.74 2.21[+1] 8.79[+2] 3.82[+1] 1.67[+3] 1.43[-1] 51.32
LFe(7) © 2.95[-2] —-5.05[-1] 17.12 2.39[+1] 1.02[+3] 4.29[+1] 2.07[+3] —4.05[-2] 100.93
100 1.98[-2] —4.66[-1] 23.46 2.53[+1] 1.16[+3] 4.54[+1] 2.33[+3] —2.09[-2] 95.65
70 1.62[-2] —4.50[-1] 27.71 2.63[+1] 1.26[+3] 4.74[+1] 2.53[+3] -2.17[-2] 95.86
50 1.15[-2] -4.28[-1] 37.22 2.90[+1] 1.55[+3] 5.25[+1] 3.10[+3] 4.51[-3] 88.78
40 7.69[-3] -4.10[-1] 53.33 3.32[+1] 2.11[+3] 6.08[+1] 4.20[+3] 3.18[-2] 81.39
'Fe(8) © 2.80[-2] —-4.99[-1] 17.77 2.52[+1] 1.16[+3] 4.40[+1] 2.19[+3] 2.12[-1] 32.73
100 1.80[-2] —4.59[-1] 25.48 2.71[+1] 1.37[+3] 4.78[+1] 2.59[+3] 2.03[-1] 35.04
70 1.38[-2] -4.42[-1] 32.02 2.91[+1] 1.59[+3] 5.18[+1] 3.04[+3] 1.93[-1] 37.80
50 5.38[-3] -4.16[-1] 77.29 4.25[+1] 3.54[+3] 8.05[+1] 7.23[+3] -1.23[-1] 123.43
'Fe(9) © 2.12[-2] —-4.90[-1] 23.09 3.20[+1] 1.93[+3] 6.01[+1] 4.03[+3] -2.03[-1] 145.03
100 1.21[-2] -4.51[-1] 37.05 3.44[+1] 2.25[+3] 6.49[+1] 4.67[+3] —-1.95[-1] 142.75
70 8.96[-3] -4.36[-1] 48.62 3.69[+1] 2.61[+3] 6.88[+1] 5.41[+3] —1.88[-1] 140.87
50 7.31[-3] -4.19[-1] 57.28 3.74[+1] 2.77[+3] 6.98[+1] 5.42[+3] 1.24[-1] 56.30
LFe(10) o 2.15[-2] —4.88[-1] 22.70 3.32[+1] 2.09[+3] 6.11[+1] 4.20[+3] —-3.09[-2] 98.36
100 1.21[-2] —4.49[-1] 36.97 3.63[+1] 2.53[+3] 6.72[+1] 5.07[+3] -1.23[-2] 93.32
70 8.61[-3] —4.33[-1] 50.36 3.99[+1] 3.08[+3] 7.42[+1] 6.16[+3] 8.76[-3] 87.63
50 4.51[-3] -4.13[-1] 91.55 4.95[+1] 4.95[+3] 9.33[+1] 9.89[+3] 2.59[-2] 82.99
LFe(1l) © 2.12[-2] —4.85[-1] 22.80 3.50[+1] 2.40[+3] 6.33[+1] 4.61[+3] 2.19[-1] 30.81
100 7.51[-3] —4.40[-1] 58.68 4.79[+1] 4.55[+3] 9.17[+1] 9.34[+3] -1.81[-1] 138.97
70 5.00[-3] -4.26[-1] 85.22 5.31[+1] 5.65[+3] 1.01[+2] 1.14[+4] -9.96[-2] 116.89
LFe(12) © 1.63[-2] -4.77[-1] 29.20 4.39[+1] 3.81[+3] 8.24[+1] 7.64[+3] -1.77[-2] 94.78
100 7.21[-3] —4.39[-1] 60.89 5.20[+1] 5.40[+3] 9.79[+1] 1.07[+4] 5.12[-2] 76.15
VFe(13) © 1.62[-2] -4.77[-1] 29.47 4.42[+1] 3.87[+3] 8.31[+1] 7.76[+3] -2.45[-2] 96.62
100 3.96[-3] -4.32[-1] 109.24 7.34[+1] 1.10[+4] 1.39[+2] 2.17[+4] 1.89[-1] 38.90
LFe(14) © 1.32[-2] -4.72[-1] 35.70 5.39[+1] 5.94[+3] 1.02[+2] 1.19[+4] -2.21[-2] 95.96
VFe(15) © 1.06[-2] -4.66[-1] 44.05 6.76[+1] 9.49[+3] 1.30[+2] 1.90[+4] —-5.83[-3] 91.57
'Fe(16) © 9.74[-3] —4.65[-1] 47.74 7.58[+1] 1.21[+4] 1.46[+2] 2.43[+4] —5.52[-3] 91.49
LFe(17) © 1.59[-2] -4.79[-1] 30.11 5.82[+1] 7.98[+3] 1.11[+2] 1.59[+4] -1.15[-3] 90.31

different one and two-particle moments etc. with respect to different 4,
values are also studied for the first time for both metastable bound and
resonance '3 F¢ states of He-atom.
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