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Abstract

The study of structural properties of few–body atomic systems (H–like, He–like etc.) pro-
vides a key testing ground for many quantum mechanical approximation methods such as
perturbation, variation, WKB method etc. These theoretical studies have immense ap-
plication in the field of confined systems, plasma diagnostics, astrophysical data analysis
etc. In this course of studies, we focus on studying the structural properties of few-body
atomic systems in free case (only Coulombic attraction and repulsion among the constituent
particles) and also in plasma environment.

This dissertation’s work has been organized into five chapters. The following para-
graphs provide an outline of these chapters:

Chapter 1

At the beginning of the first chapter “Introduction”, we have given a detailed account
on the rapid growth towards the production of relatively long-lived plasma using tunable
ultra-short intense X–ray free-electron laser (FEL) or orion laser etc. and the importance
of accurate theoretical estimation of the structural and spectral properties of plasma em-
bedded few–body systems for diagnostic determination of such plasmas. In this context,
the progress of atomic structure calculation starting from the hydrogen atom problem to
general three–body problem is discussed. The fundamental notions of classifying and defin-
ing the quantum states of a three–body or two–electron system have been given. In this
chapter we have introduced ‘plasma’ by defining its salient features, controlling parameters
(particle density, temperature etc.) and abundance in both laboratory and astrophysi-
cal environments. Classification of plasma has been made on the basis of plasma particle
distribution function (classical plasma and quantum plasma) as well as plasma coupling
parameter (weakly coupled plasma and strongly coupled plasma) defined as the ratio of the
average electrostatic energy to the average kinetic energy of the plasma particles. As plasma
contains a large number of charged particles, the collective interaction is very difficult to
tackle theoretically. Hence, a suitable model potentials are considered which incorporate
the collective behaviors of the plasma particles. The analytic expressions of the model
potentials in case of classical weakly coupled plasma, classical strongly coupled plasma,
quantum plasma and dusty plasma are given at the end of this chapter.

Chapter 2

In recent studies, H–like ions in motion within the plasma environment have become in-
creasingly significant from an experimental standpoint. Depending on plasma parameters
and ion velocity, a moving ion produces a ‘wake’ which alters the potential of the medium.
This potential modifies the energy levels and transition properties of the ion. Firstly we
give a detailed account of the works on structural properties of H–like ions under classical
weakly coupled plasma, quantum plasma and dusty plasma environments. Starting from
electrostatic considerations, we have presented the mathematical development of the model
potential in plasma environment using Meijer’s G function for an ion moving through classi-
cal weakly coupled plasma, classical dusty plasma and quantum plasma environments. We
have used trial wavefuntion expanded in Slater-type orbitals and subsequently solved the

iii



iv

Schrödinger equation under the framework of Ritz variational principle to estimate the en-
ergy eigenvalues of ions moving through plasma. The analytic forms of the matrix elements
and relevant basis integrals are given in relevant sections of this chapter. In the subsequent
section, the results and discussions are illustrated in detail. It is observed that the plasma
potential removes the l–degeneracy of the energy levels and the motion of the ion removes
the |m|–degeneracy (‘Stark-like’ splitting). The present work discusses how plasma density,
temperature, and ion velocity affect hydrogenic energy levels and the transition wavelengths
of π and σ components of Lyman-α lines.

Chapter 3

In this chapter we have discussed the variation of ground state energy of different quantum
mechanical three–body systems with arbitrary comparable masses, embedded under clas-
sical weakly coupled plasma. We have also estimated the energy and width of resonance
Se state of free hadronic three–body systems. In first section an extensive literature review
is given describing the works on both bound and resonance state properties of three–body
systems under plasma environments. At the beginning of methodology section, the con-
struction of trial wavefunction and variational equation are given in a most exhaustive way
possible. The trial wavefunction is expanded in multi-exponent Hylleraas-type basis set.
The analytic form of necessary basis integral is given and demonstrated with some practical
examples. In the last part of the methodology section, we have made a detailed discussion
on the theory of stabilization method to estimate resonance parameters (energy and width).
The results are given separately for bound and resonance states. In case of bound state, we
have reported “Borromean binding” for various three–body systems under classical WCP
whereas resonance parameters of Se state of three–body exotic ppY and pY Y [Y : µ, π,K]
ions in the free environment are given.

Chapter 4

In this chapter we focus on the determination of structural properties of doubly excited Fe

state of two–electron systems under both free and plasma (WCP) environment. A detailed
account on doubly excited states of two–electron systems under different plasma scenario is
given at the starting of this chapter. In the next section we elaborate the present method-
ology in the following steps: formation of trial wavefunction, construction of variational
equation, expansion of trial wavefunction in multi–exponent Hyllerass–type basis set and
analytical formulation of the relevant basis integrals. A detailed discussion on different
structural properties (energy eigenvalues, one– and two–particle moments, inter–electronic
angles etc.) of both meta–stable bound and resonance Fe states of free two–electron sys-
tems is given in the next segment. The methodology established for free systems is then
extended to estimate different structural properties of two–electron systems embedded in
classical WCP environment. The study on the variation of transition energies for the dipole
transitions Fe → Do with respect to the plasma screening strength is also included in this
section.

Chapter 5

In this chapter we finally conclude all the findings from the present dissertation’s works
as described in previous chapters. A consolidated account of the present work on the
accurate determination of the structural properties of the few–body atomic systems which
are necessary for astrophysical data analysis as well as in laboratory plasma diagnostics
is presented. We also discuss the potential future scopes of these works involving atomic
structure calculation in different external confining environment which may be significant
in different fields of research.
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2 1: Introduction

Introduction

In the microscopic world, few–body physics includes the studies of light nuclei, light atoms,

small molecules etc. Since the very infant age of quantum mechanics, few–body atomic

systems are always under the spotlight for being an important candidate for testing the

hypotheses and laws of the quantum mechanics. In 1926, Schrödinger computed [1] the

energy eigenvalues of hydrogen atom from his revolutionary matter-wave equation and ar-

rived in good agreement with that of obtained by Neils Bohr using quantum theory [2].

While the hydrogen atom or the two–body atomic problem is exactly solved by the wave-

mechanics [1], difficulty arises when there are more than two interacting particles, even

though all the interacting forces are known. The presence of
1

rij
term in the Hamiltonian of

the few-body systems makes the Schrödinger equation non-separable, rij being the distance

between the i−th and the j−th particles. Since the earlier days of quantum mechanics

theoreticians assumed [3–8] approximation techniques like perturbation, variation etc., to

solve the two–electron problem which is the simplest candidate among the few-electron

systems. In case of the few–electron systems, the Born–Oppenheimer approximation [9]

is applied where the nucleus is assumed to be infinitely heavy and its motion is negligible

with respect to the motion of the electrons. Slater [3] used perturbation technique to find

the energy spectra of helium atom without making any attempt to separate the variables

at all. Hartree [4, 5] made the central field approximations to solve the wave equation of

helium atom problem where the Hamiltonian boils down to effective one-electron Hamilto-

nians. Slater [3] and Hartree [4, 5] calculated the ground state energy of helium atom as

−2.895 a.u. and −2.86168 a.u. respectively. These values are little above the experimental

value −2.9035 a.u. known at that time which was obtained by Lyman [10] in 1924. The

experimental determination of ground state of helium atom become more precise in later

years. For example, Bergeson et. al. [11] reported the energy of helium in ground state as

−2.903 693 775 a.u. In 1928 and 1929, Hylleraas [6–8] adopted Ritz variational method

with 18 to 38 terms in the basis set of trial function which contained the inter-electronic

distance r12 explicitly. For obvious reason, this type of basis functions are called correlated

basis. The best result he got for the ground state energy of helium atom is −2.9037 a.u. [7].

Since this work, till now the researchers are applying quantum-mechanical approximation

techniques using various basis sets and optimization programs to determine highly precise

energy levels of helium atom. The works of Pekeris [12] and Drake [13] are quite significant

in this matter where they estimated the non-relativistic energy eigenvalue of the ground

state of helium as −2.903 724 376 a.u. and −2.903 724 377 03415 a.u. respectively. Over

the years theoreticians enjoyed competing with one another on the determination of more

and more precise ground state energy of helium atom [14–22] just like the mathematicians

do to add more digits of the number ‘π’. Moreover, it can be seen that the variational non-

relativistic energy estimates [12–22] are lower than that of the experimental result [11]. This
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is because of the fact that the non-relativistic energy values needs corrections regarding the

nuclear motion or the QED effects. These corrections were made by the researchers [23–26]

considering the nuclear mass of 4He atom as M(4He) = 7294.299508 a.u. which produces

ground state energy of helium atom as −2.903 304 557 7 a.u. (upto 10-th decimal place).

Before we proceed further, we first describe the spectroscopic notations used here. Here we

have used the usual spectroscopic notation 2S+1Lπ under the LS−coupling scheme, where

S, L and π are the total spin, orbital angular momentum and parity quantum numbers

respectively. It is to be noted that the parity of the coupled state is determined by the

formula π = (−1)l1+l2 where l1 and l2 are the individual angular momenta of the particles.

If π = +1, the corresponding coupled state (L) is called as even parity (‘e’) state and for

π = −1, the corresponding coupled state (L) is called as odd parity (‘o’) state. Again, if the

factor (−1)L becomes equal to (−1)l1+l2 , then the coupled state L is called a natural parity

state. On the other hand, if the factor (−1)L+1 becomes equal to (−1)l1+l2 , then the coupled

state L is called an unnatural parity state. Table (1.0.1) shows some examples of natural

and unnatural parity states. Expanding the trial function in Hylleraas basis is the most

efficient technique to include correlation effects on the two-electron energy levels. Hyller-

aas’s calculations are applied to the ground state of helium with a spherically symmetric

angular part of the wave function. The distance of the electrons (r1, r2) from the nucleus at

origin and the angle (θ12) between them were employed to express the wave function. The

situation is more challenging for the states other than S symmetry. A two–electron sys-

tem has 9 degrees of freedom. Due to the invariance of the Hamiltonian under translation

and rotation, Wigner [27] and Breit [28, 29] demonstrated that the number of independent

variables in the Schrödinger equation can be reduced from nine to three. By taking the ad-

vantage of translational symmetry of Hamiltonian, the problem of two electrons with a fixed

nucleus is represented in six coordinates, three of which are the sides of the triangle formed

by the nucleus and two electrons and the remaining three are the Eulerian angles defining

the triangle’s orientation in space. These angles are needed to be separated out leaving the

Schrödinger equation in only three radial coordinates. Since the total angular momentum

is a constant of motion, the problem could be reduced to three dimensions regardless of how

the Eulerian angles were specified. Breit [28, 29] adopted Hylleraas coordinates using the

same Eulerian angles as were introduced by Hylleraas [7], known as ‘Hylleraas-Breit angles’

which were quite unsymmetrical with respect to two electrons and hence very difficult to

separate it out from the Schrödinger equation. As a result, Breit’s [29] research was limited

to the (1s2p; 1Po) state of helium atom. Bhatia and Temkin [30] made the first successful

attempt at generalizing the helium atom problem by using symmetric Eulerian angle decom-

position technique. Because of their symmetry and exchange properties, the Euler angles

utilized by Bhatia and Temkin [30] have an obvious advantage over the Hylleraas-Breit

angles, and consequently the Eulerian angles were removed from the Schrödinger equation

for any angular momentum state of a two-electron system just like the separation of the
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Table 1.0.1: Spectroscopic notation of coupled angular momentum (L) states of two–electron
systems along with the electronic configurations (having individual angular momenta l1 and
l2) for each coupled state. The superscripts e and o in the notation stand for ‘even’ and
‘odd’ parities respectively.

Parity of states Spectroscopic terms Configurations

Natural Se (L = 0) ss (l1 = 0, l2 = 0)
pp (l1 = 1, l2 = 1)

etc...
Po (L = 1) sp (l1 = 0, l2 = 1)

pd (l1 = 1, l2 = 2)
etc...

De (L = 2) sd (l1 = 0, l2 = 2)
pp (l1 = 1, l2 = 1)

etc...

Unnatural Pe (L = 1) pp (l1 = 1, l2 = 1)
dd (l1 = 2, l2 = 2)

etc...
P0 (L = 2) pd (l1 = 1, l2 = 2)

df (l1 = 2, l2 = 3)
etc...

Pe (L = 3) pf (l1 = 1, l2 = 3)
dd (l1 = 2, l2 = 2)

etc...

polar and azimuthal angles from the Schrödinger equation of hydrogen atom problem. This

symmetric Eulerian angle decomposition technique was employed later in many works to

investigate P, D, F states [31–37]. In 1994, Mukherjee and Mukherjee [38] were able to

put out the general variational equation for states of arbitrary angular momentum for two–

electron systems in radial co–ordinates (r1, r2, r12) of the triangle formed by the nucleus

and two electrons using the wave function provided by Bhatia and Temkin [30].

Among all these two–electronic states, doubly excited states (DES) lie above the first

(N = 1) ionization threshold of the one–electron sub–system. In DES of two–electron

systems, 2s2 (1Se), (2s2p1,3Po), 2p2 (1Se,3 Pe,1 De) etc. lie below N = 2 ionization thresh-

old, 3s2 (1Se), (3s2p1,3Po), 3p2 (1Se,3 Pe,1 De) etc. lie below N = 3 ionization threshold

and so on. DES are embedded in continuum and hence the effect of continuum states are

inherent in their description or structure. The DES may be formed experimentally in two

different ways which are illustrated below:

1. Electron scattering experiment: If a He+ ion in any arbitrary angular momentum
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state nl above N = 1 ionization threshold, is bombarded by an electron with right

amount of kinetic energy, a DES He∗∗ (nln′l′) can be formed (n, n′ ≥ 2), where l and

l′ are the angular momentum quantum numbers of the electrons in He–atom.

e− + He+(nl)→ He∗∗(nln′l′)

2. Photo-absorption experiment: In this case, He–atom absorbs a photon, e.g. when

placed in a synchrotron radiation chamber, to get excited to a DES as

hν + He(1snl)→ He∗∗(nln′l′)

DESs can go through transitions to lower levels by emitting photons (radiative or fluo-

rescence decay). On the other hand, since the DES are embedded in the continuum they

interact with the continuum states due to the repulsive potential
1

r12
. As a result the two-

electron system in DES can undergo a non-radiative transition, called ‘auto-ionization’, in

which DES decay to a lower state of ionized one–electron sub–system of the two–electron

system. For example:

He∗∗(2s2p;1,3 P o)→ He+(1s) + e−

He∗∗(2p2;1De)→ He+(1s) + e−

As discussed earlier, a projectile needs to have an exact amount of energy to form an

autoionizing DES. At this particular energy a sharp peak or ‘resonance’ can be seen in

the continuous absorption spectrum (in photo-absorption experiment) or scattering cross-

section (in electron-scattering experiment). For this reason, autoionizing states are also

known as resonance states. On the basis of angular momentum and parity conservation

rule under the LS -coupling scheme, Feldman and Novick [39] showed that autoionization

is allowed only for those transitions for which 4L = 0, 4S = 0 and 4π = 0. The above

examples satisfy these criteria whereas the following examples are forbidden:

He∗∗(2p2;3 P e) 9 He+(1s) + e−

He∗∗(2p3d;1,3Do) 9 He+(1s) + e−

Between N = 1 to N = 2 ionization threshold the DESs with natural parity shows auto-

ionization/resonance character whereas the DESs with unnatural parity is stable against

auto-ionization, called meta-stable bound states (MBSs) which are prone to decay via fluo-

rescence transitions. Above N = 2 ionization threshold, all the DESs are auto-ionizing in

nature. This theory is well supported by a number of experiments where the fluorescence
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and auto-ionizing lifetimes of various DESs are measured [40–44]. For example, the fluores-

cence lifetime of 2p2 (3Pe) and 2p3d (1,3Do) states of He-atom are 80±7 ps [40] and 110±20

ps [41] respectively. On the other hand, the auto-ionization lifetimes of 2s2p (1,3Po) and

2p2 (1De) states of He-atom are found to be 17± 2 fs [42] and 9.1± 2.3 fs [44] respectively.

In the beginning of this century, a new feature of the DESs is discovered due to the experi-

ments [45,46] which found that fluorescence decay is more probable than auto-ionization for

some definite resonance states. Saha et. al. [47] showed theoretically that the angular part

of the wavefunction determines which resonance states will show fluorescence activeness

over the auto-ionizing phenomena. This theory was verified in a heavy-ion collision experi-

ment performed by Kasthurirangan et. al. [48] where they measured both fluorescence and

auto-ionization rates of the 2p3d (1Po) state of highly charged two–electronic systems like

Si13+,S14+ and Cl15+. For example, the experiment [48] showed that the auto-ionization

rate (3.204×1012 s−1) is lesser than the fluorescence rate (3.28×1012 s−1) of the 2p3d (1Po)

state of Si13+ ion. DESs have attracted a lot of attention in researches because they are

best suited for theoretical studies on resonance phenomena which are important in plasma

physics, astrophysics, laser-technology etc [49–51].

In case of general three–body systems with comparable masses Born-Oppenheimer approx-

imation [9] of fixed nucleus is not applicable for constructing the variational equation. The

centre of mass coordinates and the symmetric Eulerian angles can be separated out of the

equation [52] by exploiting the translational and rotational invariance of Hamiltonian re-

spectively. The effective variational equation of three–body system is then reduced to three

dimension which may be taken as the sides (r1, r2, r12) of the triangle formed by the three–

body system [53]. The classification scheme of various states of a general three-body system

is similar to that of the two–electron systems.

Structural calculation of atomic systems under plasma environment is a field of active re-

search due to its application in plasma diagnostics. H–like and He–like spectral transitions

in plasma environment play a major role in these aspects. Lyman-α line (n = 2→ 1 transi-

tion) and Balmer-α line (n = 3→ 2 transition) are of particular importance in case of H–like

systems. Lyman lines are used for diagnostics of ions with higher energies. Balmer lines are

used to measure many things like magnetic and electric fields through Stark-Zeeman split-

ting, fluctuations in the electron density etc. For He–like systems, Heα (1s2p → 1s2), Heβ

(1s3p → 1s2) lines as well as He–like satellite lines (2p2 → 1s2p) etc. play significant role

in plasma diagnostics. Line shifts, line profile and broadening, line merging phenomenon,

relative intensities of spectral lines, continuum lowering and ionization potential depression,

disappearance of spectral lines etc. are useful tools for plasma diagnostics i.e. to measure

particle density and equilibrium temperature of the plasma. Hence, precise atomic data are

needed for the understanding of them. Depending on plasma conditions i.e. equilibrium

temperature and densities of plasma species, the atomic energy levels and transitions are
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modified. This modification of atomic data is important for determining the plasma condi-

tions. Huge technological advances have occurred in the last couple of decades, as a result

of which atomic spectroscopy has taken on an intriguing shape in plasma studies. The use

of X-ray free electron lasers (XFELs) in Linac coherent light source (LCLS), Orion lasers

and other lasers, is critical in such advancements [54–57].

For a free atom/ion, all the particles within the atom interact with each other

via Coulomb potential. But the inter–particle interaction changes its form from Coulombic

to non–Coulombic when the atom/ion is placed in plasma, which will alter the structural

properties of the atom/ion as compared to the free environment. It is true that most of the

structural modifications can be addressed considering the atom/ion to be static. However,

the motion of the ions or nucleus of atom with high velocity through the ‘sea’ of electrons in

plasma creates a ‘wake’. Depending on the plasma parameters and ion velocity, this ‘wake’

can sufficiently alter the potential ‘seen’ by the ion. As a consequence, the energy levels and

transition properties are also modified. It is worth noting that the fast ions in plasma are

quite difficult to detect, but their ‘wakes’ can be detected experimentally, e.g. by Collective

Thomson Scattering (CTS) technique [58]. Tracking the fast ions, e.g. hydrogen, deuterium,

tritium, α-particles inside plasma has attracted sufficient interest from researchers in recent

years because these ions are often major source of energy and momentum of plasma and

it carries important information about the plasma. Fast ions are also crucial ingredients

of a burning fusion plasma. Many techniques like Fast Ion D-α (FIDA) Spectroscopy [59],

γ−ray spectroscopy (GRS) [60], CTS etc. are employed to detect fast ions in plasma in

various experimental projects e.g. the ITER project [61–63], ASDEX Upgrade [64], Joint

European Torus (JET) [65] etc. These experiments require precise theoretical atomic data

of H-like systems moving in such plasma environments. Within the plasma, some of the

injected fast ions undergo nuclear reactions and other fast ions neutralize and emit light.

By analyzing the signals coming out of the fast ions, information about the velocity and

the distribution of fast ions in plasma can be obtained.

The present study focuses on application of atomic data inside plasma environment. In

ion-atom or electron-atom collision experiments, all kind of bound and resonance states

are produced simultaneously in the collision chamber. The possibility of the formation of

plasma in collision experiment is very high as large number of electrons and different charge

states of ions are produced. By using advanced technologies such as ion source technology,

storage ring capabilities and trapped ion techniques, a wide spectrum of target atom is

attainable to study ionic resonances and even spectral properties of ions embedded within

plasma. Hence, atomic structure calculations under plasma confinement is a very significant

topic of research for both theoreticians and experimentalists.

Let us now construct a conjunctive idea on plasma. The name “plasma” was first intro-

duced by Irving Langmuir in 1928 [66] while studying oscillations in ionized gas. In the

Greek dictionary, “plasma” means something “formed” or “moulded”. In the following year,
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Tonks and Langmuir developed the theory of oscillating ions in the ionized gas which is fa-

mously known as “plasma oscillation theory” [67]. A very compact review on the historical

developments of plasma can be found in a book written by Paul M. Bellan [68]. Plasma

is considered as a medium which contains a large number of charged particles (electrons

and ions), charge-neutral particles, macroscopic particles (large molecules or dust particles)

etc., all moving due to thermal agitation. At any instant the interior of a plasma net charge

within a macroscopic volume remains zero. With the help of terrestrial and astrophysical

observations, scientists believe that 99% of the universe is made up of plasma. Very com-

mon examples of astrophysical plasma are Solar corona, nebulae, rings of Saturn, tails of

comet etc. Plasma is the reason behind their continuous source of energy. In earth’s atmo-

sphere, lightening, ionosphere etc. behave like plasma medium. Due to plethora of plasma

in natural objects, scientists are always keeping their eyes on the making of such plasma

environments in the laboratory scenario so that we can understand our universe better and

produce a sustained source of energy [61,69–71].

If the plasma temperature (T ) becomes very high
(
T v 104 − 108K

)
, the thermal

de Broglie wavelength of the particles (λB) turns out to be less than the average inter-

particle distance (dm), which causes the plasma particles to become distinguishable and

obey the Maxwell-Boltzmann distribution. This type of the plasma is called classical plasma.

Classical plasma can be found in ionosphere [72], interstellar space [73], solar coronal region

[74], typical electric discharge [75], tokamak experiment (magnetic confinement fusion) [71],

inertial confinement fusion (ICF) experiments [61,70] etc. On the other hand, for very low

temperature (T v 0− 20K), λB becomes greater than dm. As a result, the plasma particles

become indistinguishable and follow the quantum distribution laws. Such type of plasma

is called quantum plasma (QP) which can be found in astrophysical objects like Jupiter’s

core, white dwarf star (high temperature quantum plasma) etc. [76] and can be produced

in laboratory experiments such as metals and metal clusters, quantum dots and quantum

wires [77], intense laser-solid density plasma interaction experiments [78] etc.

A quantity called Coulomb coupling parameter or simply Coupling parameter (Γ),

defined as the ratio of the average electric interaction energy to the average kinetic energy of

the plasma particles, plays a pivotal role to classify plasma on the basis of the plasma particle

correlations. The plasma for which Γ < 1 is called weakly coupled plasma (WCP) and for

Γ ≥ 1, the plasma is called strongly coupled plasma (SCP) or non-ideal plasma. WCPs are

generally of very high or moderately high temperature and low density (n) plasma which

can be found [79, 80] in gaseous nebula (T ∼ 104K and n ∼ 103/c.c), solar coronal plasma

(T ∼ 106−107K and n ∼ 106−107/c.c), solar wind (T ∼ 105K and n ∼ 10/c.c), the gaseous

discharge plasma (T ∼ 104K and n ∼ 107 − 1012/c.c), plasma in controlled thermo-nuclear

reaction (T ∼ 108K and n ∼ 1015/c.c), inertial confinement fusion plasma (T ∼ 108K and

n ∼ 1025/c.c), Tokamak plasma (T ∼ 105 − 107K and n ∼ 1014/c.c). Typical densities

of SCPs are n ≥ 1023/c.c. and temperatures are low (in few Kelvin). Such plasmas can
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be found in laser produced plasmas, highly evolved stars in high density states, interior of

Jovian planets, pulsed MHD generators, explosive shock tubes, two-dimensional states of

electrons trapped in surface states of liquid helium etc. [81, 82].

The most important part of theoretical investigations is to model the plasma en-

vironment by an effective potential Veff (r) felt by a foreign atom/ion placed inside the

plasma. There are many types of plasma model potentials Veff (r) available in literature,

some of which are listed below.

1. Classical WCP: If the atom or ion is embedded in the classical WCP environment,

the effective potential at a point around the nucleus having charge Z can be modeled

by [83]

Veff (r) = −Z
r
e−µDr (1.0.1)

This potential is known as Exponentially Screened Coulomb Potential (ESCP) or

Debye-Hückel Potential. In this equation (1.0.1) the screening parameter is given

by

µD =
1

λD
=

(
KBT

4πq2n

)−1/2

(in C.G.S unit) (1.0.2)

where λD is called plasma screening length or Debye screening length which depends

on plasma density (n) and temperature (T) of plasma.

2. Classical SCP: Over the years, many compact forms of the effective potential Veff (r)

are constructed to model the classical SCP or dense plasma environment, such as

ion-sphere model [81], Thomas-Fermi model [84, 85], Quasi-molecular model [86, 87],

Crowly’s fried egg model [88], DFT based ion-correlation models [89], Libernan’s in-

ferno model [90,91] etc. Among these models, the ion-sphere model [81] is quite simple

yet capable in estimating the plasma parameters with the help of atomic structure

calculations under classical SCP environment. In this model the charge neutrality is

maintained by both free and bound electrons with the central positive ion inside the

ion-sphere (IS) or Wigner-Seitz sphere. The effective potential is given as following

Veff (r) = −Z
r
− (Z −N)

2R

[
3−

( r
R

)2
]

(1.0.3)

From the charge neutrality condition within the sphere, the IS radius (R) is connected

with the plasma electron density (n) by the following relation

n =
Z −N
4
3πR

3
(1.0.4)
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where Z is the nuclear charge of the ion at the centre of IS and N is the number of

bound electrons in the ion.

3. Quantum plasma: Generally this kind of plasma falls into the SCP category. In

2008, Shukla and Eliasson [92] modeled the potential around a test charge (of charge

Z) embedded in a cold and dense quantum plasma under the framework of linearized

quantum hydrodynamic theory where it is assumed that the quantum force acting on

the electrons are dominant over the quantum statistical pressure. The potential is

known as exponentially cosine screened Coulomb potential (ECSCP) which assumes

the following form

Veff (r) = −Z
r

exp

(
−
kQr√

2

)
cos

(
kQr√

2

)
(1.0.5)

where kQ =

(
4m2ω2

pe

~2

)1/2

is the quantum wavenumber. The plasma electron fre-

quency (ωpe) is given by the relation

ωpe =

(
4πneq

2
e

me

)1

2
(in C.G.S) (1.0.6)

ne, qe and me being the number density, charge and mass of electron respectively.

In addition to the plasma model potentials described above there are some other model

potentials which are also important for the atomic structure calculations under plasma

environments e.g. potential in classical dusty plasma (DP) [93], potential in non-Maxwellian

astrophysical plasma [94–96] etc. A unified model potential in dense plasma is given by

Stanton and Murillo [97].

These models, in conjunction with various quantum mechanical approximation techniques,

yield valuable outcomes that are significant within the context of plasma diagnostic studies.

In the subsequent chapters of this dissertation, different structural properties of two–body

and three–body systems have been demonstrated under various plasma scenario. Our study

starts with the hydrogen atom (or H–like ion) moving through different types of plasma

environments like classical WCP, QP and classical DP. The effective potential of the atom

is evaluated by solving Poisson’s equation where the plasmas are considered as dielectric

media. Variation of energy eigenvalues with respect to plasma parameters (density and

temperature) as well as ion velocity is studied using Ritz variation principle. We have

further investigated the effect of plasma and ion velocity on different dipole transitions.

In the next phase, we have studied the structural properties of different three–body

systems (including exotic ions) embedded in classical WCP where the effective potential is

modelled by ESCP (1.0.1). For a wide range of plasma screening parameter (1.0.2), energy
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eigenvalues of the ground state 1s2 (1Se) of three–body systems are estimated under the

Ritz variational framework using a trial function expanded in multi-exponent Hylleraas-

type basis set. Energy and width of resonance 1Se state below second ionization threshold

of different hadronic three–body exotic ions are evaluated using stabilization method.

In the last part of the present study we focus on high-lying doubly excited Fe state

of two–electron systems under both free and classical WCP environment. Ritz variational

principle has been employed to determine the energy eigenvalues of metastable bound Fe

states while stabilization method is used to estimate resonance parameters (energy and

width) of resonance Fe states for different plasma screening. In this case, the trial function

contains not only the most fundamental pf configuration but also a high–lying dd con-

figuration for the Fe state, where both pf and dd parts are expanded in multi-exponent

Hylleraas-type basis set. Other structural properties like one– and two–particle moments,

inter–electronic angles etc. of both metastable bound and resonance Fe states of helium

atom are also given for different plasma screening parameters.
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Moving H-like atom under plasma environment

The structural properties of hydrogen–like (H–like) ions are quite important in plasma diag-

nostics because the features of hydrogenic lines (Lyman-α, Lyman-β, Balmer-α, Balmer-β

etc.) in plasma environment carry important information about the plasma parameters

like density and temperature. Plenty of works have been carried out by researchers in this

direction where the ion is considered to be static. However, H–like ions which are in motion

inside the plasma environment have become quite important from recent experimental point

of view. As the ions move through the ‘sea’ of electrons, they leave a ‘wake’, the effect of

which depends on the plasma parameters as well as on the ion velocity. The ‘wake’ alters

the potential experienced by the ion and hence, the energy levels and transition properties

are modified. In this chapter, we give a detailed account of formation of the model potential

felt by the moving ion in both classical and quantum plasma. The dusty plasma environ-

ment is also considered. Starting from electrostatic considerations, we have presented the

mathematical development of the model potential in plasma environment. This model po-

tential is subsequently used to solve the Schrödinger equation using the variational principle

to estimate the energy values and transition energies of ions moving through plasma. The

effects of plasma density, temperature and ion velocity on the hydrogenic energy levels as

well as on transition wavelengths of π and σ components of Lyman-α lines are discussed.

Energy eigenvalues of several states of H-like carbon (C5+) ion moving through electron–

hole quantum plasma are provided at the end of this chapter for a range of plasma densities

and ion velocities.

2.1 Literature review

In the presence of weakly coupled plasma (WCP), the interaction between the particles of

an atom/ion changes from Coulomb to exponentially screened Coulomb potential (ESCP)

as given in equation (1.0.1). Analytic solution of Schrödinger equation with ESCP is not

possible even for the H-like atoms/ions which is the simplest candidate among the few

body atomic systems. After the pioneering work by Ecker and Wiezel [98] using suit-

able physical approximations (known as ‘Ecker-Wiezel approximation’), several other quan-

tum mechanical approximation techniques like perturbation [99–104], variation [105–111],

variation–perturbation theory [112], numerical techniques [113–116] etc. were adopted to

solve the Schrödinger equation with ESCP for the H–like atomic systems. The removal of

l−degeneracy and the reduction of the number of bound states of H–atom under WCP were

reported in literature with different methodologies [100,101,105,106,113–115]. Using numer-

ical techniques, Roger et.al. [115] showed that the number of bound states decrease almost

linearly with plasma screening strength. Using variation technique, Lam and Varshni [107]
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and Garavelli and Oliveira [109] reported comparable results with Rodger et.al. [115] ex-

cept in the region very close to critical screening where the energy eigenvalues become zero.

Alteration of other structural properties like the size of atoms, transition probability for

spontaneous emission etc. under WCP can be found in literature [107, 108, 111, 117]. The

estimation of structural properties of H–like atomic systems under WCP formed within

spherical box grabbed attention of many researchers [103,104,111,112] where modifications

of transition energy, oscillator strength, transition probability, hyperpolarizability of photo-

excitation etc., due to the alteration of the both plasma screening and the box radius were

explored. The simultaneous effect of Plasma screening and external static electric field on

the atomic properties was also studied for H–like systems [118,119].

Theoretical investigations on the spectral properties of few-body systems under strongly

coupled plasma (SCP) are limited as compared with those under WCP model. The main

effects of SCP on H-like systems are to modify the energy levels, ionization potential of

the systems, fine structure splitting, photo-absorption cross-sections etc. [120–123]. Struc-

tural properties of H-like systems like the spectral line shift, line broadening, continuum

merging of bound states etc. under SCP are used by the theoreticians [124–127] to predict

the density of hot-dense plasma produced by laser implosion. In these works, besides the

adoption of ion–sphere (IS) model people also used self-consistent method or random phase

approximation to the dielectric function of the medium to incorporate the effect of density

of the plasma medium. Bhattacharyya et. al. [128] predicted line shifts of Lyman lines

of H-like C5+,Al12+ and Ar17+ and compared the IS and truncated Debye models using

both non-relativistic and relativistic methods. The modifications of the dynamic polariz-

abilities, oscillator strengths and transition probabilities of H-like He+,Li2+,Be3+,B4+ and

C5+ ions under SCP are reported by Sil et. al. [129] where they have assumed IS potential

to model the plasma environment where the time-dependent variation-perturbation theory

was employed. They have shown that the dynamic polarizability of the ions remains nearly

invariant as IS radius decreases, but below a certain value of radius dynamic polarizabil-

ity falls off abruptly. Li and Rosmej [130] proposed an analytic method where the energy

values of LSJ-levels of H-like Al12+ ion are estimated using finite temperature and high

density plasma represented by modified IS–model. Relativistic multi-configuration Dirac-

Fock method has been employed by Chen et. al. [131] to estimate the effect of density

of SCP on the energy levels, transition energies and oscillator strengths of transitions of

highly charged H-like Ne9+, Al12+ and Ca19+ ions. While in this work [131] the authors

assumed IS-model, in a later investigation Chen et. al. [132] assumed a general model po-

tential [97] to mimic the SCP environment which is dependent on both temperature and

density. Within the relativistic framework built in Flexible Atomic Codes (FAC), Chen et.

al. [132] estimated the variations of the ionization potentials, transition energies and pho-

toionization cross-sections of H-like Al12+ ion with respect to different plasma temperatures

and densities. Mukherjee et. al. [133] adopted non-relativistic generalized pseudospectral
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method to estimate the multipole oscillator strengths, multipole polarizabilities and Shan-

non entropy of one-electron systems (Z = 1− 4) under both WCP and SCP environments.

Atomic structure calculations under dense quantum plasma grabs attention of a large num-

ber of theoreticians due to its huge abundance in semiconductor devices, quantum dots,

quantum wires [134], neutron stars, white dwarfs [135], laser produced plasma [136], fusion

plasma [137, 138] etc. The most celebrated model potential of the dense quantum plasma

medium is exponentially cosine screened Coulomb potential (ECSCP) as given in equa-

tion (1.0.5). The effect of ECSCP on the bound states of one–electron systems started by

adopting different approximation techniques like Ecker–Weizel approximation [139,140], hy-

pervirial Pade scheme [141], 1/N expansion technique [142,143] etc. In the course of last few

years, a large number of works [144–150] has been performed regarding the structure calcu-

lations of one–electron systems under dense quantum plasma environment. The variation

of energy eigenvalues of nl (n ≤ 10, l = 0−9) and n′l′ (n′ ≤ 8, l′ = 0−7) states with respect

to the screening parameters of ECSCP and generalized ESCP was extensively studied by

Roy [144] where it was reported that the effect of ECSCP is stronger on the energy levels as

compared to generalized ESCP. Hu et.al. [151] compared five different models used to de-

scribe dense quantum plasma, by calculating their effects on 1s energy level of H-atom using

Ritz variation technique. Using Ritz variation technique with relativistic correction, Hu et.

al. [146] showed that the probability of the radiative transition 1s→ np (n = 2, 3) of C5+,

O7+, Al12+ and Si13+ ions, decreases as plasma density increases. Variation of oscillator

strength and transition probability for the Lyman and Balmer series upto n = 5 with respect

to temperature and density of dense quantum plasma was investigated by Zhou et. al. [148]

where the authors used the finite temperature unified model potential given by Stanton and

Murillo [97] to mimic the dense quantum plasma environment. Nayek et. al. [149] revealed

the changes in the energy eigenvalues as well as the radial distribution of the wavefunction

with respect to the screening of both ESCP and ECSCP for 36 bound states within n ≤ 8 of

one–electron systems having Z = 1− 18. The critical screening parameters for every bound

states of each systems are given in their study [149], for both ESCP and ECSCP. Ly et.

al. [150] solved Schrödinger equation of H–atom under dense quantum plasma and uniform

magnetic field by using highly accurate numerical technique to determine different bound

state energy eigenvalues for different screening parameters of ECSCP describing the dense

quantum plasma. Few studies on the variation of photoionization cross-section of H–atom

under dense quantum plasma can be found in literature [145,147].

From the above discussion on some of the earlier works done in the field of plasma–embedded

H–like systems, it is evident that since the early days, the H–like ions play a key role in

understanding plasma environment in various aspects. However, all of them were static.

The moving H–ion in plasma for various reasons are gaining attention over the past few

years. The modification of bound state properties of slowly moving one-electron systems

under quantum plasma is studied by very few researchers in the literature [152,153] where
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the authors adopted Ritz variation principle and perturbation method with necessary rela-

tivistic corrections. The model potential considered in their works consisted of ESCP part

and ‘wake’ part which is proportional to the velocity of the nucleus and varies as ∼ cos θ

r2

(θ is the polar angle and r is the radial distance from the nucleus). They have found [152]

“Zeeman”–like splitting of the energy levels due to the influence of the wake part and the

rates of different dipole transitions between the energy levels vary with the velocity of the

nucleus.

In the subsequent sections of this chapter we will present different structural properties of

H–like systems under classical weakly coupled plasma, quantum plasma and dusty plasma

environments. Beginning with electrostatic considerations, we provided the mathematical

development of the model potential for an ion moving through the plasma environments

considered here. In the next step, we have employed Ritz variational principle using trial

wavefuntion expanded in Slater-type basis set, to estimate the energy eigenvalues of H–

like systems moving through plasma. In pertinent sections of this chapter, the analytical

forms of the matrix elements and the necessary basis integrals are provided. The results

and discussions are detailed in the next section. At the end of this chapter, the effects of

temperature, ion velocity, and plasma density on hydrogenic energy levels as well as the

transition wavelengths of π and σ components of Lyman-α lines are discussed.

2.2 Formulation of model potential: the present method

To obtain atomic data in plasma environment, we need to solve the Schrödinger equation

for which the potential term is needed. As the number of the particles in the plasma

medium is very large, it is difficult to obtain any ab-initio solution of the Schrödinger

equation by incorporating all the interactions in the Hamiltonian under plasma environment.

This difficulty may be overcome by considering a suitable model which may mimic all the

collective interactions within the plasma.

2.2.1 Moving ion in classical weakly coupled plasma

Let us consider a test charge q moving with velocity ~v within a plasma medium which is

considered as a linear dielectric medium. In figure (2.2.1) O is the origin where the charge

q was initially (t = 0) situated and O′ is the present position of q at the instant ’t‘ i.e.
~OO′ = ~vt. We are interested to find the electric potential (V ) at P due to the moving test

charge q surrounded by the plasma particles and ~OP = ~R. Hence, ~O′P = ~r = ~R−~vt is the

position vector of the field point with respect to the present position O′ of the test charge

q. We begin from the Gauss’s law in the medium as [154] (in S.I.),

~∇. ~D =
q

ε0
δ(~R− ~vt) [ε0 = Permittivity of free space] (2.2.1)
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Figure 2.2.1: Relative position of the point of investigation P with respect to the initial
position (O) and the later position (O′) of the moving charge q.

For a linear dielectric medium having dielectric function ε, the displacement vector is ~D =

ε0ε ~E; ~E being the electric field and is derived from the scalar potential V as ~E = −~∇V .

Equation (2.2.1) will become,

−~∇ε.~∇V − ε∇2V =
q

ε0
δ(~R− ~vt) (2.2.2)

Taking Fourier transform on both sides of equation (2.2.2) into the momentum space (~k) of

the moving plasma particles, we can get

−F.T.
[
~∇ε.~∇V

]
− F.T.

[
ε∇2V

]
=

q

ε0
F.T.

[
δ(~R− ~vt)

]
⇒ − 1

(2π)3/2

∫ (
~∇ε.~∇V

)
e−i

~k. ~Rd3 ~R− 1

(2π)3/2

∫ (
ε∇2V

)
e−i

~k. ~Rd3 ~R

=
q

ε0

1

(2π)3/2

∫
δ(~R− ~vt)e−i~k. ~Rd3 ~R

⇒ +
1

(2π)3/2

∫ (
~∇ε.~∇V

)
e−i

~k. ~Rd3 ~R+
1

(2π)3/2

[
|~∇V |εe−i~k. ~R

]
at∞

− 1

(2π)3/2

∫ [
~∇ε− iε~k

]
.~∇V e−i~k. ~Rd3 ~R = − q

ε0

1

(2π)3/2
e−i

~k.~vt

⇒ i
1

(2π)3/2

∫ (
ε~k.~∇V

)
e−i

~k. ~Rd3 ~R = − q

ε0

1

(2π)3/2
e−i

~k.~vt

⇒ ik
1

(2π)3/2

∫
ε|~∇V |e−i~k. ~Rd3 ~R = − q

ε0

1

(2π)3/2
e−i

~k.~vt
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⇒ ikF.T.
[
ε|~∇V |

]
= − q

ε0

1

(2π)3/2
e−i

~k.~vt

⇒ ikF.T. [ε]× F.T.
[
|~∇V |

]
= − q

ε0

1

(2π)3/2
e−i

~k.~vt

⇒ ikε(~k)× ikV (~k) = − q

ε0

1

(2π)3/2
e−i

~k.~vt

⇒ V (~k) =
q

ε0

1

(2π)3/2

e−i
~k.~vt

k2ε(~k)
(2.2.3)

Here we have assumed that ~∇V or (- ~E) is parallel to ~k i.e. the flow of plasma particles is

longitudinal. V (~k) and ε(~k) are the Fourier transform of the potential V and the dielectric

function ε.

From the inverse Fourier transform of equation (2.2.3) into the ~R-space and putting ~r =

~R − ~vt, we obtain the potential V (~r) at field point P with respect to the instantaneous

position of the test charge q as

V (~r) =
q

8π3ε0

∫
ei
~k.~r

k2ε(~k)
d3~k (2.2.4)

The dielectric function ε(~k) carries all the information about the interactions including all

types of collisions among the plasma particles and the charge velocity ~v. The dielectric

function for the classical electron-ion plasma [155] is given by

ε(~k) = 1 +
∑
s

1

λ2
sk

2

(
1− i

√
π

2

~k.~v

kvs

)
=

1 + k2λ2
D

k2λ2
D

− i
√
π

2

∑
s

1

vsλ2
s

~k.~v

k3
(2.2.5)

where the Debye Length (λD) or often called the screening length is given by,

λD =

(∑
s

1

λ2
s

)− 1
2

(2.2.6)

with

λs =
(
KBTsε0/q

2
sns
)1/2

(2.2.7)

Here s signifies type of plasma species i.e. s = e for plasma electrons, s = i for plasma

ions, s = n for neutral atoms present in the plasma etc. λs is called the screening length

or Debye length corresponding to the plasma species s. In equation (2.2.7) KB is the

Boltzmann constant and Ts, ns and qs are the plasma temperature, plasma number density
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and charge state of the species s respectively. Thermal velocity of the species ‘s’ is given by

vs =

(
KBTs
ms

)1/2

(2.2.8)

If the velocity of the test charge is assumed to be lower than the thermal velocities of the

plasma particles i.e. v < vs, then the inverse of the dielectric function may be approximated

as

1

ε(~k)
≈

k2λ2
D

1 + k2λ2
D

+ i

√
π

2

kλ4
D

(1 + k2λ2
D)2

~k.~v ×
∑
s

1

vtsλ2
s

(2.2.9)

Substituting (2.2.9) into (2.2.4) we obtain V (~r) = V1 + V2, where

V1 =
q

8π3ε0

∫
λ2
D

1 + k2λ2
D

ei
~k.~rd3~k (2.2.10)

and

V2 = i

√
π

2

q

8π3ε0

∫
λ4
D

k(1 + k2λ2
D)2

~k.~v
∑
s

1

vsλ2
s

× ei~k.~rd3~k (2.2.11)

Let us take a spherical polar coordinate (k, α, β) system such that the polar angle α is the

angle between ~r and ~k and β is the azimuthal angle which lies in a plane perpendicular to

~r. The volume element becomes d3~k = k2 sinαdαdβdk where 0 ≤ α ≤ π and 0 ≤ β ≤ 2π.

Integrating over α and β, V1 reduces to

V1 =
qλ2

D

2ε0π2r

∫ ∞
o

k

1 + k2λ2
D

sin krdk (2.2.12)

We will solve the integral in equation (2.2.12) using Meijer’s G function (MGF) technique,

which will be further useful to evaluate other integrals appearing in V2. The MGF is defined

as [156]

Gm n
p q

(
a1, ..., ap

b1, ..., bq

∣∣∣∣z
)

=
1

2πi

∫
L

∏m
j=1 Γ(bj − t)

∏n
j=1 Γ(1− aj + t)∏q

j=m+1 Γ(1− bj + t)
∏p
j=n+1 Γ(aj − t)

× ztdt

(2.2.13)

with the following conditions :

1. 0 ≤ m ≤ q and 0 ≤ n ≤ p.

2. Poles of Γ(bj − t) must not coincide with the poles of Γ(1 − aj + t) for any j and l

(where j = 1, ...,m; l = 1, ..., n), Γ being the Euler Gamma function.
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3. Residue of Γ(−p), p being a positive integer, is Res{Γ(−p)} =
(−1)p

p!

4. The integration path L (equation 2.2.12) are of three types :

(a) where L runs from −∞ to +∞: the poles of Γ(1 − al + t) lie to the left and

the poles of Γ(bj − t) lie to the right of L (where j = 1, ...,m; l = 1, ..., n). The

conditions of convergence of the integration (2.2.13) are

p+ q < 2(m+ n) and |arg z| <
(
m+ n− p

2
− q

2

)
π.

(b) where L is a loop, begining and ending at +∞: It encircles the poles of Γ(bj − t)
(j = 1, ...,m) once in the negative direction and all poles of Γ(1 − al + t) (l =

1, ..., n) must remain outside the loop. The conditions of convergence of the

integration (2.2.13) are, q ≥ 1 and either p < q or p = q and |z| < 1.

(c) where L is a loop, begining and ending at−∞: It encircles the poles of Γ(1−al+t)
(l = 1, ..., n) once in the negative direction and all poles of Γ(bj− t) (j = 1, ...,m)

must remain outside the loop. The conditions of convergence of the integration

(2.2.13) are, p ≥ 1 and either p > q or p = q and |z| > 1.

5. Gm n
p q

(
a1, ..., ap

b1, ..., bq

∣∣∣∣z
)

is symmetric with respect to the set of parameters (a1, ..., an),

(an+1, ..., ap), (b1, ..., bm) and (bm+1, ..., bq) e.g.

G2 3
5 4

(
a1, a2, a3, a4, a5

b1, b2, b3, b4

∣∣∣∣z
)

= G2 3
5 4

(
a2, a1, a3, a5, a4

b1, b2, b4, b3

∣∣∣∣z
)

= G2 3
5 4

(
a1, a2, a4, a3, a5

b2, b1, b4, b3

∣∣∣∣z
)

= ..... (2.2.14)

We can associate several elementary and special functions with MGF. Let us take the

following example:

G2 0
0 2

(
−

b, b+ 1
2

∣∣∣∣z
)

=
1

2πi

∫
L

2∏
j=1

Γ(bj − t)× ztdt

=
1

2πi

∫
L

Γ(b− t)Γ(b+
1

2
− t)× ztdt (2.2.15)

The poles of Γ(b − t) are at t = b + n;n = 0, 1, 2, ... and that of for Γ(b + 1
2 − t) are at

t = b + 1
2 + n;n = 0, 1, 2, .... Thus the residues of the integral in (2.2.15), due to the poles

of Γ(b− t) are:

Rn = 2πi

{
(−1)n

n!
Γ

(
1

2
− n

)
zb+n

}
[n = 0, 1, 2, ...]

= 2πi

{
4n

(2n)!

√
πzb+n

} [
as, Γ

(
1

2
− n

)
=

(−4)n n!

(2n)!

√
π

]
(2.2.16)
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and the residues due to the poles of Γ(b+ 1
2 − t) are:

R′n = 2πi

{
(−1)n

n!
Γ

(
−1

2
− n

)
zb+

1
2

+n

}
[n = 0, 1, 2, ...]

= −2πi

{
2n+1

n!

√
πzb+n+ 1

2

}
(2.2.17)

According to the residue theorem the equation (2.2.15) becomes,

G2 0
0 2

(
−

b, b+ 1
2

∣∣∣∣z
)

=
1

2πi

∞∑
n=0

[
Rn +R′n

]
=
√
πzb

(
1− 2z

1
2 + 2z − 8z

3
2

3!
+

16z2

4!
− .......

)
=
√
πzbe−2

√
z (2.2.18)

The relevant terms in equation (2.2.12) can be evaluated using MGF as [156,157]

sin kr =
√
πG1 0

0 2

(
−

1
2 , 0

∣∣∣∣k2r2

4

)
(2.2.19)

zβ

(1 + azb)α
=

a−
β
b

Γ(α)
G1 1

1 1

(
1− α+ β

b
β
b

∣∣∣∣azb
)

(2.2.20)

Hence, equation (2.2.12) becomes

V1 =
qλ2

D

4ε0π2r

∫ ∞
o

1

1 + k2λ2
D

sin krd(k2)

=
qλ2

D

4ε0π2r

√
π

∫ ∞
o

G1 1
1 1

(
0

0

∣∣∣∣λ2
Dk

2

)
G1 0

0 2

(
−

1
2 , 0

∣∣∣∣k2r2

4

)
d(k2) (2.2.21)

where we have used the identities (2.2.19) and (2.2.20). Now, applying the following prop-

erty of MGF

∫ ∞
0

Gs tu v

(
c1, ..., cu

d1, ..., dv

∣∣∣∣ξz
)
Gm n
p q

(
a1, ..., ap

b1, ..., bq

∣∣∣∣ηz
)
dx

=
1

ξ
Gt+m s+n
p+v q+u

(
a1, ..., an,−d1, ...,−dv, an+1, ..., ap

b1, ..., bm,−c1, ...,−cu, bm+1, ..., bq

∣∣∣∣ηξ
)

(2.2.22)
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equation (2.2.21) becomes

V1 =
qλ2

D

4ε0π2r

√
π

1

λ2
D

G2 1
1 3

(
−, 0,−
1
2 , 0, 0

∣∣∣∣ r2

4λ2
D

)
(2.2.23)

With the help of reduction property of MGF [156] given by

Gm n
p q

(
a1, ..., ap

b1, ..., bq−1, a1

∣∣∣∣z
)

= Gm n−1
p−1 q−1

(
a2, ..., ap

b1, ..., bq − 1
|z

)
(2.2.24)

and the symmetry property (2.2.14), we can write,

V1 =
q
√
π

4ε0π2r
G2 0

0 2

(
−

0, 1
2

∣∣∣∣ r2

4λ2
D

)

=
q
√
π

4ε0π2r

√
πe
− r
λD [using (2.2.18)]

=
q

4πε0r
e
− r
λD (2.2.25)

We will call this potential V1 as exponentially screened Coulomb potential (ESCP). The

potential (2.2.25) is of the form of Debye–Hückel screening potential [83].

We now proceed to evaluate V2. Performing integration over the azimuthal angle (τ) in

equation (2.2.11), we write

V2 =
qvλ4

D

8πε0

√
2

π

∑
s

1

vtsλ2
s

∫ ∞
o

k2

(1 + k2λ2
D)2

∫ π

0
cos(σ + θ)eikr cosσ sinσdσ (2.2.26)

where, θ is the angle between ~r and ~v and hence, (θ + σ) will be the angle between ~k and

~v. The polar angle part of the integral can be written as∫ π

0
cos(σ + θ)eikr cosσ sinσdσ = I1 − I2 (2.2.27)

where I1 = cos θ

∫ π

0
cosσeikr cosσ sinσdσ

=
2 cos θ

i

[
cos(kr)

kr
− sin(kr)

k2r2

]
= −2

i
j1(kr) cos θ (2.2.28)

jl(x) is the spherical Bessel function of first kind [158] and

I2 = sin θ

∫ π

0
sinσeikr cosσ sinσdσ = sin θI ′2 + i sin θI ′′2 (2.2.29)
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with I ′2 =

∫ π

0
sin2 σ cos(kr cosσ)dσ (2.2.30)

and I ′′2 =

∫ π

0
sin2 σ sin(kr cosσ)dσ (2.2.31)

Now, using the following properties [158]

cos (x cos θ) = j0(x)− 2j2(x) cos 2θ + 2j4(x)4 cos θ − ......

and sin (x cos θ) = 2j1(x) cos θ − 2j3(x) cos 3θ + 2j5(x) cos 5θ − ......

equations (2.2.30) and (2.2.31) give

I ′2 =

∫ π

0
sin2 σ cos(kr cosσ)dσ

=
1

2

∫ π

0
(1− cos 2σ) [j0(kr)− 2j2(kr) cos 2σ + 2j4(kr)4 cosσ − ...] dσ

=
π

2
[j0(kr) + j2(kr)]

and I ′′2 =

∫ π

0
sin2 σ sin(kr cosσ)dσ

=
1

2

∫ π

0
(1− cos 2σ) [2j1(kr) cosσ − 2j3(kr) cos 3σ + 2j5(kr) cos 5σ − ...] dσ = 0

Thus, equation (2.2.29) becomes

I2 =
π

2
sin θ [j0(kr) + j2(kr)] (2.2.32)

Putting the values of I1 and I2 from equations (2.2.28) and (2.2.32) respectively, we can

write the angular integral (2.2.27) as∫ π

0
cos(σ + θ)eikr cosσ sinσdσ = −2

i
j1(kr) cos θ +

π

2
sin θ [j0(kr) + j2(kr)] (2.2.33)

Using equations (2.2.27) to (2.2.29) and considering the real parts, equation (2.2.26) turns

to

V2 = −
qvλ4

D

4πε0

√
2

π

∑
s

1

vsλ2
s

cos θ

∫ ∞
0

k2j1(kr)

(1 + k2λ2
D)2

dk (2.2.34)

We have employed MGF to find a closed analytic form of the potential V2. Using the

following identities:

•
zβ

(1 + azb)α
=
a−

β
b

Γ(α)
G1 1

1 1

(
1− α+ β

b
β
b

∣∣∣∣azb
)
, jν(z) = G1 0

0 2

(
−
ν
2 ,

ν
2

∣∣∣∣ z24
)
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• jν(z) = G1 0
0 2

(
−
ν
2 ,

ν
2

∣∣∣∣ z24
)

•
∫ ∞

0
Gs tu v

(
c1, ..., cu

d1, ..., dv

∣∣∣∣ξz
)
Gm n
p q

(
a1, ..., ap

b1, ..., bq

∣∣∣∣ηz
)
dx

=
1

ξ
Gt+m s+n
p+v q+u

(
a1, ..., an,−d1, ...,−dv, an+1, ..., ap

b1, ..., bm,−c1, ...,−cu, bm+1, ..., bq

∣∣∣∣ηξ
)

we can write

V2 = −qvλD
8πε0

√
2

π

∑
s

1

vsλ2
s

cos θG2 1
1 3

(
−1

2
1
2 ,

1
2 ,−

1
2

∣∣∣∣ r2

4λ2
D

)
(2.2.35)

Further simplification can be done by using the following properties:

• zkGm n
p q

(
a1, ..., ap

b1, ..., bq

∣∣∣∣z
)

= Gm n
p q

(
a1 + k, ..., ap + k

b1 + k, ..., bq + k

∣∣∣∣z
)

• Gm n
p q

(
a1, ..., ap

b1, ..., bq−1, a1

∣∣∣∣z
)

= Gm n−1
p−1 q−1

(
a2, ..., ap

b1, ..., bq − 1

∣∣∣∣z
)

• 2µ−1G2 0
0 2

(
−

µ
2 + ν

2 ,
µ
2 −

ν
2

∣∣∣∣z
)

= zµKν(z)

where Kν(z) is called the Macdonald function or modified Bessel function of second kind.

The final form of V2 becomes

V2 = − qv

8πε0

√
2

π

∑
s

1

vsλ2
s

rK0

(
r

λD

)
cos θ (2.2.36)

This potential is called the near field wake potential (NFWP). From the convergence condi-

tion [156] of G2 0
0 2

(
−

µ
2 + ν

2 ,
µ
2 −

ν
2

∣∣∣∣z
)

it can be seen that the NFWP is effective for r < 2λD.

2.2.2 Moving ion in classical dusty plasma

The effect of dust charge fluctuation on the potential around a slowly moving test charge

in un-magnetized classical dusty plasma was studied by Shukla [93] where the plasma was

considered to be consisted of electrons (e), positive ions (i) and negatively charged dust

grains (d). The plasma dielectric function is given as,

ε(~k) = 1 +
∑
s=e,i,d

1

k2λ2
s

(
1− i

√
π

2

~k.~v

kvts

)
+

1

k2λ2
i

νe

νc + i~k.~v
(2.2.37)
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The Debye screening length of the species s are given by

λs(s = e, i) =
(
ε0msTs/nse

2
)1/2

and λd =
(
ε0mdTd/ndZ

2
de

2
)1/2

where ns is the equilibrium number density and Ts(s = e, i, d) is the temperature of the

species ‘s’ (s = e, i, d). In this plasma the quasi charge neutrality condition becomes

ne + Zdnd = ni, Zd being the number of electrons accumulated on the dust grain of radius

rd. Following the work of Varma et.al [159], the dust charging frequency corresponding to

dust charge fluctuations can be written as,

νc = 1/4π3/2 (rd/λi)
[
1 + (miTi/meTe)

1/2 ne/ni

]
ωpi (2.2.38)

and the electron-dust collision frequency as,

νe =
√

8πndr
2
dλiωpi (1 + Ti/Te) (1− eψ0/Ti) (2.2.39)

where ψ0 = −Zde/4πε0rd is the floating potential of the dust grain and ωpi =

√
nse

2

ε0mi
is

the plasma oscillation frequency of the ions. When the dust charging effect is very high, we

can assume νc � |~k.~v| and equation (2.2.37) can be re-written as,

ε(~k) = 1 +
∑
s=e,i,d

1

k2λ2
s

(
1− i

√
π

2

~k.~v

kvts

)
+

νe
k2λ2

i νc
− iνe(

~k.~v)

k2λ2
i ν

2
c

= 1 +
1

k2

 ∑
s=e,i,d

1

λ2
s

+
νe
νcλ2

i

− i√π

2

~k.~v

k3

∑
s=e,i,d

1

vtsλ2
s

− i 1

k2λ2
i

νe(~k.~v)

ν2
c

=
1 + k2λ2

t

k2λ2
t

1− i k2λ2
t

1 + k2λ2
t


√
π

2

~k.~v

k3

∑
s=e,i,d

1

vtsλ2
s

+
1

k2λ2
i

νe(~k.~v)

ν2
c


 (2.2.40)

where,

1

λ2
t

=
∑
s=e,i,d

1

λ2
s

+
νe
νcλ2

i

(2.2.41)

λt is called the effective screening length of the plasma. Now on imposing the slowly moving

charge condition i.e for |~k.~v| � kvts the inverse of dielectric function gives

1

ε(~k)
' k2λ2

t

1 + k2λ2
t

+ i

√
π

2

k4λ4
t

(1 + k2λ2
t )

2

~k.~v

k3

∑
s=e,i,d

1

vtsλ2
s

+ i
k4λ4

t

(1 + k2λ2
t )

2

1

k2λ2
i

νe(~k.~v)

ν2
c

(2.2.42)
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Using this relation, the potential V (~r) in (2.2.4) may be written as

V (~r) = V1 + V2 + V3

where, V1 =
q

8π2ε0

∫
λ2
t

1 + k2λ2
t

ei
~k.~rd3~k

V2 = i

√
π

2

q

8π2ε0

∫
λ4
t

k(1 + k2λ2
t )

2
~k.~v

∑
s=e,i,d

1

vtsλ2
s

× ei~k.~rd3~k

V3 = i
νe
λ2
i ν

2
c

q

8π2ε0

∫
λ4
t

(1 + k2λ2
t )

2
~k.~v × ei~k.~rd3~k

The solutions for V1 and V2 are same as given in the equations (2.2.10) and (2.2.11) respec-

tively, where λD is to be replaced by λt.

After performing the angular integral over α and β as described in the previous subsection,

the third part of the potential becomes

V3 =
qvνeλ

4
t

2π2ε0λ2
i ν

2
c

× cos θ

r2
×
∫ ∞

0

(
k2r cos kr − k sin kr

)
(1 + k2λ2

t )
2

dk (2.2.43)

Now consider a standard integral [156],

∫ ∞
0

k sin kr

(1 + k2λ2
t )

2
dk =

πr

4λ3
t

e
−
r

λt (2.2.44)

The cosine part of the integral (2.2.43) will be,

∫ ∞
0

k2r cos kr

(1 + k2λ2
t )

2
dk = r

∂

∂r

∫ ∞
0

k sin kr

(1 + k2λ2
t )

2
dk =

π

4λ3
t

(
r − r2

λt

)
e
−
r

λt (2.2.45)

Using equations (2.2.44) and (2.2.45), equation (2.2.43) becomes

V3 = − q

4πε0

vνe
2ν2
cλ

2
i

e
−
r

λt cos θ (2.2.46)

This part of the potential is called ‘dusty potential’ (DP).

2.2.3 Moving ion in quantum qlasma

In the present section we will concentrate on the models for the collision-less quantum

plasma. The modeling of the potential in the quantum plasma scenario was first given by

Shukla et.al. [160] around a moving test charge within a semiconductor substance having
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electrons (e) and holes (h) as the plasma species (s). The dielectric function for the electron-

hole plasma was first given by Pine [155] as

ε(~k) = 1 +
∑
s

1

λ2
sk

2

(
1− iπ

2

~k.~v

kvs

)
=

1 + k2λ2
Q

k2λ2
Q

− iπ
2

∑
s

1

vsλ2
s

~k.~v

k3
(2.2.47)

where,

1. vs = ~
ms

(3π2ns)
1
3 is the Fermi velocity of the species s with ns and ms being the

number density and mass respectively.

2. λs is the screening length corresponding to the plasma species ‘s’. Using the Thomas-

Fermi model we may write λs =
vs√
3ωs

, where ωs =

(
nsqs
ε0ms

)1/2

is the plasma oscilla-

tion angular frequency (in S.I.) of species ’s’.

3. The overall screening length λQ of the quantum plasma is given by

λQ =

(∑
s

1

λ2
s

)− 1
2

(2.2.48)

Let us consider a slowly moving test charge through the medium i.e. v � vs, for which

inverse of the dielectric function becomes

1

ε(~k)
=

k2λ2
Q

1 + k2λ2
Q

[
1− iπ

2

∑
s

1

vsλ2
s

~k.~v

k3

k2λ2
Q

1 + k2λ2
Q

]−1

≈
k2λ2

Q

1 + k2λ2
Q

+ i
π

2

kλ4
Q

(1 + k2λ2
Q)2

~k.~v ×
∑
s=e,h

1

vtsλ2
s

(2.2.49)

Substituting (2.2.49) into (2.2.4) we can write, V (~r) = V1 + V2, where

V1 =
q

8π3ε0

∫
λ2
Q

1 + k2λ2
Q

ei
~k.~rd3~k (2.2.50)

and V2 = i
π

2

q

8π3ε0

∫
λ4
Q

k(1 + k2λ2
Q)2

~k.~v
∑
s

1

vsλ2
s

× ei~k.~rd3~k (2.2.51)

Since these two integrals are similar as the integrals in equations (2.2.10) and (2.2.11), we

can directly write the solutions as

V1 =
q

4πε0r
e
− r
λQ (2.2.52)

and V2 = − qv

8πε0

∑
s

1

vsλ2
s

rK0

(
r

λQ

)
cos θ (2.2.53)
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It is ,therefore, clear that in case of quantum plasma the velocity independent or static

potential V1 has the same form as Debye–Hückel potential [83] appeared in case of classical

WCP with only difference being the plasma screening length λQ replacing the classical

screening length λD. Similarly, V2 is called the near field wake potential (NFWP) which is

effective upto r < 2λQ and can be considered to be zero for r > 2λQ.

2.3 Determination of energy levels: the present method

To estimate energy eigenvalues of H–like systems moving through different plasma envi-

ronments Ritz variation technique has been employed. In the first step, a suitable trial

wavefunction is considered where the radial part is expanded in Slater–type basis set. Sub-

sequently, the variational equations for the plasma environments are given. In the last part

of this section, the relevant matrix elements of hydrogenic states upto n = 4 level are given

in closed analytic forms. and the analytic form of the necessary basis–integrals are provided

in detail. For the calculation of matrix elements, it is required to solve few particular types

of integrals. These integrals are known as ‘basis integrals’. The analytic expressions of the

basis integrals are also provided.

2.3.1 Wavefunction

The trial wavefunction is taken as

Ψ(r, θ, φ) = ψ(r)Ylm(θ, φ)(a+ b cos θ) (2.3.1)

where, ψ(r) is the radial part and Ylm(θ, φ) is the the spherical harmonics with l and m

being the orbital and azimuthal quantum numbers, respectively. (a+ b cos θ) is the orbital

distortion term that arises due to the wake part of the potential (a and b are the distortion

parameters). The radial wavefunction ψ(r) is expanded in terms of Slater–type orbitals as

ψ(r) =

N∑
i=1

Cir
nie−ρir (2.3.2)

ρi is the non-linear parameter which is generated in geometrical progression as ρi = ρi−1γ,

γ being the geometrical progression ratio. The starting value of ρi is taken by employing

Nelder–Mead optimization algorithm [161] using single term in equation (2.3.2), whereas

the ending value of ρi is taken as ∼ 1

100
–th of the starting value of ρi. In equation (2.3.2),

Ci is the expansion coefficient in equation (2.3.2), which serves as the linear variational

parameters and N is the total number of terms in the basis set. The generalized eigenvalue
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equation [162] is written as

H C = ES C (2.3.3)

where, H, S and C are the Hamiltonian matrix, overlap matrix and eigen-vector respec-

tively. By solving this equation we determine the energy eigenvalues E.

2.3.2 Variational Equation

The energy eigenvalues of two–body systems are determined by solving the variational

equation,

δ [〈T 〉+ 〈V 〉 − E〈S〉] = 0 (2.3.4)

where the kinetic energy (K.E.) term, in spherical polar coordinates takes the form

〈T 〉 =
1

2

(
1

m1
+

1

m2

)∫ [(
∂Ψ

∂r

)2

+
1

r2

(
∂Ψ

∂θ

)2

+
1

r2 sin2 θ

(
∂Ψ

∂φ

)2
]
r2 sin θdθdφdr

(2.3.5)

where m1 and m2 are the masses of the nucleus and the electron respectively. The potential

energy (P.E.) term,

〈V 〉 =

∫
VeffΨ2r2 sin θdθdφdr (2.3.6)

and the normalization or overlap term,

〈S〉 =

∫
Ψ2r2 sin θdθdφdr (2.3.7)

In equation (2.3.6) the effective potential energies (Veff ) which were derived in the previous

section are listed below in atomic units (a.u.)

• Classical weakly coupled plasma

Veff = −Z
r
e
−
r

λD + ξrK0

(
r

λD

)
cos θ (2.3.8)

where ξ =
Zv

2

√
2

π

∑
s

1

vsλ2
s

(2.3.9)

is the coefficient of the NFWP and Z is the atomic number of the moving atom/ion.
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• Classical dusty plasma

Veff = −Z
r
e
−
r

λt + ξrK0

(
r

λt

)
cos θ + χe

−
r

λt cos θ (2.3.10)

The first two parts are the exponentially screened Coulomb potential (ESCP) and

near field wake potential (NFWP) respectively, while the third part is called ‘dusty

potential’ (DP). In this expression,

ξ =
Zv

2

√
2

π

∑
s

1

vsλ2
s

(2.3.11)

and χ =
Zvνe
2ν2
cλ

2
i

(2.3.12)

are the coefficients of NFWP and DP respectively.

• Quantum plasma

Veff = − Z

r
e
−
r

λQ + ξrK0

(
r

λQ

)
cos θ (2.3.13)

These two terms in the RHS of equation (2.3.13) are clearly the exponentially screened

Coulomb potential (ESCP) and the near field wake potential (NFWP) respectively.

In this expression, we have used

ξ =
Zv

2

∑
s

1

vtsλ2
s

(2.3.14)

which is the coefficient of NFWP.

2.3.3 Matrix elements and basis integrals

We have estimated the energy eigenvalues of 1s0, 2s0, 2p0 and 2p±1 states of hydrogen

atom moving under classical weakly coupled plasma, classical dusty plasma and quantum

plasma. Here the subscript signifies the values of the azimuthal quantum number ‘m’. A

special emphasis has been given on C5+ ion moving under electron-hole quantum plasma

due to its abundance in such plasma scenario. In this case we have estimated the energy

eigenvalues of ns0 [n = 1− 4]; np0, np±1 [n = 2− 4]; nd0, nd±1, nd±2 [n = 3− 4] and nf0,

nf±1, nf±2, nf±3 [n = 4] states of C5+ ion. The matrix elements of the K.E., P.E. and

overlap terms are given below for all the states mentioned above.
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Matrix elements of ns0

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y00(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

(i) Matrix element of K.E.

Tij =
1

2

[(
∂Ψ

∂r

)2

+
1

r2

(
∂Ψ

∂θ

)2

+
1

r2 sin2 θ

(
∂Ψ

∂φ

)2
]
ij

Now, (
∂Ψ

∂r

)
i

= Y00(θ, φ)(a+ b cos θ)
(
nir

ni−1 − ρirni
)
e−ρir

∴

(
∂Ψ

∂r

)2

ij

= Y 2
00(θ, φ)(a+ b cos θ)2

(
nir

ni−1 − ρirni
) (
njr

nj−1 − ρjrnj
)
e−(ρi+ρj)r

By performing the angular integrals over θ and φ we obtain

Tij =

(
a2 +

b2

3

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] +
2b2

3
A (ni + nj , ρi + ρj)

The radial basis integral A (n, α) is defined below

A (n, α) =

∫ ∞
0

xne−αrdx =
Γ(n+ 1)

αn+1
[Γ = Euler’s gamma function]

(ii) Matrix element of P.E.

• Classical WCP:

Vij = −2Z

(
a2 +

b2

3

)
A

(
ni + nj + 1, ρi + ρj +

1

λD

)
+

4

3
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λD

)

In this case, the radial basis integral W (σ, α, γ) is given by

W (σ, α, γ) =

∫ ∞
0

xσ−1e−αxKν(γx)dx

=

√
π(2γ)ν

(α+ γ)σ+ν

Γ(σ + ν)Γ(σ − ν)

Γ(σ − 1
2)

×2 F1

(
σ + ν, ν +

1

2
;σ +

1

2
;
α− γ
α+ γ

)
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where, Re σ > | Re ν |, Re (α + γ) > 0 and 2F1 is the confluent hypergeometric

function [156].

• Classical dusty plasma:

Vij = −2Z

(
a2 +

b2

3

)
A

(
ni + nj + 1, ρi + ρj +

1

λt

)
+

4

3
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λt

)
+

4

3
χabA

(
ni + nj + 2, ρi + ρj +

1

λt

)

• Quantum plasma:

Vij = −2Z

(
a2 +

b2

3

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

4

3
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)

(iii) Matrix element of overlap term

Sij = 2

(
a2 +

b2

3

)
A (ni + nj + 2, ρi + ρj)

The common multiplying factor in Tij , Vij and Sij has been ignored.

Matrix elements of np0

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y10(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

3
+
b2

5

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 2

(
a2

3
+

4b2

15

)
A (ni + nj , ρi + ρj)

Matrix element of P.E.

• Classical WCP:

Vij = −2Z

(
a2

3
+
b2

5

)
A

(
ni + nj + 1, ρi + ρj +

1

λD

)
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+
4

5
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λD

)

• Classical dusty plasma:

Vij = −2Z

(
a2

3
+
b2

5

)
A

(
ni + nj + 1, ρi + ρj +

1

λt

)
+

4

5
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λt

)
+

4

5
χabA

(
ni + nj + 2, ρi + ρj +

1

λt

)

• Quantum plasma:

Vij = −2Z

(
a2

3
+
b2

5

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

4

5
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)

Matrix element of overlap term

Sij = 2

(
a2

3
+
b2

5

)
A (ni + nj + 2, ρi + ρj)

Matrix elements of np±1

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y1,±1(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij = 2

(
a2

3
+
b2

15

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 4

(
a2

3
+
b2

5

)
A (ni + nj , ρi + ρj)

Matrix element of P.E.

• Classical WCP:

Vij = −4Z

(
a2

3
+
b2

15

)
A

(
ni + nj + 1, ρi + ρj +

1

λD

)
+

8

15
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λD

)
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• Classical dusty plasma:

Vij = −4Z

(
a2

3
+
b2

15

)
A

(
ni + nj + 1, ρi + ρj +

1

λt

)
+

8

15
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λt

)
+

8

15
χabA

(
ni + nj + 2, ρi + ρj +

1

λt

)

• Quantum plasma:

Vij = −4Z

(
a2

3
+
b2

15

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

8

15
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)

Matrix element of overlap term

Sij = 4

(
a2

3
+
b2

15

)
A (ni + nj + 2, ρi + ρj)

Matrix elements of nd0

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y20(θ, φ)(a+ b cos θ)

N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

5
+

11b2

105

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 2

(
3a2

5
+

38b2

105

)
A (ni + nj , ρi + ρj)

Matrix element of P.E. for quantum plasma

Vij = −2Z

(
a2

5
+

11b2

105

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

22

105
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)
Matrix element of overlap term

Sij = 2

(
a2

5
+

11b2

105

)
A (ni + nj + 2, ρi + ρj)
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Matrix elements of nd±1

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y2,±1(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

15
+
b2

35

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 2

(
3a2

5
+

11b2

105

)
A (ni + nj , ρi + ρj)

Matrix element of P.E. for quantum plasma

Vij = −2Z

(
a2

15
+
b2

35

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

4

35
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)
Matrix element of overlap term

Sij = 2

(
a2

15
+
b2

35

)
A (ni + nj + 2, ρi + ρj)

Matrix elements of nd±2

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y2,±2(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

15
+

b2

105

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 2

(
a2

5
+

2b2

35

)
A (ni + nj , ρi + ρj)

Matrix element of P.E. for quantum plasma

Vij = −2Z

(
a2

15
+

b2

105

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
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+
4

105
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)
Matrix element of overlap term

Sij = 2

(
a2

15
+

b2

105

)
A (ni + nj + 2, ρi + ρj)

Matrix elements of nf0

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y30(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

7
+

23b2

315

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 2

(
6a2

7
+

149b2

315

)
A (ni + nj , ρi + ρj)

Matrix element of P.E. for quantum plasma

Vij = −2Z

(
a2

7
+

23b2

315

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

92

315
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)
Matrix element of overlap term

Sij = 2

(
a2

7
+

23b2

315

)
A (ni + nj + 2, ρi + ρj)

Matrix elements of nf±1

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y3,±1(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

21
+
b2

45

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)
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+ ρiρjA (ni + nj + 2, ρi + ρj)] + 4

(
a2

7
+

23b2

315

)
A (ni + nj , ρi + ρj)

Matrix element of P.E. for quantum plasma

Vij = −2Z

(
a2

21
+
b2

45

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

4

45
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)
Matrix element of overlap term

Sij = 2

(
a2

21
+
b2

45

)
A (ni + nj + 2, ρi + ρj)

Matrix elements of nf±2

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y3,±2(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

105
+

b2

315

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 2

(
2a2

35
+
b2

45

)
A (ni + nj , ρi + ρj)

Matrix element of P.E. for quantum plasma

Vij = −2Z

(
a2

105
+

b2

315

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

4

315
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)
Matrix element of overlap term

Sij = 2

(
a2

105
+

b2

315

)
A (ni + nj + 2, ρi + ρj)
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Matrix elements of nf±3

Following equation (2.3.1) the trial wavefunction is given by

Ψ(r, θ, φ) = Y3,±3(θ, φ)(a+ b cos θ)
N∑
i=1

Cir
nie−ρir

Matrix element of K.E.

Tij =

(
a2

35
+

b2

315

)
[ninjA (ni + nj , ρi + ρj)− (niρj + njρi)A (ni + nj + 1, ρi + ρj)

+ ρiρjA (ni + nj + 2, ρi + ρj)] + 4

(
3a2

35
+

5b2

315

)
A (ni + nj , ρi + ρj)

Matrix element of P.E. for quantum plasma

Vij = −2Z

(
a2

35
+

b2

315

)
A

(
ni + nj + 1, ρi + ρj +

1

λQ

)
+

4

315
ξabW

(
ni + nj + 3, ρi + ρj ,

1

λQ

)
Matrix element of overlap term

Sij = 2

(
a2

35
+

b2

315

)
A (ni + nj + 2, ρi + ρj)

2.4 Results and Discussions

At first, we report the energy eigenvalues of 1s0 2s0, 2p0 and 2p±1 states of H atom moving

under classical weakly coupled plasma, classical dusty plasma and quantum plasma for a

particular plasma particle density and very few ion velocity (v). The energy eigenvalues

of 1s0 2s0, 2p0 and 2p±1 states of free static hydrogen atom are also evaluated to observe

the shift in the energy eigenvalues in the plasma conditions. In the next phase, the energy

eigenvalues of ns0 [n = 1− 4]; np0, np±1 [n = 2− 4]; nd0, nd±1, nd±2 [n = 3− 4] and nf0,

nf±1, nf±2, nf±3 [n = 4] states of C5+ ion moving under electron–hole quantum plasma

are given elaborately for different set of plasma densities and various ion velocities.

2.4.1 H atom in classical weakly coupled plasma

The plasma we consider is composed of free electrons and H+ ions having equal number

density n = 1021m−3. With a view to assessing the effects of plasma environment and

the ‘wake’ potential through the ESCP and NFWP terms (equation–2.3.8) respectively, we

have also carried out the energy calculation for a ‘free’ (no plasma in the surrounding) and
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static H atom. For a free atom, we set λD = ∞ and for a static H atom, we set v = 0 in

equation (2.3.8). Moreover, there is no velocity dependent distortion in the wavefunction

for static H atom and hence, we set a = 1, b = 0 in equation (2.3.1). All the results are

given in table (2.4.1). The present results for free and static H atom can be readily verified

from Bohr’s energy formula En = −µH
1

2n2
(a.u.) where µH =

mH

mH + 1
is the reduced mass

of hydrogen atom. In this expression, mH = 1836.152667 a.u. is the mass of the nucleus

i.e. of proton and n is the principal quantum number of the states. Under the plasma

environment having density n = 1021m−3, the energy eigenvalues of static hydrogen atom

(v = 0) become more positive with respect to the free case, exhibiting the effect of ESCP.

It is evident from Table (2.4.1) that 2s0, 2p0 and 2p±1 states are degenerate in the free

case, but under plasma environment (n = 1021m−3 and v = 0), the energy of 2s0 state

becomes more negative (i.e. more bound) than 2p0,±1 states. This is the typical breaking

of accidental degeneracy (i.e. the l–degeneracy corresponding to a given n) which occurs

due to the presence of plasma surrounding, or in other words, the effect of ESCP. However,

the 2p0 and 2p±1 states are still degenerate, as is seen from table (2.4.1). When the H

Table 2.4.1: Energy eigenvalues (a.u.) of 1s0, 2s0, 2p0 and 2p±1 states of H atom moving in
classical plasma having number density n = 1021m−3 of electrons for different ion velocities
v (m/s).

n v 1s0 2s0 2p0 2p±1

free 0 –0.499727 –0.124931 –0.124931 –0.124931

1021 0 –0.499720 –0.124924 –0.124921 –0.124921

1×104 –0.499682 –0.124822 –0.124782 –0.124854

1×105 –0.499447 –0.123987 –0.121662 –0.124174

3×105 –0.498917 –0.122123 –0.115341 –0.122698

5×105 –0.498388 –0.120269 –0.109149 –0.121231

7×105 –0.497859 –0.118425 –0.102968 –0.119809

9×105 –0.497330 –0.116589 –0.097177 –0.118363

atom is moving (v 6= 0) through the plasma, the effect of NFWP on the energy eigenvalues

comes into play. Due to the presence of the ‘cos θ’ term in NFWP, the |m|–degeneracy

is eliminated for each ion velocity (v) and thus, a Stark–like splitting of energy levels are
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found. For example, table (2.4.1) shows, for v = 104 m/s and n = 1021m−3, the energy

eigenvalues of 2p0 and 2p±1 states are –0.124782 a.u. and –0.124854 a.u. respectively.

Similar feature is observed for other velocities also. It is evident that at higher velocities

(say, v > 105 m/s), the effect of NFWP becomes more prominent. For, n = 1021m−3,

we have found maximum effect of NFWP at v ' 9 × 105 m/s beyond which the thermal

Mach number of the moving ion defined by the ratio MT =
v

vs
(s = e, i) becomes close to

unity or even higher. The thermal Mach number depends strictly on the density of plasma

particles. The present methodology is valid when MT < 1 and, therefore, for v > 105 m/s

when n = 1021m−3, the expression for NFWP may not be completely valid.

Figure 2.4.1: Transition wavelength of π and σ-components of Lyman-α lines of a moving
hydrogen in classical plasma environment.

From the data given in Table (2.4.1), we can estimate the transition wavelength

(λ) of π-line (2p0 → 1s0) and σ-line (2p±1 → 1s0) corresponding to Lyman-α transition of

hydrogen atom. In Figure (2.4.1), we have depicted the variation of λ with respect to ion

velocity (v) under classical plasma environment. The conversion factor used here to obtain

the transition wavelength λ (in Å) from the energy difference (∆E in a.u.) between initial

and final states is λ =
455.633494

∆E
. It is seen from Figure (2.4.1) that although λ values of

both π and σ lines decrease as v increases, the rate of decrease of λ is faster in case of π-lines

than of σ-lines. Thus, a ‘blue-shift’ of spectral lines corresponding to Lyman-α transition

can be found under plasma environment if the ion velocity increases. In a real scenario,

when an initially energized moving ion loses its kinetic energy due to various processes in

plasma and consequently its velocity decreases, a ‘red-shift’ in both π and σ components

of Lyman-α transition in weakly coupled classical plasma environment should be observed.

This feature may find important application in the field of plasma diagnostics.
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2.4.2 H atom in classical dusty plasma

Similar to classical plasma, the energy eigenvalues of 1s0, 2s0, 2p0 and 2p±1 states of

hydrogen atom in dusty plasma environment are estimated using Ritz variational method

and the results are given in table (2.4.2). For the sake of comparison, the results of ‘free’

and static H-atom are also given in table (2.4.2). We have chosen typical size of dust radius

rd = 0.5 nm, charge accumulated on dust grain Zd = 100 a.u. and mass of dust grains

md = 10000mH in these calculations. The parameters of the model potential are chosen

appropriately to mimic classical plasma environment. The densities of plasma electrons,

ions (H+) and dust particles are taken as ne = 1021 m−3, ni = 2 × 1021 m−3 and nd =

1019 m−3 respectively. The temperatures of electron (Te), ion (Ti) and dust (Td) are taken

as Td = Ti = 2Te and where Te = 2.9 × 104 K. For these plasma parameters, the effective

plasma screening length becomes λt = 971.16 a.u. or 51.39 nm.

Table 2.4.2: Energy eigenvalues (a.u.) of 1s0, 2s0, 2p0 and 2p±1 states of H atom moving
in classical dusty plasma having number density ne = 1021m−3 of electrons for different
ion velocities v (m/s).

ne v 1s0 2s0 2p0 2p±1

free 0 –0.49972783 –0.12493196 –0.12493196 –0.12493196

1021 0 –0.49869893 –0.12389767 –0.12397295 –0.12397295

1.0×103 –0.49869808 –0.12389719 –0.12390410 –0.12397267

1.0×104 –0.49869388 –0.12389288 –0.12389723 –0.12397038

1.5×104 –0.49869165 –0.12389052 –0.12389342 –0.12396911

2.0×104 –0.49868943 –0.12388816 –0.12388960 –0.12396784

2.5×104 –0.49868720 –0.12388580 –0.12388579 –0.12396657

3.0×104 –0.49868497 –0.12388344 –0.12388197 –0.12396530

As shown in table (2.4.2), for the static case (v = 0) due to the effect of ESCP part

in the potential (2.3.10), the l-degeneracy is removed and as a result the energy of 2s0 state

becomes different from those of 2p0 and 2p±1 states. While studying the variation of energy

eigenvalues with respect to v, the thermal Mach number MT =
v

vs
(s = e, i, d) is kept below

unity to maintain the validity of the model potential. For v > 0, the |m| degeneracy of

energy eigenvalues is removed due to the ‘cos θ’ term in NFWP and DP parts in the effective
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Figure 2.4.2: Transition wavelength of π and σ-components of Lyman-α lines of a moving
hydrogen in classical dusty plasma environment.

potential (2.3.10). This feature is more or less similar to what was found in classical plasma

environment. For instance, table (2.4.2) shows that the energy eigenvalues of the 2p0 and

2p±1 states are –0.12390410 a.u. and –0.12397267 a.u. respectively, indicating that the

states are not degenerate at ion velocity v = 103 m/s and plasma electron density ne =

1021 m−3, thus giving rise to Stark-like splitting. This splitting becomes more prominent

at velocities greater than 104 m/s, as is shown in table (2.4.2).

Similar to the classical plasma, we have estimated the transition wavelengths (λ) of

π and σ components of Lyman-α transition of moving H atom for different v under classical

dusty plasma environment and variation of λ with respect to v is shown in figure (2.4.2). It

is remarkable that, unlike the classical plasma, the variation of λ show different behaviour

for π and σ-lines. It can be seen from figure (2.4.2) that for π–line λ decreases (‘blue-shift’)

as v increases whereas the σ–line shows red-shift.

2.4.3 H-like ion in quantum plasma

The energy eigenvalues of 1s0, 2s0, 2p0 and 2p±1 states of hydrogen atom moving in electron-

hole quantum plasma are estimated variationally, as is done in previous cases, and the

results are given in table (2.4.3). Number densities of electrons and holes are considered

to be equal:ne = nh = 1025 m−3. The effective masses of hole and electron are taken

as mh = 0.39Me and me = 0.26Me respectively [163, 164], where Me is the rest mass

of the electron. Table (2.4.3) shows that under quantum plasma environment the energy

eigenvalues of static hydrogen atom (v = 0) increase from the free energy eigenvalues. It is

also evident that under the same plasma condition (ne = 1025m−3 and v = 0), the breaking

of l-degeneracy takes place due to the effect of ESCP, similar to that observed in classical
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Table 2.4.3: Energy eigenvalues (a.u.) of 1s0, 2s0, 2p0 and 2p±1 states of H atom moving
in quantum plasma having electron number density ne = 1025m−3 of electrons for different
ion velocities v (m/s). The notation P (±Q) stands for P × 10±Q.

ne v 1s0 2s0 2p0 2p±1

free 0 –0.499727 –0.124931 –0.124931 –0.124931

1025 0 –0.346612 –0.200549(–1) –0.129652(–1) –0.129652(–1)

1.0×104 –0.346600 –0.200511(–1) –0.129595(–1) –0.129632(–1)

1.0×105 –0.346571 –0.200227(–1) –0.129097(–1) –0.129455(–1)

1.2×105 –0.346565 –0.200164(–1) –0.128986(–1) –0.129418(–1)

1.4×105 –0.346558 –0.200101(–1) –0.128876(–1) –0.129379(–1)

1.6×105 –0.346552 –0.200038(–1) –0.128765(–1) –0.129340(–1)

1.8×105 –0.346545 –0.199975(–1) –0.128654(–1) –0.129301(–1)

Figure 2.4.3: Transition wavelength of π and σ-components of Lyman-α lines of a moving
hydrogen in quantum plasma environment.
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plasma. For hydrogen atom moving with velocity v = 104 m/s the energy eigenvalues of

all the states increases slowly. In this case, the energy eigenvalues of 2p0 and 2p±1 states

become –0.0129595 a.u. and –0.0129632 a.u. respectively, which denotes the lifting of

|m|-degeneracy and Stark-like splitting is observed in this case also. Similar features are

observed for the higher velocities up to v = 1.8× 105 m/s, as shown in table (2.4.3).

Figure (2.4.3) shows the variation of transition wavelengths (λ) of π and σ-lines

corresponding to the Lyman-α transition of hydrogen atom with respect to different v

under the quantum plasma environment. Similar features are observed as found in case of

classical dusty plasma environment i.e. λ of the π-line decreases (‘blue-shift) and for σ-line,

it increases (‘red-shift) as the ion velocity (v) increases.

C5+ ion

We have made an extensive study on the energy eigenvalues of ns0 [n = 1 − 4]; np0, np±1

[n = 2−4]; nd0, nd±1, nd±2 [n = 3−4] and nf0, nf±1, nf±2, nf±3 [n = 4] states of C5+ ion

moving under quantum plasma environment considering the relevant parameters similar to

real experimental scenario.

Table 2.4.4: Values of plasma screening lengths (λQ in a.u.) and the coefficients of the wake
potential (ξ in a.u.) of C5+ moving in QP for different plasma particle densities ns (in /c.c.)
and ion velocities v (in cm./sec). The symbol P (+Q) corresponds to P × 10Q.

ns(/c.c.) v(cm./sec) λQ(a.u) ξ(a.u.)

1019 103 0.5856781(+01) 0.3826279(-05)
105 0.3826279(-03)
107 0.3826279(-01)

1020 103 0.3990179(+01) 0.3826279(-05)
105 0.3826279(-03)
107 0.3826279(-05)

1021 103 0.2718477(+01) 0.3826279(-05)
105 0.3826279(-03)
107 0.3826279(-01)

1022 103 0.1852077(+01) 0.3826279(-05)
105 0.3826279(-03)
107 0.3826279(-01)

1023 103 0.1261805(+01) 0.3826279(-05)
105 0.3826279(-03)
107 0.3826279(-01)

The effective masses of the plasma constituting electron (e) and hole (h) are 0.26 a.u.

and 0.39 a.u. respectively [163, 164]. Such parameters carry physical significance if we
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Table 2.4.5: Convergence of the energy eigenvalues (a.u.) of 1s0, 2p±1, 3d±2 and 4f±3 states
of C5+ moving in QP. The plasma particle density ns = 1019/c.c. and the velocity of the
ion v = 103cm./sec. N represents the total number of terms in the basis set.

N 1s0 N 2p±1 N 3d±2 N 4f±3

1 16.996 989 379 2 3.516 726 519 3 1.101 328 256 4 0.328 549 543
3 16.996 997 305 5 3.544 757 189 7 1.114 962 499 9 0.329 492 549
6 16.996 997 518 9 3.544 757 475 12 1.114 962 616 15 0.329 493 091
15 16.996 997 543 20 3.544 757 476 25 1.114 962 632 22 0.329 493 108
28 16.996 997 543 35 3.544 757 476 42 1.114 962 632 39 0.329 493 108
45 16.996 997 543 54 3.544 757 476 52 1.114 962 632 49 0.329 493 108

consider the ion to be embedded inside Si where the temperature is very low (0–20 K). For

other types of environment, the parameters may differ. We have considered the plasma

particle densities (ne and nh) within the range 1019 − 1023/c.c. and ion velocities v in the

range 103 − 107cm./sec. Table (2.4.4) shows the values of plasma screening lengths λQ

(equation–2.2.48) and the coefficients of the wake potential ξ (equation–2.3.14) in equation

for the C5+ ion moving in the quantum plasma for different parameters. For each density,

v is chosen in such a manner that the thermal Mach number (M) remains below unity.

Orbital distortion parameters a and b (equation–2.3.1) are optimized using Nelder-Mead

(NM) algorithm [161]. We increase the number(N) of terms in the basis set expansion

(2.3.2) which includes different powers of ‘r’ to achieve desired level of accuracy of the

energy eigenvalues for all the states considered. The ρ values we use here are different for

different powers of ‘r’ and taken in decreasing geometrical sequence. Table (2.4.5) displays

the results for convergence of energy eigenvalues for 1s0, 2p±1, 3d±2 and 4f±3 states with

plasma density (ns) 1019/c.c. and ion velocity (v) 103 cm./sec. It is evident from table

(2.4.5) that the energy eigenvalues converge upto 9–th decimal place in each case. Similar

convergence of energy values are obtained for all the calculations done here.

Tables (2.4.6), (2.4.7) and (2.4.8) show the energy eigenvalues of C5+ ion for n = 1−4 levels

corresponding to different ns and v. The first row of each table shows the free results i.e.

without plasma medium, which agrees with the non-relativistic energy eigenvalues − Z
2

2n2

(a.u.) of one-electron systems where Z = 6. The results presented in the tables (2.4.6),

(2.4.7) and (2.4.8) show that the energies become more and more positive as plasma particle

density and ion velocity increase.

The reason behind this behavior is that, as we increase ns it decreases λQ which screens or

scales down the effect of Coulomb potential largely. On the other hand, the wake coefficient

ξ increases as v increases, which strengthens the positive NFWP resulting in the shift of

energy levels towards continuum. In order to asses the effect of ESCP on the energy of

C5+ ion in quantum plasma environment, we set v = 0 in our calculations and the results
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Table 2.4.6: The energy eigenvalues -E (a.u.) of 1s0, 2s0, 2p0 and 2p±1 states of C5+ moving
in QP having different sets of plasma particle (electron and hole) densities ns (/c.c.) and
ion velocities v (cm./sec).

-E (a.u.)

ns (/c.c.) v (cm./sec) 1s0 2s0 2p0 2p1

0 0 18.00000000 4.50000000 4.50000000 4.50000000
1019 0 16.99701207 3.55780856 3.54476161 3.54476161

103 16.99699754 3.55780693 3.54472655 3.54475747
105 16.99699738 3.55780657 3.54472073 3.54475700
107 16.99698206 3.55777061 3.54418783 3.54449515

1020 0 16.54217234 3.16902746 3.14230776 3.14230777
103 16.54214839 3.16902456 3.14229037 3.14224439
105 16.54214822 3.16902418 3.14229621 3.14224287
107 16.54213093 3.16898702 3.14223675 3.14215211

1021 0 15.89053458 2.65209786 2.59865596 2.59865596
103 15.89046598 2.65208981 2.59862497 2.59858157
105 15.89046573 2.65208933 2.59862135 2.59858025
107 15.89044045 2.65204099 2.59825988 2.59844818

1022 0 14.96731440 1.99849293 1.89549274 1.89549274
103 14.96727643 1.99848876 1.89542088 1.89549069
105 14.96727627 1.99848850 1.89541666 1.89549053
107 14.96726037 1.99846268 1.89483600 1.89547373

1023 0 13.68055489 1.23890690 1.05303897 1.05303897
103 13.68051129 1.23890275 1.05281193 1.05303710
105 13.68051115 1.23890257 1.05280651 1.05303730
107 13.68049712 1.23888478 1.05229719 1.05302671

are displayed in the first row of each density in the tables (2.4.6), (2.4.7) and (2.4.8). The

energy eigenvalues in these cases show that for a fixed principle quantum number (n), the

states with different angular momentum (l) are now non-degenerate e.g. from table (2.4.6),

for ns = 1019/c.c. and v = 0, we see that the energies of 2s0 and 2p0(or 2p±1) states are

-3.55780856 a.u. and -3.54476161 a.u. respectively, whereas they are degenerate in the

free case with energy -4.5 a.u. Thus the ESCP lifts the ‘l’ degeneracy corresponding to a

fixed value of n. Although the energy levels are still degenerate with respect to the ‘m’

values i.e. energies of 2p0 and 2p±1 are still the same as discussed in the above example.

Same feature can be found from the tables (2.4.6), (2.4.7) and (2.4.8), for all ns and v = 0.

The increase in energy eigenvalues with the increase in v takes place in a much slower rate

as compared to the same with respect to the increase of ns. It is evident that the effect

of static (v = 0) ESCP is more pronounced than the velocity dependent NFWP under

the quantum plasma environment considered. The significant role of the NFWP is that it
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Table 2.4.7: The energy eigenvalues -E (a.u.) of 3s0, 3p0, 3p±1, 3d0, 3d±1 and 3d±2 states
of C5+ moving in QP having different sets of plasma particle (electron and hole) densities
ns (/c.c.) and ion velocities v (cm./sec).

-E (a.u.)

ns v 3s0 3p0 3p±1 3d0 3d±1 3d±2

0 0 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000
1019 0 1.14923194 1.13789722 1.13789723 1.11496287 1.11496287 1.11496287

103 1.14923145 1.13788733 1.13789606 1.11496273 1.11496270 1.11496263
105 1.14923096 1.13787887 1.13789537 1.11496174 1.11496190 1.11496236
107 1.14918232 1.13709896 1.13759242 1.11486312 1.11488121 1.11493546

1020 0 0.85275345 0.83113577 0.83113577 0.78686902 0.78686902 0.78686902
103 0.85275269 0.83113114 0.83111901 0.78686882 0.78686878 0.78686868
105 0.85275224 0.83113021 0.83111706 0.78686792 0.78686805 0.78686843
107 0.85270789 0.83104578 0.83097475 0.78677385 0.78679108 0.78684275

1021 0 0.51307024 0.47479205 0.47479205 0.39462864 0.39462864 0.39462864
103 0.51306840 0.47478483 0.47477478 0.39462843 0.39462840 0.39462828
105 0.51306792 0.47478106 0.47477341 0.39462775 0.39462784 0.39462810
107 0.51302066 0.47440449 0.47463583 0.39455982 0.39457226 0.39460957

1022 0 0.18762946 0.13082887 0.13082887 0.01136017 0.01136017
103 0.18762878 0.13081719 0.13082853 0.01136002 0.01135996
105 0.18762861 0.13081432 0.13082842 0.01135976 0.01135987
107 0.18761157 0.13044258 0.13081701 0.01133326 0.01135103

1023 0 0.00358750
103 0.00358738
105 0.00358736
107 0.00358535

lifts the |m| degeneracy of the states. For example, from table-2.4.6 we can find that for

ns = 1019/c.c. and v = 103cm./sec, the energy eigenvalues of 2p0 and 2p±1 are -3.54472655

a.u. and -3.54475747 a.u. i.e. 2p0 and 2p±1 are non-degenerate by an amount 0.00003092

a.u. Similar results can be found for np0, np±1 [n = 2− 4]; nd0, nd±1, nd±2 [n = 3− 4] and

nf0, nf±1, nf±2, nf±3 [n = 4] states for all the cases with ns 6= 0 and v 6= 0, as given in

the tables (2.4.6), (2.4.7) and (2.4.8). The removal of |m| degeneracy for l ≥ 1 states arises

due to the ‘cos θ’ term in the velocity (v) dependent NFWP under the quantum plasma

environment, which resembles with the Stark-like splitting of the energy levels.
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Figure 2.4.4: Plot of energy values (in a.u.) of 2p0 and 2p1 states of C5+ against ion velocity
(in cm./sec) for different plasma particle densities ns (/c.c).

Figure 2.4.5: Plot of energy values (in a.u.) of 3p0 and 3p1 states of C5+ against ion velocity
(in cm./sec) for different plasma particle densities ns (/c.c).
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Figure 2.4.6: Plot of energy values (in a.u.) of 4p0 and 4p1 states of C5+ against ion velocity
(in cm/sec) for different plasma particle densities ns (/c.c).

Figure 2.4.7: Plot of energy values (in a.u.) of 3d0, 3d1 and 3d2 states of C5+ against ion
velocity (in cm/sec) for different plasma particle densities ns (/c.c).
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Figure 2.4.8: Plot of energy values (in a.u.) of 4d0, 4d1 and 4d2 states of C5+ against ion
velocity (in cm/sec) for different plasma particle densities ns (/c.c).

Figure 2.4.9: Plot of energy values (in a.u.) of 4f0, 4f1, 4f2 and 4f3 states of C5+ against
ion velocity (in cm/sec) for different plasma particle densities ns (/c.c).
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The variation of energies of np0, np±1 [n = 2 − 4]; nd0, nd±1, nd±2 [n = 3 − 4]

and nf0, nf±1, nf±2, nf±3 [n = 4] states with v for few fixed values of ns are shown in the

figures (2.4.4), (2.4.5), (2.4.6), (2.4.7), (2.4.8) and (2.4.9), respectively. It is evident from

figure (2.4.4) that corresponding to plasma density ns = 1019/c.c, 2p±1 states energetically

lie below 2p0 state for the entire range of ion velocity (v) and thus no crossing of energy

levels is being observed. But, when the density is higher than the previous one, the 2p0

state lies energetically below 2p±1 states for low ion velocity, whereas after a ‘critical ion

velocity ’, 2p±1 states become more negative than the 2p0 state, and hence crossover is

observed. Similar feature of crossover of np0 and np±1 [n = 3 − 4] states is observed and

shown in figures (2.4.5) and (2.4.6), respectively. Hence, ‘incidental degeneracy ’ of np0 and

np±1 states occurs at the ‘critical ion velocity ’. The crossing of energy levels and subsequent

appearance of incidental degeneracy of d and f states occur for each densities considered, as

shown in the figures (2.4.7), (2.4.8) and (2.4.9). The phenomenon of incidental degeneracy

was reported earlier by Sen [165] in case of a hydrogen atom, confined in an impenetrable

spherical shell. Table (2.4.9) shows the values of critical ion velocities at the crossing

points of p, d and f states with some selective plasma densities. In comparison to our

Table 2.4.9: Variation of energy eigenvalues −E (a.u.) and critical ion velocity (cm./sec)
at the ‘crossing point’ of energy eigenvalue vs ion velocity curves, for different angular
momentum states with respect to plasma particle densities ns (/c.c.). The symbol P (+Q)
corresponds to P × 10Q.

Crossover States ns Critical ion velocity Energy (-E) at crossing

2p0,2p1 0.5(+20) 7.22(+5) 3.27700464
1.0(+20) 8.79(+6) 3.14214490
0.5(+21) 1.36(+6) 2.77855694

3p0,3p1 0.5(+20) 1.19(+5) 0.92995292
1.0(+20) 3.75(+6) 0.83103806
0.5(+21) 3.72(+5) 0.58490697

4p0,4p1 0.5(+20) 5.78(+4) 0.23720661
1.0(+20) 2.78(+6) 0.83103806
0.5(+21) 1.27(+5) 0.05775748

3d0,3d1,3d2 1.0(+19) 1.13(+4) 1.11496259
0.5(+20) 1.77(+4) 0.89347312
1.0(+20) 1.67(+4) 0.78686862
0.5(+21) 2.24(+4) 0.39462823

4d0,4d1,4d2 1.0(+19) 4.70(+3) 0.35842729
0.5(+20) 7.31(+3) 0.20993047
1.0(+20) 6.51(+3) 0.14683872
0.5(+21) 7.96(+3) 0.02025229

4f0,4f1,4f2,4f3 1.0(+19) 3.09(+3) 0.32949309
0.5(+20) 2.64(+3) 0.16679314
1.0(+20) 2.84(+3) 0.09678679
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present calculations, there were some contrasting results reported by Hu et.al. [152] while

studying the variation of energy eigenvalues of moving C5+ ion under the quantum plasma

environment using Ritz variational principle. For example, Hu et. al. [152] reported that

for ne = 8.0× 1017/c.c. and ion velocity v = 5× 105 cm./sec, the ground state (1s0) energy

of C5+ becomes -25.60524 a.u. which is more negative than the ground state energy -18.0

a.u. for the free C5+ ion. According to their calculation [152], the contribution of NFWP

is negative which make the total energy of moving ion in quantum plasma overbound as

compared to the ‘free’ case. The present calculation shows that, according to equation

(2.3.13) the effect of NFWP is positive and the ground state (1s0) energy of the C5+ ion

as -17.33679 a.u. for ne = 8.0 × 1017/c.c. and v = 5 × 105 cm./sec. Table (2.4.10) shows

the comparisons between the energy eigenvalues calculated in the present method to those

obtained by Hu et. al. [152].

Table 2.4.10: The energy eigenvalues −E (a.u.) of ns0 [n = 1−4]; np0, np1 [n = 2−4]; nd0,

nd1, nd2 [n = 3−4] and nf0, nf1, nf2, nf3 [n = 4] states of C5+ ion moving with velocity v

(cm./sec) in a quantum plasma environment having particle density ns = 8.0× 10+17/c.c.

The symbol P (+Q) corresponds to P × 10Q.

State v −E (present work) −E (Hu et. al. [152])

1s0 1.0(+04) 17.33681118 16.98306649

1.0(+05) 17.33681098 17.25328413

5.0(+05) 17.33681008 25.60522514

2s0 1.0(+04) 3.86368685 3.54344882

1.0(+05) 3.86368633 3.57641662

5.0(+05) 3.86368405 4.40032501

2p0 1.0(+04) 3.85782487 3.52966415

1.0(+05) 3.85781925 3.53956809

5.0(+05) 3.85779427 3.77474159

2p1 1.0(+04) 3.85779514 3.52956493

1.0(+05) 3.85779322 3.52966415

5.0(+05) 3.85778469 3.53214473

3s0 1.0(+04) 1.40534564 1.13800837

1.0(+05) 1.40534488 1.14713322

5.0(+05) 1.40534149 1.36260174

3p0 1.0(+04) 1.40001207 1.12586272

1.0(+05) 1.40000307 1.12861525

5.0(+05) 1.39996310 1.19290815

3p1 1.0(+04) 1.40000402 1.12583700

1.0(+05) 1.40000094 1.12586272

5.0(+05) 1.39998729 1.12655361
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Continuation of Table (2.4.10)

State v −E (present work) −E (Hu et. al. [152])

3d0 1.0(+04) 1.38931351 1.10181765

1.0(+05) 1.38931254 1.10203080

5.0(+05) 1.38930820 1.10715733

3d1 1.0(+04) 1.38931351 1.10181765

1.0(+05) 1.38931272 1.06519697

5.0(+05) 1.38930917 1.10223659

3d2 1.0(+04) 1.38931351 1.10181765

1.0(+05) 1.38931325 1.10193893

5.0(+05) 1.38931206 1.10490827

4s0 1.0(+04) 0.58332127 0.38038470

1.0(+05) 0.58332038 0.38363334

5.0(+05) 0.58331642 0.45895839

4p0 1.0(+04) 0.57864913 0.36991115

1.0(+05) 0.57863836 0.37089235

5.0(+05) 0.57859047 0.39373940

4p1 1.0(+04) 0.57864648 0.36990012

1.0(+05) 0.57864279 0.36991115

5.0(+05) 0.57862644 0.37015737

4d0 1.0(+04) 0.56923669 0.34919409

1.0(+05) 0.56923546 0.34926980

5.0(+05) 0.56923001 0.35111057

4d1 1.0(+04) 0.56923670 0.34919336

1.0(+05) 0.56923570 0.33600587

5.0(+05) 0.56923124 0.34934403

4d2 1.0(+04) 0.56923675 0.34919373

1.0(+05) 0.56923642 0.34923783

5.0(+05) 0.56923493 0.35030319

4f0 1.0(+04) 0.55490176 0.31860361

1.0(+05) 0.55490031 0.31861941

5.0(+05) 0.55489389 0.31900087

4f1 1.0(+04) 0.55490177 0.31849924

1.0(+05) 0.55490045 0.31860544

5.0(+05) 0.55489459 0.31865101

4f2 1.0(+04) 0.55490179 0.31860397

1.0(+05) 0.55490086 0.31866130

5.0(+05) 0.55489667 0.32004822

4f3 1.0(+04) 0.55490185 0.31860361
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Continuation of Table (2.4.10)

State v −E (present work) −E (Hu et. al. [152])

1.0(+05) 0.55490153 0.31863742

5.0(+05) 0.55490014 0.31860397

The second contradiction appears from the work of Hu et. al. [152] is that, they reported

the lifting of degeneracy of the energy levels with respect to the magnetic quantum number

‘m’ i.e. ‘Zeeman–like splitting ’, due to the presence of velocity dependent wake part in the

potential. But we have found that the calculation of the matrix element of kinetic energy

have some mistakes and for this reason they observed Zeeman–like splitting of the energy

levels. On the contrary, we get the Stark–like splitting of the energy levels due to the ‘cos θ’

term in the velocity dependent NFWP (2.3.13).
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Three–body exotic ions

When the nucleus or the electrons or both are replaced by the exotic particles like muon (µ),

pion (π), kaon (K), tauons (τ), positron (e+), anti-proton (p̄) etc., then the atomic systems

are called exotic systems. The binding energies of such exotic systems are very high in

comparison to the binding energy of an atomic system because of the exotic particles which

are much heavier than the electrons. Examples of two–body exotic systems are positronium

(e+e−), true-muonium (µ+µ−), anti-hydrogen (e+p̄), π+π−, p+µ−, p+π−, p+K− etc. and

three–body systems are negative positronium Ps−(e+e−e−), p+p+µ−, p+p+π−, p+p+K−

etc. Few–body exotic systems are generally formed in particle accelerators by trapping

exotic particles via Coulomb field due to a nucleus. The exotic systems formed in this

manner are in high excited states from which they cascade down to the lowest energy level

either by emitting photons or via Auger transitions. Since the experiments producing the

exotic systems deal with high speed projectiles into the matter, it produces different charge

states within the medium which can form a plasma environment which may, in turn alter

the effective potential experienced by the exotic ions, or in other words, a screening through

the environment is generated. Thus the structure calculations of the exotic systems become

important to predict the fundamental processes of forming those exotic systems as well as

the plasma parameters of the medium. Here we will give a detail account on the structural

properties of two- and three-body exotic systems under classical weakly coupled plasma

(WCP).

3.1 Literature review

Saha et. al. [166] and Sil et. al. [167] investigated the structural properties of two–body

exotic e+e−, p+µ− and µ+µ− using the time-dependent variation-perturbation theory under

the influence of WCP formed within a spherical box. For a fixed radius of the box, it is seen

that the transition energy, oscillator strength and transition probability of the Lyman-series

(1s→ np; n = 2, 3, 4) decreases as µD increases.

In comparison to the two–body exotic systems, the structure calculations of three–body

exotic systems under WCP grabs attentions of a larger number of researchers around the

globe [168–195]. Stability and negative charge affinity (electron affinity and negative muonic

affinity) of Ps−, H+
2 and H2 molecule were investigated under WCP environment [170,173,

176] using correlated wavefunctions in the variational framework. Kar and Ho [174]showed

that dipole polarizabilitiy of 1Se and 3Po states of H+
2 increases as µD increases.

The study on the few-body “Borromean” systems adds another dimension to the

field of investigation on the stability of such systems under WCP environment. An N−body

bound system (N ≥ 3) is called a Borromean system if it’s all (N − 1), (N − 2),......., 3,

2 − body sub-systems are unbound [196]. In 1935, Borromean binding was first observed
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by Thomas [197] while comparing three-nucleon and two-nucleon bound state energies. 35

years later, in the context of nuclear scattering, Efimov [198] showed weak binding of sym-

metric three–body bosonic system while its two–body subsystem does not exist − which

is famously known as “Efimov effect”. Except the nuclear physics, Borromean systems are

also encountered in different disciplines of science like atom and molecular physics, chemical

physics, biology etc. [199]. In the beginning of this century some experiments were reported

where Borromean bindings in ultra–cold gas was confirmed [200–202]. Under the WCP en-

vironment Borromean binding is explained with respect to the critical screening parameter

µcD of the interaction potential modeled by ESCP (1.0.1). Critical screening parameter µcD
is defined as the specific value of plasma screening parameter/strength µD (1.0.1) for which

the system placed under the plasma environment destabilizes, or in other words, the binding

energy of the system becomes zero. While studying the stability of the ground states of H

atom, H+
2 and molecular H2 under WCP using Monte Carlo technique, Bertini et.al [171]

found that (µcD)H < (µcD)
H+
2

< (µcD)H2
i.e. both H+

2 and H2 show Borromean binding.

Apart from the ground state Kar and Ho [182,183] observed Borromean binding of H+
2 ion

with respect to the variation of µD for the 3Po,1 De,3 Fo and 1Fe states using exponentially

correlated wavefunction under the variational framework. The Borromean binding of sym-

metric three–body exotic systems like p+p+µ−, d+d+µ−, t+t+µ− (d+ = deuteron and t+ =

triton) and asymmetric three–body exotic systems like p+d+µ−, p+t+µ−, d+t+µ− are also

reported in literature [177–179] where the workers estimated the Borromean window (BW)

which is defined as the difference between the µCD values of three–body and its two–body

sub-systems. Now the question arises that, which kind of three–body systems can show

BW? Pont and Serra [179] estimated BWs of various symmetric three–body systems to

address this question. They reported [179] BWs of symmetric three–body systems for dif-

ferent mass ratios (qm) which is defined as qm =
m′

m
where m′ = mass of the non-identical

particle and m = mass of any one of the remaining two identical particles. It can be seen

from their work [179] that BW exists for qm ≤ 1 i.e. only positively charged three–body

systems can show BW. An extensive study has been made by Pawlak et. al. [184] where

the authors performed variational calculations using correlated wavefunction to find the

BWs for a large span of qm. Their work revealed that BW exists for qm ≤ 1.668 i.e.

some of the negatively charged three–body systems like π+µ−µ−, Ps− etc. can also posses

BWs. Jiang et. al. [186] estimated BWs for positively charged heavy molecular ions like

p+d+e−, p+t+e−, d+d+e−, d+t+e−, t+t+e−, d+t+µ−, p+t+µ−, p+d+µ−, p+p+µ−, d+d+µ− and

t+t+µ− under WCP using Hylleraas-type wavefunction in the framework of Ritz variational

principle.

The study of resonance states of exotic atoms/ions are of great importance for the plasma

diagnostics purpose. Kar and co-workers [188–193] made some useful studies on the ef-

fect of WCP on the resonance 1Se,1,3 Po,1 De and 1,3Pe states of Ps− ion using correlated

wavefunctions by adopting complex coordinate rotation (CCR) method and stabilization
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method. It can be seen from their studies that resonance energy increases while the reso-

nance width decreases as the plasma screening µD increases. Similar kind of investigations

are reported [194,195] on muonic three-body exotic systems like p+p+µ−, d+d+µ−, d+t+µ−

etc. under WCP modeled by ESCP.

In this chapter, we present an extensive calculation of energy eigenvalues of ground states

of different three–body exotic systems using Ritz variation technique under free and clas-

sical WCP environment. In total, we have considered 22 number of three–body systems.

The trial wavefunction is expanded in explicitly correlated multi-exponent Hylleraas type

basis set. Resonance 1Se states of symmetric three-body exotic pY Y negative atomic ions

(Y = µ−, π−,K−) and ppY positive molecular ions are studied in details under the frame-

work of stabilization method. The resonance states under consideration lie below N = 2

ionization threshold of the corresponding two–body sub–systems pY .

3.2 The present method

In this section the trial wavefunction is constructed for variational calculation. The variation

equation of the three-body system is formulated for general angular momentum states.

The basis set expansion of the trial function is established and the method of evaluating

the basis integrals is explained in detail. For the determination of resonance parameters

(energy and width) of three body systems, the stabilization method is explained in detail

and subsequently applied to find the resonance parameters of hadronic three-body systems.

3.2.1 Wavefunction

As per the proposal of Bhatia and Temkin [30], we have considered the trial wavefunction

of the three body system as sum of the product of radial and angular functions which is

given by

Ψ =
∑
k

′′
(
fk+
L Dk+

L + fk−L Dk−
L

)
(3.2.1)

where fk±L = fk±L (r1, r2, θ12 or r12) and Dk±
L = Dk±

L (θ, φ, ψ) are the radial and angular

functions respectively. r1, r2 and r12 are the sides of the triangle formed by the three body

system, θ12 is the angle between ~r1 and ~r2. θ, φ and ψ are the Eulerian angles [30] through

which the triangle formed by r1, r2 and r12 can rotate in space. The choice of the Eulerian

angles is only the matter of convenience of the problem. We have adopted the same set

of Eulerian angles (θ, φ, ψ) as given by Bhatia and Temkin [30]. We can start from the

rotations of space fixed axes (X,Y, Z) through Eulerian angles θ, φ and ψ such that we can

reach at the body fixed axes (X ′, Y ′, Z ′) as shown in figure (3.2.1). There are three steps

of the rotations which are described below:
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Figure 3.2.1: Diagram of Eulerian angles [30] connecting space fixed axes (X,Y, Z) with
the body fixed axes (X ′, Y ′, Z ′).

i. Rotations are given in such a manner that ~r1 and ~r2 lie in the X′–Y′ plane (marked

by dotted line in figure 3.2.1). First rotation is given with respect to Z–axis in the

anti-clockwise direction by the angle φ so that X–axis (x̂ in figure 3.2.1) coincides with

the ‘line-of-node’ (x̂′ in figure 3.2.1). The ‘line-of-node’ is the straight line where X–Y

and X′–Y′ planes intersect each other.

ii. The second rotation is given with respect to line-of-node by an angle θ so that we get

Z′–axis where the angle between Z and Z′ becomes θ, as shown in figure (3.2.1).

iii. The third rotation is given with respect to Z′–axis so that the axis in the direction
(r̂1 − r̂2)

2 sin
θ12

2

rotates through angle ψ in the clockwise direction and coincides on the line-

of-node which gives rise to body fixed X′–axis. Y′–axis will be in the direction perpen-

dicular to X′–axis which is not shown in figure (3.2.1).

The ranges of the Eulerian angles are : 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 2π.

In the equation (3.2.1), L is the total angular momentum quantum number of the coupled

state of the particles of masses m1 and m2. If the individual angular momenta of the parti-

cles are l1 and l2, then according to the LS−coupling scheme, L = (l1 + l2) , (l1 + l2 − 1) , ...,

|l1− l2|. The double prime in the summation of the equation (3.2.1) signifies that the quan-

tum number k takes every alternate positive integer values (even or odd). Dk±
L are the real
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symmetric top functions defined as

Dk+
L = NLk cos(kψ) sink θFk

Dk−
L = NLk sin(kψ) sink θFk

(3.2.2)

The parameters NLk and Fk are given by

NLk =
(−1)k

2kk!

1

1 + δ0k(
√

2− 1)

[
(2L+ 1)(L+ k)!

4π2(L− k)!

] 1
2

and

Fk = 2F1[L+ k + 1,−(L− k), k + 1, sin2 θ/2]

where 2F1 is the hypergeometric function [156]. The real Dk±
L functions are constructed

from the complex Wigner D-functions [30, 203] which are basically eigenfunctions of total

angular momentum operator L2. The Dk±
L functions obey the following identities [30]:

∂Dk+
L

∂ψ
= −kDk−

L ;
∂Dk−

L

∂ψ
= kDk+

L (3.2.3)

The orthogonality conditions of the Dk±
L functions are given below:∫

Dk+
L Dk′+

L sin θ dθ dφ dψ = δkk′∫
Dk−
L Dk′−

L sin θ dθ dφ dψ = δkk′∫
Dk+
L Dk′−

L sin θ dθ dφ dψ = 0

(3.2.4)

3.2.2 Variational equation

The Hamiltonian of the (N + 1) particle atom can be written as

Ĥ = T̂ + V̂ (3.2.5)

where, the kinetic energy (K.E.) operator T̂ and the potential energy (P.E.) operator V̂ are

given by

T̂ = − 1

2M
∇2
R0

+
N∑
i=1

(
− 1

2mi
∇2
Ri

)
(3.2.6)

V̂ = −Z
N∑
i=1

1

|R0 −Ri|
+

N∑
i=1

N∑
j>i

1

|Ri −Rj |
(3.2.7)
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Z is the atomic number of the atom. ~R0 and ~Ri are the position vectors of the nucleus of

mass M and i-th particle (i = 1, 2, ..., N) of mass mi respectively. We seek the transforma-

tion of co-ordinates
(
~R0, ~R1, ..., ~RN

)
→
(
~R, ~r1, ..., ~rN

)
, where ~ri = ~Ri − ~R0 is the position

vector of i-th particle with respect to the nucleus and ~R is the position vector of center of

mass (c.m.) of the system as given by

~R =
1

MT

(
M ~R0 +

N∑
i=1

mi
~Ri

)
(3.2.8)

where MT = M +
N∑
i=1

mi = Total mass of the system. The X-components of the above

equation and ~ri are

X =
1

MT
(MX0 +m1X1 + ...+mNXN ) and xi = Xi −X0 (3.2.9)

From equation (3.2.9) the following derivatives are calculated

∂X

∂Xi
=

mi

MT
,

∂X

∂X0
=

M

MT
,

∂xi
∂Xi

= 1,
∂xi
∂X0

= −1

∴
∂

∂X0
=

∂X

∂X0

∂

∂X
+
∂x1

∂X0

∂

∂xi
+ .............+

∂xN
∂X0

∂

∂xN

=
M

MT

∂

∂X
−

N∑
i=1

∂

∂xi

Evaluating
∂

∂Y0
and

∂

∂Z0
in the same manner we can rewrite ~∇R0 and ~∇Ri as

~∇R0 =
M

MT

~∇R −
N∑
i=1

~∇ri (3.2.10)

~∇Ri =
mi

MT

~∇R + ~∇ri (3.2.11)

∴ ∇2
R0

= ~∇R0 .
~∇R0 =

M2

MT
2∇

2
R +

N∑
i=1

N∑
j=1

~∇ri .~∇rj − 2
M

MT

N∑
i=1

~∇R.~∇ri and

∇2
Ri = ~∇Ri .~∇Ri =

m2
i

MT
2∇

2
R +∇2

ri + 2
mi

MT

~∇R.~∇ri



64 3: Three–body exotic ions

Putting these relations into the equation (3.2.6) we get

T̂ = − 1

2MT
∇2
R −

N∑
i=1

1

2µi
∇2
ri −

1

M

N∑
i=1

N∑
j=1

i<j

~∇ri .~∇rj (3.2.12)

Here
1

µi
=

1

M
+

1

mi
is the reduced mass of the i-th particle. If a system of identical particles

i.e. mi = m (say) is considered, then µi = µ =
mM

(m+M)
and the K.E. operator will be

T̂ = − 1

2MT
∇2
R −

1

2µ

N∑
i=1

∇2
ri −

1

M

N∑
i=1

N∑
j=1

i<j

~∇ri .~∇rj (3.2.13)

It can be noted that the K.E. operator consists of two parts:

1. K.E. of the centre of mass (c.m.) given by

T̂c.m. = − 1

2MT
∇2
R

2. Relative K.E. part which of the form

T̂r = −
N∑
i=1

1

2µi
∇2
ri −

1

M

N∑
i=1

N∑
j=1

i<j

~∇ri .~∇rj

The double summation term is known as mass-polarization term which occurs due to

the motion of the nucleus having finite mass (M).

The 1st part i.e. the motion of c.m. can be separated due to the translation symmetry

of the Hamiltonian Ĥ. Thus the wavefunction of the (N+1) particle system is written as,

Ψtotal = Ψc.m.Ψr where Ψc.m. and Ψr are the wavefunctions corresponding to the c.m. and

relative co-ordinates respectively. The time independent Schrödinger equation is given by,

ĤΨtotal = EtotalΨtotal, Etotal being the total energy of the (N+1) particle system. Now

using the method of separation of variables and considering T̂c.m.Ψc.m. = Ec.m.Ψc.m. (Ec.m.

being the K.E. of c.m. which moves like a free particle), the time independent Schrödinger

equation can be converted into the following form(
T̂r + V̂

)
Ψr = (Etotal − Ec.m.) Ψr = EΨr (3.2.14)

E is the relative energy of the entire N-particle system with respect to the c.m. of the

system.
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In case of three-body systems (N = 2), the total number of degrees of freedom (D.O.F) of

the system is 9. But due to the separation of the center of mass coordinates the remaining

D.O.F is reduced to 6. The expectation value of T̂r for the general three-body systems can

be written as

〈T̂r〉 =

∫
Ψ∗r T̂r Ψr dτ~r1, ~r2

= −1

2

∫ [
1

µ1
Ψ∗r∇2

r1Ψr +
1

µ2
Ψ∗r∇2

r2Ψr +
2

M
Ψ∗r

(
~∇r1 .~∇r2

)
Ψr

]
dτ~r1, ~r2

= +
1

2

∫ [
1

µ1

(
~∇r1Ψr

)2
+

1

µ2

(
~∇r2Ψr

)2
+

2

M

(
~∇r1Ψr.~∇r2Ψr

)]
dτ~r1, ~r2

= 〈T̂r〉1 + 〈T̂r〉2 + 〈T̂r〉3

where 〈T̂r〉1, 〈T̂r〉2 and 〈T̂r〉3 in Cartesian co-ordinates is given by

〈T̂r〉1 = A

∫ {(
∂Ψ

∂x1

)2

+

(
∂Ψ

∂y1

)2

+

(
∂Ψ

∂z1

)2
}
dτ~r1, ~r2 ∴ A =

1

2

(
1

M
+

1

m1

)
(3.2.15)

〈T̂r〉2 = B

∫ {(
∂Ψ

∂x2

)2

+

(
∂Ψ

∂y2

)2

+

(
∂Ψ

∂z2

)2
}
dτ~r1, ~r2 ∴ B =

1

2

(
1

M
+

1

m2

)
(3.2.16)

〈T̂r〉3 = C

∫ {
∂Ψ

∂x1

∂Ψ

∂x2
+
∂Ψ

∂y1

∂Ψ

∂y2
+
∂Ψ

∂z1

∂Ψ

∂z2

}
dτ~r1, ~r2 ∴ C =

1

M
(3.2.17)

To simplify the writing, we have used the notation Ψ instead of Ψr. In the above three

relations (3.2.15), (3.2.16) and (3.2.17), the volume element is dτ~r1, ~r2 = dx1dy1dz1dx2dy2dz2.

We now shift the coordinate system from the Cartesian (x1, y1, z1, x2, y2, z2) to the polar

co-ordinate (r1, r2, θ12 or r12, θ, φ, ψ) system. These two sets of coordinates are related to



66 3: Three–body exotic ions

each other by the following relations [30,38]:

x1 = r1

[
cosφ sin

(
ψ − θ12

2

)
+ cos θ sinφ cos

(
ψ − θ12

2

)]
y1 = r1

[
sinφ sin

(
ψ − θ12

2

)
− cos θ cosφ cos

(
ψ − θ12

2

)]
x2 = r2

[
cosφ sin

(
ψ +

θ12

2

)
+ cos θ sinφ cos

(
ψ +

θ12

2

)]
y2 = r2

[
sinφ sin

(
ψ +

θ12

2

)
− cos θ cosφ cos

(
ψ +

θ12

2

)]
z1 = −r1 sin θ cos

(
ψ − θ12

2

)
z2 = −r2 sin θ cos

(
ψ +

θ12

2

)

(3.2.18)

Let us now consider the following transformation relations

∂Ψ

∂x1
=
∂Ψ

∂r1

∂r1

∂x1
+
∂Ψ

∂r2

∂r2

∂x1
+

∂Ψ

∂θ12

∂θ12

∂x1
+
∂Ψ

∂θ

∂θ

∂x1
+
∂Ψ

∂φ

∂φ

∂x1
+
∂Ψ

∂ψ

∂ψ

∂x1

∂Ψ

∂y1
=
∂Ψ

∂r1

∂r1

∂y1
+
∂Ψ

∂r2

∂r2

∂y1
+

∂Ψ

∂θ12

∂θ12

∂y1
+
∂Ψ

∂θ

∂θ

∂y1
+
∂Ψ

∂φ

∂φ

∂y1
+
∂Ψ

∂ψ

∂ψ

∂y1

∂Ψ

∂z1
=
∂Ψ

∂r1

∂r1

∂z1
+
∂Ψ

∂r2

∂r2

∂z1
+

∂Ψ

∂θ12

∂θ12

∂z1
+
∂Ψ

∂θ

∂θ

∂z1
+
∂Ψ

∂φ

∂φ

∂z1
+
∂Ψ

∂ψ

∂ψ

∂z1

∂Ψ

∂x2
=
∂Ψ

∂r1

∂r1

∂x2
+
∂Ψ

∂r2

∂r2

∂x2
+

∂Ψ

∂θ12

∂θ12

∂x2
+
∂Ψ

∂θ

∂θ

∂x2
+
∂Ψ

∂φ

∂φ

∂x2
+
∂Ψ

∂ψ

∂ψ

∂x2

∂Ψ

∂y2
=
∂Ψ

∂r1

∂r1

∂y2
+
∂Ψ

∂r2

∂r2

∂y2
+

∂Ψ

∂θ12

∂θ12

∂y2
+
∂Ψ

∂θ

∂θ

∂y2
+
∂Ψ

∂φ

∂φ

∂y2
+
∂Ψ

∂ψ

∂ψ

∂y2

∂Ψ

∂z2
=
∂Ψ

∂r1

∂r1

∂z2
+
∂Ψ

∂r2

∂r2

∂z2
+

∂Ψ

∂θ12

∂θ12

∂z2
+
∂Ψ

∂θ

∂θ

∂z2
+
∂Ψ

∂φ

∂φ

∂z2
+
∂Ψ

∂ψ

∂ψ

∂z2

(3.2.19)

Since, r2
1 = x2

1 + y2
1 + z2

1 and r2
2 = x2

2 + y2
2 + z2

2 , we can write

∂r1

∂x1
=
x1

r1
,
∂r1

∂y1
=
y1

r1
,
∂r1

∂z1
=
z1

r1
and

∂r1

∂x2
=
∂r1

∂y2
=
∂r1

∂z2
= 0

∂r2

∂x2
=
x2

r2
,
∂r2

∂y2
=
y2

r2
,
∂r2

∂z2
=
z2

r2
and

∂r2

∂x1
=
∂r2

∂y1
=
∂r2

∂z1
= 0

(3.2.20)

For the determination of other coefficients we will use the relations between the space fixed

axes (X,Y,Z) and the body fixed axes (X′,Y′,Z′). The later set of axes is formed via

rotation through the Eulerian triangles (θ, φ, ψ) as discussed in section (3.2.1). Bhatia and

Temkin [30] assumed the Eulerian angles in such a way that the rotational symmetry of

the Hamiltonian can be exploited and the six dimensional time-independent Schrödinger

equation (3.2.14) can be dissolved into a three dimensional equation where the 3 generalized

co-ordinates are r1, r2 and r12 (or θ12). If we denote the unit vectors in the space fixed and

body fixed axes as (̂i, ĵ, k̂) and (̂i′, ĵ′, k̂′) respectively, then following Bhatia and Temkin [30]
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we can write î
′

ĵ′

k̂′

 =

 cosφ sinφ 0

− cos θ sinφ cos θ cosφ sin θ

sin θ sinφ − sin θ cosφ cos θ


 îĵ
k̂

 (3.2.21)

The position vectors of m1 and m2 with respect to M are given by

~r1 = x1î+ y1ĵ + z1k̂ in (X,Y,Z) system

= r1 sin

(
ψ − θ12

2

)
î′ − r1 cos

(
ψ − θ12

2

)
ĵ′ in (X′,Y′,Z′) system

(3.2.22)

~r2 = x2î+ y2ĵ + z2k̂ in (X,Y,Z) system

= r2 sin

(
ψ +

θ12

2

)
î′ − r2 cos

(
ψ +

θ12

2

)
ĵ′ in (X′,Y′,Z′) system

(3.2.23)

According to the choice of the Eulerian angles [30], Z′ axis is perpendicular to the plane

containing ~r1 and ~r2 and we can write the following relations:

~r1.k̂
′ = x1 sin θ sinφ− y1 sin θ cosφ+ z1 cos θ = 0 [using (3.2.21) and (3.2.22)]

(3.2.24)

~r2.k̂
′ = x2 sin θ sinφ− y2 sin θ cosφ+ z2 cos θ = 0 [using (3.2.21) and (3.2.23)]

(3.2.25)

Now using (3.2.21) and (3.2.22) we get

~r1 .̂i
′ = r1 sin

(
ψ − θ12

2

)
= x1 cosφ+ y1 sinφ and (3.2.26)

~r1.ĵ
′ = −r1 cos

(
ψ − θ12

2

)
= −x1 cos θ sinφ+ y1 cos θ cosφ+ z1 sin θ (3.2.27)

Similarly, using (3.2.21) and (3.2.23) we get

~r2 .̂i
′ = r1 sin

(
ψ +

θ12

2

)
= x2 cosφ+ y2 sinφ and (3.2.28)

~r2.ĵ
′ = −r2 cos

(
ψ +

θ12

2

)
= −x2 cos θ sinφ+ y2 cos θ cosφ+ z2 sin θ (3.2.29)

Equations (3.2.24) and (3.2.25) are used to find the terms
∂θ

∂x1
, ...,

∂θ

∂z2
and

∂φ

∂x1
, ...,

∂φ

∂z2
,

while using (3.2.26) and (3.2.28) we find
∂θ12

∂x1
, ...,

∂θ12

∂z2
and

∂ψ

∂x1
, ...,

∂ψ

∂z2
. For example,
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differentiating both sides of the equation (3.2.24) with respect to x1 we can write

[(x1 sinφ− y1 cosφ) cos θ − z1 sin θ]
∂θ

∂x1
+ (x1 cosφ+ y1 sinφ) sin θ

∂φ

∂x1
= − sin θ sinφ

Now putting the values of x1, y1 and z1 from equation (3.2.18), the above equation becomes

cos

(
ψ − θ12

2

)
∂θ

∂x1
+ sin θ sin

(
ψ − θ12

2

)
∂φ

∂x1
= − 1

r1
sin θ sinφ (3.2.30)

Similarly, differentiating both sides of the equation (3.2.25) with respect to x1 we get

cos

(
ψ +

θ12

2

)
∂θ

∂x1
+ sin θ sin

(
ψ +

θ12

2

)
∂φ

∂x1
= 0 (3.2.31)

Now solving the equations (3.2.30) and (3.2.31) we get

∂θ

∂x1
= − 1

r1 sin θ12
sin θ sinφ sin

(
ψ +

θ12

2

)
∂φ

∂x1
=

1

r1 sin θ12
sinφ cos

(
ψ +

θ12

2

) (3.2.32)

Similarly, using equations (3.2.24) and (3.2.25) the following formulation can be done

∂θ

∂y1
=

1

r1 sin θ12
sin θ cosφ sin

(
ψ +

θ12

2

)
∂θ

∂z1
= − 1

r1 sin θ12
cos θ sin

(
ψ +

θ12

2

)
∂θ

∂x2
=

1

r2 sin θ12
sin θ sinφ sin

(
ψ − θ12

2

)
∂θ

∂y2
= − 1

r2 sin θ12
sin θ cosφ sin

(
ψ − θ12

2

)
∂θ

∂z2
=

1

r2 sin θ12
cos θ sin

(
ψ − θ12

2

)
∂φ

∂y1
= − 1

r1 sin θ12
cosφ cos

(
ψ +

θ12

2

)
∂φ

∂z1
=

1

r1 sin θ12 tan θ
cos

(
ψ +

θ12

2

)
∂φ

∂x2
= − 1

r2 sin θ12
sinφ cos

(
ψ − θ12

2

)
∂φ

∂y2
=

1

r2 sin θ12
cosφ cos

(
ψ − θ12

2

)
∂φ

∂z2
= − 1

r2 sin θ12 tan θ
cos

(
ψ − θ12

2

)

(3.2.33)
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Proceeding in the same way, using equations (3.2.26) and (3.2.28) we can extract the fol-

lowing terms

∂θ12

∂x1
= − 1

r1
cosφ cos

(
ψ − θ12

2

)
+

1

r1
cos θ sinφ sin

(
ψ − θ12

2

)
∂θ12

∂y1
= − 1

r1
sinφ cos

(
ψ − θ12

2

)
− 1

r1
cos θ cosφ sin

(
ψ − θ12

2

)
∂θ12

∂z1
= − 1

r1
sin θ sin

(
ψ − θ12

2

)
∂θ12

∂x2
=

1

r2
cosφ cos

(
ψ +

θ12

2

)
− 1

r2
cos θ sinφ sin

(
ψ +

θ12

2

)
∂θ12

∂y2
=

1

r2
sinφ cos

(
ψ +

θ12

2

)
+

1

r2
cos θ cosφ sin

(
ψ +

θ12

2

)
∂θ12

∂z2
=

1

r2
sin θ sin

(
ψ +

θ12

2

)
∂ψ

∂x1
=

1

2r1
cosφ cos

(
ψ − θ12

2

)
− 1

2r1
cos θ sinφ sin

(
ψ − θ12

2

)
− 1

r1 sin θ12
cos θ sinφ cos

(
ψ +

θ12

2

)
∂ψ

∂y1
=

1

2r1
sinφ cos

(
ψ − θ12

2

)
+

1

2r1
cos θ cosφ sin

(
ψ − θ12

2

)
+

1

r1 sin θ12
cos θ cosφ cos

(
ψ +

θ12

2

)
∂ψ

∂z1
=

1

2r1
sin θ sin

(
ψ − θ12

2

)
− 1

r1 sin θ12
cos θ cot θ cos

(
ψ +

θ12

2

)
∂ψ

∂x2
=

1

2r2
cosφ cos

(
ψ +

θ12

2

)
− 1

2r2
cos θ sinφ sin

(
ψ +

θ12

2

)
+

1

r2 sin θ12
cos θ sinφ cos

(
ψ − θ12

2

)
∂ψ

∂y2
=

1

2r2
sinφ cos

(
ψ +

θ12

2

)
+

1

2r2
cos θ cosφ sin

(
ψ +

θ12

2

)
− 1

r2 sin θ12
cos θ cosφ cos

(
ψ − θ12

2

)
∂ψ

∂z2
=

1

2r2
sin θ sin

(
ψ +

θ12

2

)
+

1

r2 sin θ12
cos θ cot θ cos

(
ψ − θ12

2

)

(3.2.34)

Now using the transformations (3.2.19) and the equations (3.2.32), (3.2.33) and (3.2.34),

we can get the coefficients of different derivatives of Ψ which are given below

Coefficient of

(
∂Ψ

∂r1

)2

=

(
∂r1

∂x1

)2

+

(
∂r1

∂y1

)2

+

(
∂r1

∂z1

)2

= 1
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Coefficient of

(
∂Ψ

∂θ12

)2

=

(
∂θ12

∂x1

)2

+

(
∂θ12

∂y1

)2

+

(
∂θ12

∂z1

)2

=
1

r2
1

Coefficient of

(
∂Ψ

∂θ

)2

=

(
∂θ

∂x1

)2

+

(
∂θ

∂y1

)2

+

(
∂θ

∂z1

)2

=
1

r2
1 sin2 θ12

sin2

(
ψ +

θ12

2

)

Coefficient of

(
∂Ψ

∂ψ

)2

=

(
∂ψ

∂x1

)2

+

(
∂ψ

∂y1

)2

+

(
∂ψ

∂z1

)2

=
1

4r2
1

+
1

r2
1 sin2 θ12

cot2 θ cos2

(
ψ +

θ12

2

)

Coefficient of 2
∂Ψ

∂r1

∂Ψ

∂θ12
=
∂r1

∂x1

∂θ12

∂x1
+
∂r1

∂y1

∂θ12

∂y1
+
∂r1

∂z1

∂θ12

∂z1
= 0

Coefficient of 2
∂Ψ

∂r1

∂Ψ

∂θ
=
∂r1

∂x1

∂θ

∂x1
+
∂r1

∂y1

∂θ

∂y1
+
∂r1

∂z1

∂θ

∂z1
= 0

Coefficient of 2
∂Ψ

∂r1

∂Ψ

∂ψ
=
∂r1

∂x1

∂ψ

∂x1
+
∂r1

∂y1

∂ψ

∂y1
+
∂r1

∂z1

∂ψ

∂z1
= 0

Coefficient of 2
∂Ψ

∂θ12

∂Ψ

∂θ
=
∂θ12

∂x1

∂θ

∂x1
+
∂θ12

∂y1

∂θ

∂y1
+
∂θ12

∂z1

∂θ

∂z1
= 0

Coefficient of 2
∂Ψ

∂θ12

∂Ψ

∂ψ
=
∂θ12

∂x1

∂ψ

∂x1
+
∂θ12

∂y1

∂ψ

∂y1
+
∂θ12

∂z1

∂ψ

∂z1
= − 1

2r2
1

Coefficient of 2
∂Ψ

∂θ

∂Ψ

∂ψ
=

∂θ

∂x1

∂ψ

∂x1
+

∂θ

∂y1

∂ψ

∂y1
+

∂θ

∂z1

∂ψ

∂z1
=

1

2r2
1 sin2 θ12

cot θ sin (2ψ + θ12)

∴ 〈T̂r〉1 = A

∫ [(
∂Ψ

∂r1

)2

+
1

r2
1

(
∂Ψ

∂θ12

)2

+
1

r2
1 sin2 θ12

sin2

(
ψ +

θ12

2

)(
∂Ψ

∂θ

)2

+

{
1

4r2
1

+
1

r2
1 sin2 θ12

cot2 θ cos2

(
ψ +

θ12

2

)}(
∂Ψ

∂ψ

)2

− 1

r2
1

∂Ψ

∂θ12

∂Ψ

∂ψ

+
1

r2
1 sin2 θ12

cot θ sin (2ψ + θ12)
∂Ψ

∂θ

∂Ψ

∂ψ

]
dτ~r1, ~r2 (3.2.35)
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As the non-relativistic Hamiltonian is independent on the spin operator, Bhatia and Temkin

[30] showed that the dependency of the wavefunction Ψ on the azimuthal angle φ can be

discarded. That is why, in the above expression
∂Ψ

∂φ
is set to zero. Similarly, other two K.E.

terms become

〈T̂r〉2 = B

∫ [(
∂Ψ

∂r2

)2

+
1

r2
2

(
∂Ψ

∂θ12

)2

+
1

r2
2 sin2 θ12

sin2

(
ψ − θ12

2

)(
∂Ψ

∂θ

)2

+

{
1

4r2
2

+
1

r2
2 sin2 θ12

cot2 θ cos2

(
ψ − θ12

2

)}(
∂Ψ

∂ψ

)2

+
1

r2
2

∂Ψ

∂θ12

∂Ψ

∂ψ

+
1

r2
2 sin2 θ12

cot θ sin (2ψ − θ12)
∂Ψ

∂θ

∂Ψ

∂ψ

]
dτ~r1, ~r2 (3.2.36)

〈T̂r〉3 = C

∫ [
cos θ12

∂Ψ

∂r1

∂Ψ

∂r2
− 1

r2
sin θ12

∂Ψ

∂r1

∂Ψ

∂θ12
− 1

r1
sin θ12

∂Ψ

∂r2

∂Ψ

∂θ12

− 1

2r2
sin θ12

∂Ψ

∂r1

∂Ψ

∂ψ
+

1

2r1
sin θ12

∂Ψ

∂r2

∂Ψ

∂ψ
− 1

r1r2
cos θ12

(
∂Ψ

∂θ12

)2

− 1

r1r2 sin2 θ12
sin

(
ψ − θ12

2

)
sin

(
ψ +

θ12

2

)(
∂Ψ

∂θ

)2

− 1

r1r2 sin2 θ12
cot θ sin 2ψ

∂Ψ

∂θ

∂Ψ

∂ψ
+

{
1

4r1r2
cos θ12

− 1

2r1r2 sin2 θ12
cot2 θ (cos 2ψ + cos θ12)

}(
∂Ψ

∂ψ

)2
]
dτ~r1, ~r2 (3.2.37)

The expectation value of the potential is

〈V̂ 〉 =

∫
Veff |Ψ|2 dτ~r1, ~r2 (3.2.38)

where the Veff is the effective potential of the three–body system.

The overlap term is given by,

〈Ŝ〉 =

∫
|Ψ|2 dτ~r1, ~r2 (3.2.39)

In the above relations (3.2.35), (3.2.36), (3.2.37), (3.2.38) and (3.2.39), the volume element is

dτ~r1, ~r2 = r2
1dr1r

2
2dr2 sin θ12dθ12 sin θdθdφdψ. Since r12 and θ12 are connected by the relation

r2
12 = r2

1 + r2
2 − 2r1r2 cos θ12 (3.2.40)
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we may also write the volume element as dτ~r1, ~r2 = r1dr1r2dr2r12dr12 sin θdθdφdψ. The

variational equation now can be written as,

∆
[
〈T̂r〉+ 〈V̂ 〉 − E〈Ô〉

]
= 0 (3.2.41)

The symbol ∆ signifies the variation of the parameters contained within the trial wavefunc-

tion Ψ.

Variational equation and wavefunction of general three–body system in 1,3Sestates

For the spherically symmetric (1,3Se) state (L = 0 and k = 0), the wavefunction (3.2.1)

becomes Ψ = f0
0D

0
0 = f ± f̃ , where f = f (r1, r2, θ12 or r12) and f̃ = f̃ (r2, r1, θ12 or r12).

The upper ‘+’ sign signifies the space symmetric wavefunction i.e for singlet state (1Se)

and the lower ‘−’ sign signifies the space anti-symmetric wavefunction i.e for triplet state

(3Se). From equations (3.2.35), (3.2.36) and (3.2.37) K.E. terms for S-state becomes

∴ 〈T̂r〉1 = A

∫ [(
∂Ψ

∂r1

)2

+
1

r2
1

(
∂Ψ

∂θ12

)2
]
dτ~r1, ~r2 (3.2.42)

〈T̂r〉2 = B

∫ [(
∂Ψ

∂r2

)2

+
1

r2
2

(
∂Ψ

∂θ12

)2
]
dτ~r1, ~r2 (3.2.43)

〈T̂r〉3 = C

∫ [
cos θ12

∂Ψ

∂r1

∂Ψ

∂r2
− 1

r2
sin θ12

∂Ψ

∂r1

∂Ψ

∂θ12
− 1

r1
sin θ12

∂Ψ

∂r2

∂Ψ

∂θ12

− 1

r1r2
cos θ12

(
∂Ψ

∂θ12

)2
]
dτ~r1, ~r2 (3.2.44)

For the convenience of calculation we write the K.E. (3.2.42), (3.2.43) and (3.2.44) in terms

of r12 instead of θ12. The relative radial distance is defined as, r2
12 = (x1 − x2)2+(y1 − y2)2+

(z1 − z2)2. Thus, by using relations in (3.2.20) and

∂r12

∂x1
=
x1 − x2

r12
,
∂r12

∂y1
=
y1 − y2

r12
,
∂r12

∂z1
=
z1 − z2

r12

∂r12

∂x2
= −x1 − x2

r12
,
∂r12

∂y2
= −y1 − y2

r12
,
∂r12

∂z2
= −z1 − z2

r12

(3.2.45)
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we can get

∂Ψ

∂x1
=
∂Ψ

∂r1

∂r1

∂x1
+

∂Ψ

∂r12

∂r12

∂x1
=
x1

r1

∂Ψ

∂r1
+
x1 − x2

r12

∂Ψ

∂r12

∂Ψ

∂y1
=
∂Ψ

∂r1

∂r1

∂y1
+

∂Ψ

∂r12

∂r12

∂y1
=
y1

r1

∂Ψ

∂r1
+
y1 − y2

r12

∂Ψ

∂r12

∂Ψ

∂z1
=
∂Ψ

∂r1

∂r1

∂z1
+

∂Ψ

∂r12

∂r12

∂z1
=
z1

r1

∂Ψ

∂r1
+
z1 − z2

r12

∂Ψ

∂r12

∂Ψ

∂x2
=
∂Ψ

∂r1

∂r1

∂x2
+

∂Ψ

∂r12

∂r12

∂x2
=
x2

r1

∂Ψ

∂r1
+
x2 − x1

r12

∂Ψ

∂r12

∂Ψ

∂y2
=
∂Ψ

∂r1

∂r1

∂y2
+

∂Ψ

∂r12

∂r12

∂y2
=
y2

r1

∂Ψ

∂r1
+
y2 − y1

r12

∂Ψ

∂r12

∂Ψ

∂z2
=
∂Ψ

∂r1

∂r1

∂z2
+

∂Ψ

∂r12

∂r12

∂z2
=
z2

r1

∂Ψ

∂r1
+
z2 − z1

r12

∂Ψ

∂r12

(3.2.46)

Now using the above six relations the K.E. terms in equations (3.2.15), (3.2.16) and (3.2.17)

can be converted into the following forms

〈T̂r〉1 = A

∫ {(
∂Ψ

∂r1

)2

+

(
∂Ψ

∂r12

)2

+ 2 cos(r1, r12)
∂Ψ

∂r1
.
∂Ψ

∂r12

}
dτ~r1, ~r2

〈T̂r〉2 = B

∫ {(
∂Ψ

∂r2

)2

+

(
∂Ψ

∂r12

)2

+ 2 cos(r2, r12)
∂Ψ

∂r2
.
∂Ψ

∂r12

}
dτ~r1, ~r2

〈T̂r〉3 = C

∫ {
cos(r1, r2)

∂Ψ

∂r1
.
∂Ψ

∂r2
− cos(r1, r12)

∂Ψ

∂r1
.
∂Ψ

∂r12

− cos(r2, r12)
∂Ψ

∂r2
.
∂Ψ

∂r12
−
(
∂Ψ

∂r12

)2
}
dτ~r1, ~r2

Here we have defined

cos (ri, rj) =
r2
i + r2

j − r2
k

2 ri rj
(3.2.47)

where, the indices are used as (i, j, k) ≡ (1, 2, 12). Now the total K.E. can be simplified as

〈T̂r〉 = 〈T̂r〉1 + 〈T̂r〉2 + 〈T̂r〉3

=

∫ [
1

2

(
1

M
+

1

m1

)(
∂Ψ

∂r1

)2

+
1

2

(
1

M
+

1

m2

)(
∂Ψ

∂r2

)2

+
1

2

(
1

m1
+

1

m2

)(
∂Ψ

∂r12

)2

+
1

M
cos (r1, r2)

∂Ψ

∂r1
.
∂Ψ

∂r2

+
1

m2
cos(r2, r12)

∂Ψ

∂r2
.
∂Ψ

∂r12
+

1

m1
cos(r1, r12)

∂Ψ

∂r1
.
∂Ψ

∂r12

]
dτ~r1, ~r2 (3.2.48)
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Using Ψ = f ± f̃ , the above expression takes the form

〈T̂r〉 =

∫  2∑
i=1

1

2

(
1

M
+

1

mi

)
(
∂f

∂ri

)2

+

(
∂f̃

∂ri

)2

± 2
∂f

∂ri

∂f̃

∂ri


+

1

2

(
1

m1
+

1

m2

)
(
∂f

∂r12

)2

+

(
∂f̃

∂r12

)2

± 2
∂f

∂r12

∂f̃

∂r12


+

1

M
cos (r1, r2)

{
∂f

∂r1

∂f

∂r2
+
∂f̃

∂r1

∂f̃

∂r2
± ∂f

∂r1

∂f̃

∂r2
± ∂f

∂r2

∂f̃

∂r1

}

+
1

m1
cos (r1, r12)

{
∂f

∂r1

∂f

∂r12
+
∂f̃

∂r1

∂f̃

∂r12
± ∂f

∂r1

∂f̃

∂r12
± ∂f

∂r12

∂f̃

∂r1

}

+
1

m2
cos (r2, r12)

{
∂f

∂r2

∂f

∂r12
+
∂f̃

∂r2

∂f̃

∂r12
± ∂f

∂r2

∂f̃

∂r12
± ∂f

∂r12

∂f̃

∂r2

}]
dτ~r1, ~r2

(3.2.49)

The expectation values of the potential energy and overlap term are given by

〈V̂ 〉 =

∫
Veff

(
f2 + f̃2 ± 2ff̃

)
dτ~r1, ~r2 (3.2.50)

〈Ŝ〉 =

∫ (
f2 + f̃2 ± 2ff̃

)
dτ~r1, ~r2 (3.2.51)

As a sample calculation, we now consider a simplistic trial function for the ground state

(1Se) as f = e−αr1−βr2 (α, β being the non-linear parameters) for free Ps− exotic ion, where

the potential of the system is

Veff = − 1

r1
− 1

r2
+

1

r12
in a.u. (3.2.52)

The masses of the particles are m1 = m2 = M = 1 a.u. If we put the trial wavefunction f

into the equation (3.2.49) we can get the K.E. as a function of α and β only. For this we

have to calculate the integrals of the type

∫ (
∂f

∂ri

)2

dτ~r1, ~r2 = α2

∫
e−2αr1−2βr2r1dr1r2dr2r12dr12

∫
sin θdθdφdψ

Now,∫
sin θdθdφdψ =

∫ π

0
sin θdθ

∫ 2π

0
dφ

∫ 2π

0
dψ = 8π2



3: Three–body exotic ions 75

∴
∫ (

∂f

∂ri

)2

dτ~r1, ~r2 = 8π2α2

[∫ ∞
0

e−2αr1r1dr1

∫ r1

0
e−2βr2r2dr2

∫ r2+r2

r1−r2
r12dr12

+

∫ ∞
0

e−2βr2r2dr2

∫ r2

0
e−2αr1r1dr1

∫ r2+r2

r2−r1
r12dr12

]
= 8π2 1

8β3α

Here we have used the following standard integrals [156],

∫ R

0
rne−µrdr =

n!

µn+1
− e−µR

n∑
k=0

n!

k!

Rk

µn−k+1
(3.2.53)∫ ∞

0
rne−µrdr =

n!

µn+1
(3.2.54)

Similarly we can do all the integrals appearing in (3.2.49), (3.2.50) and (3.2.51) to get the

following results

〈T̂r〉 = 8π2

[(
α2 + β2

4α3β3

)
+

32αβ

(α+ β)6

]
〈V̂ 〉 = −8π2

[
α4 + 3αβ3 + 3α2β2 + 3α3β + β4

4α3β3 (α+ β)3 +
11

(α+ β)5

]
〈Ŝ〉 = 8π2

[
1

4α3β3
+

16

(α+ β)6

]
The energy eigenvalue will be expressed as

E =
〈T̂r〉+ 〈V̂ 〉
〈Ŝ〉

= E(α, β)

Now α and β are to be varied to achieve the minimum value of E. For the sake of simplicity

in calculation let us assume that α = β which gives

E = 2

(
α2 − 11

16
α

)
If E becomes minimum w.r.t α then

dE

dα
= 0 =⇒ 2α− 11

16
= 0 =⇒ α =

11

32

Using this value of α the variational minimum value of energy will be, E = −0.236328125

a.u. This is surprising to see that this energy is lying above the first ionization energy (−0.25

a.u.) i.e. the ground state energy of positronium (Ps or e+e−) atom. In the literature [204],

one can find that the lowest non-relativistic energy value of the ground state of Ps− ion

is E = −0.2620050702 a.u. In order to get better bound state energy eigenvalue we now
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optimize the nonlinear parameters (α, β) using the Nelder–Mead algorithm [161]. This gives

E = −0.256574823 a.u. with optimised non-linear parameters, α = 0.13691648 a.u. and

β = 0.52658950 a.u. So we can see that, Nelder–Mead optimization can bring the bound

state energy very close (v 0.006 a.u. or 0.163 eV) to the best available non-relativistic

result [204]. The energy eigenvalue can be made better by using the basis set expansion

of the wavefunction where electron correlation is included explicitly. This is discussed in

details in the following sub–section.

3.2.3 Basis set

The trial wave function of 1,3Se state f (r1, r2, r12) is expanded in multi–exponent Hylleraas

type basis set

f (r1, r2, r12) =

s∑
k=1

rlk1 rmk2 rnk12

 p∑
i=1

Ckiiηi(1)ηi(2) +

p∑
i=1

p∑
j>i

Ckijηi(1)ηj(2)

 (3.2.55)

1. The powers of r1, r2 and r12 satisfies (lk,mk, nk) ≥ (0, 0, 0).

2. s is the number of elements in the set of the powers of r1, r2 and r12.

3. ηi(j) = e−ρirj is the Slater-type orbital. ρ is the non-linear parameter.

4. p denotes the number of non-linear parameters.

5. Ckij are the linear variational parameter.

6. The dimension of the full multi-exponent basis, N = p(p+1)
2 × s

In our present calculations, ρ’s are chosen in the following two ways:

1. Double exponent: In this case, p = 2 and initially we have to choose two different

ρ’s i.e. ρ1 and ρ2. We consider three distinct sets of (ρ1,ρ2) initially and then by

using Nelder–Mead algorithm [161] we optimize ρ1 and ρ2, so that the corresponding

bound state energy eigenvalue becomes minimum. The initial choices of non-linear

parameters (ρ1 and ρ2) are done from the values of non-linear parameters in the

Slater-type orbitals [162]. This process is then repeated by increasing the number (s)

of the powers (lk,mk, nk) of r1, r2 and r12 respectively. The following table (3.2.1)

shows a numerical example of such optimization. From table (3.2.1) we see that, the

energy eigenvalue of the ground state of Ps− ion using 102 terms in the basis set

is −0.262004780 a.u., which is comparable with the best available energy eigenvalue

−0.2620050702 a.u. as obtained by Kar and Ho [204], where they [204] used 500 terms

in their basis set. This shows a clear advantage of present method to achieve excellent

level of accuracy in a considerably reduced basis size.
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Table 3.2.1: Optimized values of −E, ρ1 and ρ2 of the ground state of Ps− ion corresponding
to different sets (s) of powers (lk,mk, nk) of r1, r2 and r12 respectively and double exponent

basis (p = 2). N = p(p+1)
2 ×s is the total number of terms in the basis set. All the quantities

are given in a.u.

s (lk,mk, nk) N ρ1 ρ2 −E

3 (0,0,0) (1,0,0) (0,0,1) 9 0.12488560 0.50400779 0.259907886

7 (0,0,0) (1,0,0) (0,0,1) (2,0,0) 21 0.11555350 0.45250487 0.261831394
(1,1,0) (1,0,1) (0,0,2)

13 (0,0,0) (1,0,0) (0,0,1) (2,0,0) 39 0.12488560 0.50400779 0.261971409
(1,1,0) (1,0,1) (0,0,2) (3,0,0)
(2,1,0) (2,0,1) (1,1,1) (1,0,2)
(0,0,3)

22 (0,0,0) (1,0,0) (0,0,1) (2,0,0) 66 0.12488560 0.50400779 0.262003078
(1,1,0) (1,0,1) (0,0,2) (3,0,0)
(2,1,0) (2,0,1) (1,1,1) (1,0,2)
(0,0,3) (4,0,0) (3,1,0) (3,0,1)
(2,2,0) (2,1,1) (2,0,2) (1,1,2)
(1,0,3) (0,0,4)

34 (0,0,0) (1,0,0) (0,0,1) (2,0,0) 102 0.12488560 0.50400779 0.262004780
(1,1,0) (1,0,1) (0,0,2) (3,0,0)
(2,1,0) (2,0,1) (1,1,1) (1,0,2)
(0,0,3) (4,0,0) (3,1,0) (3,0,1)
(2,2,0) (2,1,1) (2,0,2) (1,1,2)
(1,0,3) (0,0,4) (5,0,0) (4,1,0)
(4,0,1) (3,2,0) (3,1,1) (3,0,2)
(2,2,1) (2,1,2) (2,0,3) (1,1,3)
(1,0,4) (0,0,5)

2. Nine exponent: In this case, p = 9 and ρ’s are taken in a geometrical sequence [205,206]

following ρi = ρi−1γ [i = 2 − 9]; γ being the geometrical ratio of the sequence. The

higher ρ value is responsible for spanning the space near the nucleus whereas the lower

one spans the space far away from the nucleus. Thus, wavefunction can be squeezed

or diffused by changing the geometrical ratio γ while ρ1 is kept constant throughout.

If we take 22 distinct set of powers (i.e. s = 22 and hence, N = 990) and choose

the limiting values of ρ as ρ1 = 0.06 and ρ9 = 1.5 i.e. γ = 1.4953, then the energy

eigenvalue of the ground state of Ps− ion turns out to be −0.262 005 069 a.u. which



78 3: Three–body exotic ions

agrees upto the 8–th decimal place of the lowest reported value of E = −0.262 005 0702

a.u. available in the literature [204].

In double exponent basis set, optimization is done for a particular bound state energy level

(ground or excited) and one can get benchmark results for the bound states using explicitly

correlated wavefunction. On the other hand, for nine–exponent basis set, optimization is not

much required as the exponents are sufficient to span the entire space and in this case also

benchmark results for ground and several exited states are simultaneously obtained. For

same number of terms (N) in the basis set, the computational time for the nine–exponent

basis set is much lesser than that of the double exponent basis set. The most significant

advantage of the explicitly correlated nine exponent basis set is that it can be used in

determining the resonance states by using stabilization procedure where the geometrical

ratio γ is used as a parameter to plot the stabilization diagram (discussed in section 3.2.5).

The multi-exponent Hylleraas type basis set (3.2.55) can be recast as

f (r1, r2, r12) =
N∑
i=1

CiXi (r1, r2, r12) (3.2.56)

The correspondence between the basis set expansion formula (3.2.55) and (3.2.56). For

s = 1 and p = 2 (double-exponent) i.e. N = 3, the expanded form of equation (3.2.55) will

be

f (r1, r2, r12) = rl11 rm1
2 rn1

12 [C111η1(1)η1(2) + C112η1(1)η2(2) + C122η2(1)η2(2)] (3.2.57)

Now, with N = 3, equation (3.2.56) assumes the form

f (r1, r2, r12) = C1X1 + C2X2 + C3X3 (3.2.58)

Comparing (3.2.57) and (3.2.58), we find

C1 = C111, C2 = C112, C3 = C122 and

X1 = rl11 rm1
2 rn1

12η1(1)η1(2), X2 = rl11 rm1
2 rn1

12η1(1)η2(2), X3 = rl11 rm1
2 rn1

12η2(1)η2(2)

We have considered equation (3.2.56) for further calculation. Following the linear variation

technique, we have solved the generalized eigenvalue equation [162]

H C = ES C (3.2.59)

to get the minimized energy eigenvalues (E). Here H and S are the N × N dimensional

Hamiltonian and overlap matrices respectively and C is the N dimensional column matrix or

column vector whose elements are the expansion coefficients or linear variational parameters
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C1, C2, ....., CN .

In our present methodology, the basis functionsXi and the expansion coefficients Ci

are taken to be real. Thus the matrix elements Hij and Sij (i, j = 1, 2, ..., N) are symmetric.

So we only calculate the upper triangular matrix elements of H and S. Then by reflection

symmetry we form the lower triangular matrix elements which saves computational time

to calculate the integrals. It can be seen from equations (3.2.49), (3.2.50) and (3.2.51) the

integrals we need to perform are of the following types

〈O1f |O2f〉 =

∫
(O1f) (O2f) dτ

〈O1f̃ |O2f̃〉 =

∫ (
O1f̃

)(
O2f̃

)
dτ

〈O1f |O2f̃〉 =

∫
(O1f)

(
O2f̃

)
dτ

O1 and O2 are any linear operators. To illustrate the determination of the general form of

matrix elements corresponding to each type of the integrals, we consider a simple example

with N = 2 i.e. f = C1X1 + C2X2. Then,

〈O1f |O2f〉 = C1C1

∫
(O1X1) (O2X1) dτ + C1C2

∫
(O1X1) (O2X2) dτ

+C2C1

∫
(O1X2) (O2X1) dτ + C2C2

∫
(O1X2) (O2X2) dτ

= C1C1

∫
(O1X1) (O2X1) dτ +

1

2
C1C2

∫
[(O1X1) (O2X2)

+ (O1X2) (O2X1)] dτ +
1

2
C2C1

∫
[(O1X1) (O2X2) + (O1X2) (O2X1)] dτ

+C2C2

∫
(O1X2) (O2X2) dτ

The four integrals corresponding to the coefficients C1C1, C1C2, C2C1 and C2C2 are the

(11), (12), (21) and (22)–th matrix elements. Thus generally the ij-th (i, j = 1, 2, ..., N)

matrix element will be,

〈O1f |O2f〉ij =
1

2

∫
[(O1Xi) (O2Xj) + (O1Xj) (O2Xi)] dτ (3.2.60)

Similarly, by taking f̃ =
N∑
i=1

CiX̃i, we write

〈O1f̃ |O2f̃〉ij =
1

2

∫ [(
O1X̃i

)(
O2X̃j

)
+
(
O1X̃j

)(
O2X̃i

)]
dτ (3.2.61)

〈O1f |O2f̃〉ij =
1

2

∫ [
(O1Xi)

(
O2X̃j

)
+ (O1Xj)

(
O2X̃i

)]
dτ (3.2.62)
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After estimating the matrix elements of H and S, we evaluate the eigenvalues (E) and the

linear variational coefficients C1, C2, ..., CN from (3.2.59) by using EISPACK routine [207].

3.2.4 Basis integrals

For the calculation of each matrix element, a definite type of integral appears in the algebra

which is called here as basis–integral. The necessary basis integral is of the form [208]

A(m,n, l;α, β) =

∫ ∞
r1=0

∫ ∞
r2=0

∫ r1+r2

|r1−r2|
rm1 r

n
2 r

l
12e
−αr1−βr2dr1dr2dr12 (3.2.63)

with the conditions m ≥ 0, n ≥ 0, l ≥ 0 and α, β > 0. We can write (3.2.63) as

A(m,n, l;α, β, γ) = (−1)m+n+l

(
∂

∂α

)m( ∂

∂β

)n( ∂

∂γ

)l
∫ ∞
r1=0

∫ ∞
r2=0

∫ r1+r2

|r1−r2|
e−αr1−βr2−γr12dr1dr2dr12 (3.2.64)

After evaluating the explicit form of the integral (3.2.64) we will set γ = 0 to get the formula

of the actual integral (3.2.63). Now

I(α, β, γ) =

∫ ∞
r1=0

∫ ∞
r2=0

∫ r1+r2

|r1−r2|
e−αr1−βr2−γr12dr1dr2dr12

=

∫ ∞
r2=0

e−βr2dr2

∫ ∞
r1=r2

e−αr1dr1

∫ r1+r2

(r1−r2)
e−γr12dr12 +∫ ∞

r1=0
e−αr1dr1

∫ ∞
r2=r1

e−βr2dr2

∫ r1+r2

(r2−r1)
e−γr12dr12

=
1

(α+ β) (α+ γ) (α+ β + 2γ)
+

1

(α+ β) (β + γ) (α+ β + 2γ)

=
2

(α+ β) (β + γ) (α+ γ)
(3.2.65)

∴

(
∂

∂γ

)l
I(α, β, γ) = 2

(
∂

∂γ

)l 1

(α+ β) (β + γ) (α+ γ)

=
2

(α+ β)

l∑
k=0

(
l

k

)[(
∂

∂γ

)l−k 1

(α+ γ)

][(
∂

∂γ

)k 1

(β + γ)

]

=
2

(α+ β)
(−1)l

l∑
k=0

(
l

k

)
(l − k)!

(α+ γ)l−k+1

k!

(β + γ)k+1

Here, we have used the Leibniz formula [156] for the derivative on l−th order of the

product of two functions and
(
l
k

)
=

l!

k!(l − k)!
. Proceeding in the same way we can find
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(
∂

∂β

)n( ∂

∂γ

)l
I(α, β, γ) and

(
∂

∂α

)m( ∂

∂β

)n( ∂

∂γ

)l
I(α, β, γ) successively and then set-

ting γ = 0 we obtain from equation (3.2.64)

A(m,n, l;α, β) = 2m!n!l!

m∑
i=0

n∑
j=0

l∑
k=0

(k + j)!(n+ i− j)!(m+ l − i− k)!

i!j!k!(m− i)!(n− j)!(l − k)!

1

(α+ β)n+1+i−j αm+l+1−i−kβj+k+1
(3.2.66)

To verify the formula (3.2.66), let us perform an integral A(1, 1, 1;α, β) directly and then

try to match the result from the summation formula (3.2.66). In the direct manner, the

integral A(1, 1, 1;α, β) may be expanded as

A(1, 1, 1;α, β) =

∫ ∞
r1=0

∫ ∞
r2=0

∫ r1+r2

|r1−r2|
r1r2r12e

−αr1−βr2dr1dr2dr12

=

∫ ∞
r1=0

r1e
−αr1dr1

∫ r1

r2=0
r2e
−βr2dr2

∫ r1+r2

(r1−r2)
r12dr12

+

∫ ∞
r2=0

r2e
−βr2dr2

∫ r2

r1=0
r1e
−αr1dr1

∫ r1+r2

(r2−r1)
r12dr12

= 2

∫ ∞
r1=0

r2
1e
−αr1dr1

∫ r1

r2=0
r2

2e
−βr2dr2

+ 2

∫ ∞
r2=0

r2
2e
−βr2dr2

∫ r2

r1=0
r2

1e
−αr1dr1

= I1 + I2 (3.2.67)

where, I1 = 2

∫ ∞
r1=0

r2
1e
−αr1dr1

∫ r1

r2=0
r2

2e
−βr2dr2

= 2

∫ ∞
r1=0

r2
1e
−αr1dr1

[
∂2

∂β2

∫ r1

r2=0
e−βr2dr2

]
= 2

∫ ∞
r1=0

r2
1e
−αr1

(
2

β3
− 2

β3
e−βr1 − 2r1

β2
e−βr1 − r2

1

β
e−βr1

)
dr1

= 8

[
1

α3β3
− 1

β3 (α+ β)3 −
3

β2 (α+ β)4 −
6

β (α+ β)5

]
and similarly, I2 = 8

[
1

α3β3
− 1

α3 (α+ β)3 −
3

α2 (α+ β)4 −
6

α (α+ β)5

]
Putting I1 and I2 in the equation (3.2.67) and simplifying we can get A(1, 1, 1;α, β) =

8

α3β3
. Now, by putting m = n = l = 1, the summation (3.2.66) yields the same result for

the integral A(1, 1, 1;α, β). Integrals A(m,n, l;α, β) with different powers and non-linear

parameters are checked in this way.
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3.2.5 Stabilization method for resonance states

Ritz variation principle is not applicable in case of resonance states because these states

lie within the continuum and there exists lower lying bound states of the same symmetry.

Stabilization method is used to determine the resonance parameters i.e. resonance energy

(Er) and width (Γr) of a three-body exotic system (ion) XXY or XY Y , where X and Y are

constituent particles with positive and negative charges respectively. If a charged particle X

(or Y ) moving with a “suitable amount” of K.E., it may be captured by the XY system, a

quasi-bound state of XY +X(or Y ) i.e. XXY ∗ (or XY Y ∗) system is temporarily formed,

which is known as “resonance state”. These resonance states having finite life-time can

decay via auto-ionization channel, XXY ∗ → XY + X or via cascading through different

fluorescence decay channel like, XXY ∗ → XXY (ground or lower excited state). We can

take an example from the scattering theory of e− with H atom where the wavefunction of

the system XXY (or XY Y ) can be written as that of the composite system (e− + H) i.e.

(e− + e−p+) [162],

Ψ± (~r1, ~r2) =
∑
j

[
F±j (~r1)ψj (~r2)± F±j (~r2)ψj (~r1)

]
+
∑
k

C±k χ
±
k (~r1, ~r2) (3.2.68)

where, ~r1 and ~r2 are the positions of two identical particles X(or Y ) with respect to the third

particle Y (or X). In the above equation (3.2.68) the ‘+’ sign stands for the singlet and ‘−’

sign stands for the triplet states. In the first sum of the equation (3.2.68), ‘j’ represents the

final atomic state of the target XY having wavefunction ψj and F±j is the asymptotic form

of the wavefunction for the outgoing particle X(or Y ) after auto-ionization. This first part

of the wavefunction Ψ± (~r1, ~r2) is the “open channel” part. In the second sum of (3.2.68),

χ±k is a square integrable correlation function and this part is the “closed channel” part of

the wavefunction Ψ± (~r1, ~r2). It is to be noted that χ±k are orthogonal to ψj . Using the

Feshbach projection operator formalism [209,210] we can write

Ψ± = PΨ± + QΨ± (3.2.69)

P and Q are projection operators satisfying the condition, P + Q = I, I being the identity

operator. Comparing (3.2.68) and (3.2.69) we see that PΨ± contains open-channel subspace

and QΨ± contains closed-channel subspace. Hence, the spectral density of states (DOS)

ρ(E) below the threshold of double-ionization consists of two parts : (1) DOS of open-

channel ρP (E) and (2) DOS of closed-channel ρQ(E). ρP (E) smoothly varies with energy

E. ρQ(E) is given by

ρQ(E) = − 1

π
Im

[∑
k

1

(E − Ek) + iΓk

]
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E = Ek − iΓk are the complex poles of the Green’s function, where Ek and Γk are the

resonance energy and width of the k-th resonance state. For an isolated resonance, Bowman

[211] showed a Lorentzian shape of ρQ(E) can be given as

ρQ(E) ' 1

π

Γ/2

(E − Er)2 + Γ2
(3.2.70)

where Er and Γ are the resonance energy and width. The equation (3.2.70) is similar to

the Breit–Wigner formula for the resonance scattering cross-section [162].

We now move attention from the scattering picture to the quasi-bound state calcu-

lations where a significant work was done by Mandelshtam et.al. [212] by considering a box

problem to calculate the resonance parameters. In their work [212], they argued that the

DOS ρL(E) is a function of box length L and shows a region of L where ρL(E) assumes a

Lorentzian shape. This region of L defines the Q-space. If the eigenvalues of a Hamiltonian

EK(L) are known, the DOS is a simple count of states i.e. a histogram as given by

ρL(E) =
∑
k

δ [EK(L)− E] (3.2.71)

Here EK(L) are the box eigenvalues of the system XXY ∗ or XY Y ∗. EK(L) are calculated

by repeated diagonalization of the Hamiltonian for different ‘L’ values. Mandelshtam et.al.

[212] have shown that

ρQ(E) =
1

Lmax − Lmin

∫ Lmax

Lmin

ρL(E)dL (3.2.72)

This idea of calculating DOS ρQ(E) is known as ‘hard wall’ technique as in this procedure

the box length L is varied. But we are more interested in a more useful technique to

calculate ρQ(E) as done by Müller et.al. [213], where ‘soft wall’ strategy has been employed

by varying the non-linear parameter γ in the wavefunction. The histogram form of DOS

(3.2.71) can be expressed as

ργ(E) =
∑
k

δ [EK(γ)− E]

Müller et.al. [213] shows the equation (3.2.72) can be re-written as

ρQ(E) =
1

γmax − γmin

∫ γmax

γmin

ργ(E)dγ

=
1

γmax − γmin

∑
k

∫ γmax

γmin

δ [EK(γ)− E] dγ (3.2.73)



84 3: Three–body exotic ions

Using the relation

∫
δ [a− f(x)] g(x)dx = g(x)

∣∣∣∣ dfdx
∣∣∣∣−1

f(x)=a

(3.2.74)

the equation (3.2.73) becomes

ρQ(E) =
1

γmax − γmin

∑
k

∣∣∣∣dEK(γ)

dγ

∣∣∣∣−1

EK(γ)=E

(3.2.75)

This formula is basically an average over the basis set expansion parameter (Γ) correspond-

ing to a particular energy position. Instead of doing average, we select a plateau for an

energy eigenroot and calculate DOS. The graph showing the variation of the k–th energy

eigenroot versus γ produces the stabilization diagram. A specimen stabilization diagram is

shown in figure (3.2.2). These roots form flat plateaus in the vicinity of avoided crossings

which confirm the presence of the resonance states. The inverse of tangent at different

points near the stabilization plateau for each energy eigenroot gives rise to the density of

states (DOS) as

ρQ(E) =

∣∣∣∣ γi+1 − γi−1

Ek(γi+1)− Ek(γi−1)

∣∣∣∣ (3.2.76)

The resonance parameters (Er,Γ) are obtained by Lorentzian fitting of the DOS as

ρQ(E) = y0 +
A

π

Γ/2

(E − Er)2 + (Γ/2)2
(3.2.77)

where y0 is the baseline background (basically open channel contribution), A is the total

area under the curve from the baseline, Er gives the peak position of the curve, and Γ

represents the full width of the curve at half maxima. For example, the energy eigenroot

no. 25 of 1Se state of exotic p+p+µ− ion in the energy range -60 a.u. to -24 a.u. is depicted

in figure (3.2.2), which shows three distinct plateaus in the vicinity of -30 a.u., -26 a.u. and

-24 a.u. energies. This energy eigenroot shows one plateau around -30.2718 a.u. which

is depicted in figure 3.2.3(a) and the numerically estimated DOS [using (3.2.76)] in the

plateau region are plotted in figure 3.2.3(b). The DOSs for the full range of energies of

the 25–th eigenroot are plotted in figure (3.2.4), which shows a histogram. It clearly shows

three peaks at three different energies for first three resonances. It is also evident that

the resonances are isolated as the separation of peaks are greater than the widths of the

consecutive resonances. The next part is to consider DOS of each isolated resonance and

to fit with respective Lorentzian profile (3.2.77). The estimated DOSs [hollow black circles]

and the fitted Lorentzian [red lines] for the first resonance state are given in figure 3.2.5.

The fitting yields resonance position Er at −30.2718 a.u. and width Γ = 5.963× 10−5 a.u.
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Figure 3.2.2: Stabilization diagram for eigenroot no. 25 of 1Se state of exotic p+p+µ− ion.

Figure 3.2.3: Plot of DOS corresponding to lowest plateau of eigenroot no. 25 of 1Se state
of exotic p+p+µ− ion.

Repeated calculations of DOS near the flat plateau of each of the eigenroots are done which

result into Lorentzian fitted curves. For a particular resonance, the position and width are

chosen with respect to the best fitting parameters such as least χ2 fitting or correlation

R2 ≤ 1.



86 3: Three–body exotic ions

Figure 3.2.4: Plot of all DOS of eigenroot no. 25 with respect to the energy eigenvalues (E)
of 1Se state of exotic p+p+µ− ion.

Figure 3.2.5: Lorentzian fit of relevant DOS of eigen root no. 25 of 1Se states of exotic
p+p+µ− ion. Hollow black circles show the estimated values of DOS and the red line shows
the fitted Lorentzian.

3.3 Results and Discussions

The results of three–body exotic systems presented here are divided in two broad categories:

bound and resonance states. In the former case we will discuss on the stability of the ions

by calculating the energy eigenvalues of the ions in ground state (1Se) under free as well as

classical WCP environment. In the later case we will discuss the resonance states of some

of those ions under only free environment.
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3.3.1 Bound state

The ground state energies of free three–body exotic XXY and XYY systems are given in
the table (3.3.1), where ‘X’ denotes unit positively charged particles like p+, d+, t+ and e+

while, ‘Y’ denotes unit negatively charged elementary particles like µ−, π−,K− and e−.

Table 3.3.1: Ground state energy eigenvalues −E (a.u.) of free three–body exotic XXY and XYY systems [X = p+,

d+, and t+, Y = µ−, π− and K−], Ps−(e+e−e−) ion and three–body molecular H+
2 (p+p+e−), D+

2 (d+d+e−) and

T+
2 (t+t+e−) ions.

−E(a.u.)

Ions Present Pawlak Sil Kar and Ho Bhattacharyya Frolov Bertini

work et. al. [178] et. al. [177] [214] et. al. [215] et. al. [216] et. al. [171]

p+p+µ− 102.223497 102.223491 102.2235 102.2235036

p+µ−µ− 97.566984 97.56698459 97.56698343

d+d+µ− 109.816924 109.815698 109.8165

d+µ−µ− 102.991910 102.9919106

t+t+µ− 112.972830 112.971933 112.9718

t+µ−µ− 104.944115 104.9441154

p+p+π− 129.718073

p+π−π− 124.690674 124.69067407

d+d+π− 141.524534

d+π−π− 133.653701

t+t+π− 146.472365

t+π−π− 136.951552

p+p+K− 334.575377

p+K−K− 330.800637 330.80063677

d+d+K− 410.609734

d+K−K− 400.176959

t+t+K− 446.122899

t+K−K− 430.623711

Ps− 0.262005 0.2620050702

H+
2 0.596902 0.597136

D+
2 0.598211

T+
2 0.598702

The energy eigenvalues are determined variationally using nine–exponent (p = 9) Hylleraas

basis set consisting of total N = 990 number of terms. The energy values converged

atleast upto 6–th decimal place and those values are compared with other results from the

literature [171, 177, 178, 188, 215, 216]. The comparison shows that the present method is

quite efficient to produce precise energy values of such systems. We note that among the

three–body systems listed in table (3.3.1), H+
2 , D+

2 and T+
2 do not belong to the exotic ion

category.

We extend our methodology to calculate the ground state energy eigenvalues of the same set

of three-body exotic systems under classical WCP where the effective potential is modeled

by ESCP (equation–2.2.25) as

Veff (r1, r2, r12) = − 1

r1
e−µDr1 − 1

r2
e−µDr2 +

1

r12
e−µDr12 (in a.u.) (3.3.1)
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In this expression, µD is the plasma screening parameter which is the inverse of the plasma

screening length λD (equation–2.2.6) i.e. µD =
1

λD
. The first two terms in the potential

(3.3.1) denote the attractive screened Coulomb potential between the X and Y particles,
whereas the last term is the repulsive screened Coulomb potential between either two X or
two Y particles. The energy eigenvalues of p+µ−µ−, p+p+µ−, d+µ−µ−, d+d+µ−, t+µ−µ−

and t+t+µ− systems are given in table (3.3.2); p+π−π−, p+p+π−, d+π−π−, d+d+π−,
t+π−π− systems in table (3.3.3) and t+t+π−; p+K−K−, p+p+K−, d+K−K−, d+d+K−,
t+K−K− and t+t+K− systems in table (3.3.4).

Table 3.3.2: Ground state energy eigenvalues −E (a.u.) of three-body exotic XXY and XYY systems [X = p+, d+, t+,

Y = µ−] for different screening parameters (µD in a.u.) with the relative binding energies (RµX in %).

−E −E −E
µD p+µ−µ− p+p+µ− Rµp d+µ−µ− d+d+µ− Rµd t+µ−µ− t+t+µ− Rµt
10.0 87.855345 92.568209 5.09 93.260418 100.145956 6.87 95.205930 103.296334 7.83

92.568199a 100.144720a 103.295434a

92.5682b 100.1456b 103.2953b

50.0 54.839746 60.038615 8.66 59.825553 67.257235 11.05 61.198210 70.280415 12.92

60.038611a 67.255863a 70.279521a

60.0386b 67.2567b 70.2793b

100.0 25.826355 30.782620 16.10 29.756288 36.948814 19.47 31.198210 39.591867 21.2

30.782618a 36.947245a 39.591120a

30.7825b 36.9481b 39.5905b

150.0 8.446984 11.937001 29.24 10.982746 16.485717 33.38 11.945982 18.532941 35.54

11.937011a 16.484151a 18.532441a

11.9369b 16.4848b 18.5315b

170.0 4.297395 6.944875 38.12 6.216664 10.706357 41.93 6.968302 12.460505 44.08

190.0 1.581640 3.296125 52.01 2.858609 6.191216 53.82 3.390177 7.621487 55.52

200.0 0.731816 1.960682 62.67 1.678362 4.390282 61.77 2.097041 5.646489 62.86

1.960682a 4.389327a 5.646211a

1.9603b 4.3895b 5.6452b

210.0 0.207350 0.948810 78.14 0.816355 2.886918 71.72 1.120501 3.960122 71.70

0.948810a 2.886181a

0.9471b 2.8861b

215.0 0.064944 0.565957 88.52

217.0 0.030274 0.436440 93.06

219.0 0.008277 0.320819 97.42

220.0 0.001736 0.268351 99.35 0.260874 1.678541 84.46 0.450726 2.558335 82.38

0.268355a 1.678029a 2.558159a

1.6768b 2.5569b

220.2 0.000738 0.258291 99.17

220.3 0.000273 0.253317 99.89

220.36 0.000005 0.250349 99.99

220.37 -0.000039

223.0 0.133212 0.150990 1.373618 89.00

0.133223a

224.0 0.095989 0.119785 1.277921 90.63

0.096009a

225.0 0.063015 0.091167 1.185209 92.31 0.227221 1.963501 88.43

0.063032a

226.0 0.034623 0.065044 1.095491 94.06

0.034642a

227.0 0.011481 0.058442 1.008779 94.2

0.011503a

227.6 0.000821
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Continuation of Table (3.3.2)

−E −E −E
µD p+µ−µ− p+p+µ− Rµp d+µ−µ− d+d+µ− Rµd t+µ−µ− t+t+µ− Rµt

0.000871a

227.65 0.000093

227.66 -0.000049

228.0 0.041017 0.925084 95.56

229.0 0.026588 0.844421 96.85

230.0 0.015117 0.766808 98.02 0.073756 1.439475 94.88

0.766510a

231.0 0.006487 0.692261 99.06 1.343207

232.0 0.000422 0.620805 99.93

232.08 0.000035 0.615223 99.99

232.09 -0.000013

233.0 0.028768 1.159259 97.52

234.0 0.016915 1.071598 98.42

235.0 0.425236 0.007890 0.986826 99.20

0.425125a

236.0 0.001462 0.904956 99.84

236.2 0.000453 0.888931 99.95

236.29 0.000026 0.881759 99.99

236.3 -0.000020

236.5 0.338356

0.338250a

238.0 0.258924

0.258842a

240.0 0.165098 0.606836

0.165049a 0.606762a

242.0 0.086017 0.475709

0.085997a 0.475647a

243.0 0.052549

0.052542a

244.0 0.023686

0.023704a

244.5 0.011245

0.011305a

244.8 0.004596

0.004663a

245.0 0.000590 0.302169

0.000670a 0.302164a

245.03 0.000113

245.04 -0.000069

248.0 0.157711

0.157936a

250.0 0.079315

0.079473a

252.0 0.017483

0.017562a

252.5 0.005217

0.005378a

252.7 0.000837

0.001049a

252.74 0.000008

252.75 -0.000196

a [178], b [177]
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Table 3.3.3: Ground state energy eigenvalues −E (a.u.) of three-body exotic XXY and XYY systems [X = p+, d+, t+

, Y = π−] for different screening parameters (µD in a.u.) with the relative binding energies (RπX in %).

−E −E −E

µD p+π−π− p+p+π− Rπp d+π−π− d+d+π− Rπd t+π−π− t+t+π− Rπt
50.0 80.425360 85.969490 6.45 88.937428 97.405083 8.69 92.081757 102.223361 9.92

100.0 47.215697 52.927045 10.79 54.588414 63.309187 13.77 57.341339 67.754111 15.37

150.0 23.821049 28.803607 17.33 29.617686 37.546979 21.19 31.826161 41.400552 23.13

200.0 8.925715 12.402317 28.03 12.869611 19.006120 32.29 14.437058 22.075746 34.60

210.0 6.862148 9.969063 31.16

230.0 3.583539 5.904747 39.31 6.322564 11.005377 42.55

250.0 1.387016 2.883109 51.89 3.290509 6.888817 52.23 4.153681 8.995895 53.83

260.0 0.677872 1.757214 61.42 2.154059 5.184217 58.45 2.870325 7.076785 59.44

270.0 0.220759 0.888919 75.16 1.262464 3.711794 65.99 1.829890 5.381642 65.99

275.0 0.085564 0.553326 84.52

280.0 0.011735 0.286065 95.89 0.609687 2.470156 75.32 1.026418 3.908086 73.74

281.0 0.003820 0.241133 98.41

281.2 0.002338 0.232497 98.99

281.4 0.001015 0.223979 99.55

281.5 0.000612 0.219764 99.72

281.6 0.000002 0.215579 99.99

281.61 -0.000058

283.0 0.160262

285.0 0.091848

287.0 0.037260

288.0 0.015642

289.0 0.000179

289.02 0.000007

289.03 -0.000090

290.0 0.187206 1.459767 87.17 0.453008 2.654741 82.93

295.0 0.055832 1.042335 94.64

298.0 0.027442 0.820496 96.65

299.0 0.017139 0.751392 97.72

300.0 0.009212 0.684736 98.65 0.114300 1.621863 92.95

301.0 0.003686 0.620544 99.41

302.0 0.000611 0.558837 99.89

302.4 0.000053 0.534855 99.99

302.45 0.000006 0.531886 99.99

302.46 -0.000002

305.0 0.388858 0.028253 1.188937 97.62

306.0 0.017897 1.109122 98.39

307.0 0.009856 1.031583 99.04

308.0 0.004158 0.956329 99.56

309.0 0.000847 0.883372 99.90

309.5 0.000081 0.847758 99.99

309.58 0.000006 0.842114 99.99

309.59 -0.000003

310.0 0.157682 0.812723

311.0 0.119531

312.0 0.084133

313.0 0.051501

314.0 0.029496

315.0 0.005910

315.2 0.001680

315.3 0.001361
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Continuation of Table (3.3.3)

−E −E −E

µD p+π−π− p+p+π− Rπp d+π−π− d+d+π− Rπd t+π−π− t+t+π− Rπt
315.37 0.000153

315.38 -0.000014

320.0 0.236205

321.0 0.191857

322.0 0.149967

323.0 0.116501

324.0 0.082026

325.0 0.050882

326.0 0.023476

327.0 0.000776

327.04 0.000012

327.05 -0.000176

Table 3.3.4: Ground state energy eigenvalues −E (a.u.) of three-body exotic XXY and XYY systems [X = p+, d+, t+

, Y = K−] for different screening parameters (µD in a.u.) with the relative binding energies (RKX in %).

−E −E −E

µD p+K−K− p+p+K− RKp d+K−K− d+d+K− RKd t+K−K− t+t+K− RKt
100.0 239.838364 244.007205 1.71 307.459282 318.599460 3.49 337.295789 353.626696 4.62

200.0 166.075945 170.608044 2.66 229.055514 241.066693 4.98 257.247701 274.688669 6.35

300.0 107.891316 112.326102 3.95 164.095730 176.332809 6.94 189.854114 207.722505 8.60

400.0 63.670079 67.522047 5.70 111.501363 123.127272 9.44 134.225608 151.556582 11.43

500.0 31.977129 34.866702 8.29 70.209125 80.428582 12.71 89.439333 105.257705 15.02

600.0 11.579834 13.284046 12.83 39.237733 47.399557 17.22 54.615579 68.060983 19.75

700.0 1.450568 1.951378 25.66 17.708389 23.354972 24.17 28.946063 39.334553 26.41

710.0 0.970778 1.362893 28.77

720.0 0.585947 0.874168 32.97

730.0 0.296183 0.486795 39.16

740.0 0.101628 0.203732 50.12

745.0 0.040922 0.102705 60.15

750.0 0.005884 0.031387 81.25

752.0 0.000367 0.011356 96.77

752.2 0.000190 0.010504 98.19

752.4 0.000068 0.008791 99.22

752.6 0.000006 0.007123 99.92

752.66 0.000001 0.006631 99.99

752.67 -0.0000002

753.0 0.003917

754.0 0.002306

754.1 0.001775

754.2 0.001257

754.3 0.000753

754.4 0.000263

754.45 0.000023

754.46 -0.000025

800.0 4.852758 7.762306 37.483 11.705996 18.566747 36.95

850.0 1.472341 3.032857 51.45 6.045429 11.044957 45.26

870.0 0.668722 1.715585 61.02

880.0 0.383635 1.183266 67.58

890.0 0.176330 0.737658 76.09

900.0 0.047548 0.381782 87.54 2.263549 5.393579 58.03
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Continuation of Table (3.3.4)

−E −E −E

µD p+K−K− p+p+K− RKp d+K−K− d+d+K− RKd t+K−K− t+t+K− RKt
905.0 0.013001 0.238701 94.55

906.0 0.008420 0.212937 96.04

907.0 0.004550 0.188131 97.58

908.0 0.001333 0.164286 99.19

908.4 0.000214 0.155018 99.86

908.48 0.000001 0.153183 99.99

908.49 -0.000025

910.0 0.119486

912.0 0.078536

913.0 0.059501

914.0 0.041417

916.0 0.025423

917.0 0.013630

918.0 0.003757

918.4 0.000367

918.44 0.000047

918.45 -0.000032

920.0 1.262584 3.657489 65.48

930.0 0.869294 2.903244 70.06

940.0 0.545767 2.225926 75.48

950.0 0.289334 1.626773 82.21

960.0 0.095004 1.107561 91.42

970.0 0.025565 0.670780 96.19

975.0 0.002600 0.484293 99.45

975.9 0.000172 0.453034 99.96

975.97 0.000002 0.450633 99.99

975.98 -0.000022

980.0 0.319666

985.0 0.177313

990.0 0.057524

993.0 0.022217

994.0 0.008063

994.6 0.000920

994.68 0.000033

994.69 -0.000076

It can be seen from the tables (3.3.2)–(3.3.4) that, if µD increases, the energy eigenvalues

of all the exotic systems increases gradually towards the limit of destabilization. Figures

(3.3.1) to (3.3.3) show the nature of variation of the ground state energies of XXY and

XYY systems with respect to µD. It is also evident from the tables (3.3.2)–(3.3.4) that the

energy eigenvalues of XYY systems are higher than that of the XXY systems at any arbitrary

screening parameter µD. The amount of boundness of the XYY systems with respect to

XXY systems can be examined effectively by introducing a dimensionless quantity, called

relative binding energy (RYX) which is defined as RYX =
EXXY − EXY Y

EXXY
×100, where EXXY

and EXY Y are the ground state energies of XXY and XYY systems respectively. In the

tables (3.3.2) to (3.3.4), the values of RYX show that XYY systems destabilizes more rapidly

compared to the XXY systems. The variations of RYX with respect to µD are also shown in
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Figure 3.3.1: The variation of ground state (1Se) energy eigenvalue E (in a.u.) of exotic (a)
XXµ− ions and (b) Xµ−µ− ions [X : p+, d+, t+], with respect to the screening parameter
µD (in a.u.).

Figure 3.3.2: The variation of ground state (1Se) energy eigenvalue E (in a.u.) of exotic (a)
XXπ− ions and (b) Xπ−π− ions [X : p+, d+, t+], with respect to the screening parameter
µD (in a.u.).
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Figure 3.3.3: The variation of ground state (1Se) energy eigenvalue E (in a.u.) of exotic (a)
XXK− ions and (b) XK−K− ions [X : p+, d+, t+], with respect to the screening parameter
µD (in a.u.).

Figure 3.3.4: The variation of relative binding energies (RYp ) [Y : µ−, π−,K−] (in %) with
respect to the screening parameter µD (in a.u.).
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Figure 3.3.5: The variation of relative binding energies (RYd ) [Y : µ−, π−,K−] (in %) with
respect to the screening parameter µD (in a.u.).

Figure 3.3.6: The variation of relative binding energies (RYt ) [Y : µ−, π−,K−] (in %) with
respect to the screening parameter µD (in a.u.).
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figures (3.3.4) to (3.3.6). It is clear from the figures that RYX increases slowly upto a certain

value of µD and after that RYX increases rapidly upto 100% until the XYY systems become

unbound.

The energy eigenvalues of exotic Ps−(e+e−e−) ion and non–exotic H+
2 (p+p+e−),

D+
2 (d+d+e−) and T+

2 (t+t+e−) ions are given in table (3.3.5) for different values of µD.

Table 3.3.5: Ground state energy eigenvalues −E (a.u.) of three–body Ps−(e+e−e−), H+
2 (p+p+e−),

D+
2 (d+d+e−) and T+

2 (t+t+e−) ions for different screening parameters µD (a.u.).

−E

µD Ps−(e+e−e−) H+
2 (p+p+e−) D+

2 (d+d+e−) T+
2 (t+t+e−)

0.1 0.173618 0.503099 0.504402 0.504889

0.1736181600a 0.503330b

0.2 0.106409

0.1064096775a

0.3 0.057553

0.4 0.024698

0.5 0.005965 0.226676 0.227817 0.228241

0.0059656643a

0.55 0.001421

0.56 0.000871

0.57 0.000481

0.58 0.000191

0.59 0.000029

0.594 0.000001

0.595 -0.000002

0.7 0.135199 0.136214 0.136579

0.135561b

1.0 0.044832 0.045025 0.045288

1.2 0.011923 0.012187 0.012308

0.012287b

1.25 0.006808

0.007201b

1.29 0.003672

0.003989b

1.3 0.003222 0.003296

1.33 0.001339

1.34 0.000882

0.001190b

1.35 0.000476 0.000609 0.000657

0.000750b

1.36 0.000118 0.000236 0.000279

0.000400b

1.363 0.000019
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Continuation of Table (3.3.5)

−E

µD Ps−(e+e−e−) H+
2 (p+p+e−) D+

2 (d+d+e−) T+
2 (t+t+e−)

1.364 -0.000019

1.367 0.000004

1.368 -0.000027 0.000011

1.369 -0.000020

a [188], b [171]

We now proceed to calculate borromean window (BW) of the relevant three–body systems.

Table (3.3.6) displays the critical screening parameters (µcD) of the three–body systems

along with their two–body sub–systems. The µcD values of the two–body sub-systems (XY)

are estimated following the work of Gomes et.al. [217]. It is evident from table (3.3.6)

that µcD for the two–body sub-systems (XY) lie between the µcD of XXY and XYY systems

[X : p+, d+, t+ and Y : µ−, π−,K−] i.e. (µcD)XXY > (µcD)XY > (µcD)XY Y . Thus all

the XXY systems possess borromean window (BW) whereas XYY systems do not have

BW, as shown in the last column of the table (3.3.6). The values of BW for the XXY

systems, keeping Y fixed, show that, as the mass of X increases the BW also increases e.g

(BW )ttµ > (BW )ddµ > (BW )ppµ.

Table 3.3.6: Critical screening parameters (µcD) and borromean windows (BW) of the three–body

XXY and XYY systems [X=p+, d+, t+, e+ , Y=µ−, π−,K−, e−]. µcD of the two–body systems (XY)

are taken from [217].

Two–body µcD Three–body µcD BW

sub–system system

p+µ− 221.26 p+p+µ− 227.65 6.39

227.66a

p+µ−µ− 220.36 0

p+π− 283.07 p+p+π− 289.02 5.95

p+π−π− 281.6 0

p+K− 753.69 p+p+K− 754.45 0.76

p+K−K− 752.66 0

d+µ− 233.05 d+d+µ− 245.03 11.98

245.03a

d+µ−µ− 232.08 0

d+π− 302.67 d+d+π− 315.37 12.70

d+π−π− 302.45 0

d+K− 910.58 d+d+K− 918.44 7.86

d+K−K− 908.48 0

t+µ− 237.26 t+t+µ− 252.74 15.48

252.75a

t+µ−µ− 236.29 0

t+π− 309.80 t+t+π− 327.04 17.24
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Continuation of Table (3.3.6)

Two–body µcD Three–body µcD BW

sub–system system

t+π−π− 309.58 0

t+K− 978.31 t+t+K− 994.68 16.37

t+K−K− 975.97 0

p+e−(H) 1.1899 p+p+e−(H+
2 ) 1.363 0.1731

1.365b

1.3734c

d+e− 1.1903 d+d+e−(D+
2 ) 1.367 0.1767

t+e− 1.1904 t+t+e−(T+
2 ) 1.368 0.1776

e+e−(Ps) 0.5953 e+e−e−(Ps−) 0.594 0

a [178], b [171] and c [218]

To compare the BWs of XXY systems we introduce a dimensionless quantity called relative

borromean window (RBW), which is defined as RBW =
(µcD)XXY − (µcD)XY

(µcD)XXY
× 100%. The

estimated RBWs for different mass relation parameters (qm) are given in table (3.3.7) and

the variation of RBW with respect to qm is shown in figure (3.3.7).

Figure 3.3.7: The variation of relative borromean window (RBW) with respect to the mass
relation parameters (qm).
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Table 3.3.7: Relative borromean window (RBW) and the mass relation parameter (qm) of the

three-body exotic XXY and XYY systems [X=p+, d+, t+, e+ , Y=µ−, π−,K−, e−].

Three-body qm RBW Three-body qm RBW

system system

t+µ−µ− 26.58497 0 d+d+K− 0.26321 0.86

t+π−π− 20.12551 0 t+t+K− 0.17575 1.71

d+µ−µ− 17.75169 0 p+p+π− 0.14875 2.09

d+π−π− 13.43849 0 p+p+µ− 0.11261 2.86

p+µ−µ− 8.88025 0 d+d+π− 0.06879 4.19

p+π−π− 6.72258 0 d+d+µ− 0.05633 5.10

t+K−K− 5.68979 0 t+t+π− 0.04968 6.19

d+K−K− 3.79927 0 t+t+µ− 0.03762 6.50

p+K−K− 1.90062 0 p+p+e−(H+
2 ) 0.00054 12.70

e+e−e−(Ps−) 1.00000 0 d+d+e−(D+
2 ) 0.00027 12.95

p+p+K− 0.52615 0.08 t+t+e−(T+
2 ) 0.00018 13.01

Both the table (3.3.7) and figure (3.3.7) show that, RBW = 0 for qm ≥ 1 and RBW increases

rapidly as qm tends to zero. For example, from table (3.3.7) one can find that RBW = 0.08%

at qm = 0.52615 (for p+p+K− system), which is small as compared to the highest estimated

RBW = 13.01% (for T+
2 system) at qm = 0.00018. Hence, we have chosen systems in the

range 0 < qm < 0.5, to get a smooth variation of RBW with respect to qm. It is well

established that negative ions are less stable than the positive ions e.g. H−, He− etc. ions

are less stable than H+, He+ etc. We have also found that the binding energies of XYY

systems (qm ≥ 1) are less than that of the XXY systems (qm < 1) for free case. As we

put those exotic systems in classical WCP and increase the screening parameter µD, XYY

systems destabilize more rapidly than XXY systems and its two–body sub–systems (XY).

This is the reason behind the non–possessing of the borromean bindings of the XYY ions.

3.3.2 Resonance state

We now extend our study to estimate the resonance parameters (resonance energy and

width) of three-body exotic p+p+Y and p+Y Y [Y : µ−, π−,K−] ions in the free environ-

ment i.e. all interaction potentials among the particles are purely Coulombic as given in

equation (3.2.52). The energy eigenvalues of 1Se states of p+p+Y and p+Y Y ions are cal-

culated using nine–exponent (i.e. p = 9) Hylleraas type basis set containing N = 675

terms. For 200 different geometrical progression ratios (γ) in the basis set expansion, the

Hamiltonian matrix has been repeatedly diagonalized to obtain energies corresponding to

different eigenroots. The plot of each energy eigenroot versus γ produces the stabilization

diagram from which we estimate the resonance parameters of p+p+Y and p+Y Y ions.
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A portion of the stabilization diagram for 1Se states of exotic p+p+µ− ion is given in figure

(3.3.8). In this diagram, we have plotted first 40 eigenroots of 1Se symmetry for 200 differ-

Figure 3.3.8: Stabilization diagram for the resonance 1Se states of exotic p+p+µ− ion in
free environment.

ent values of γ ranging from 0.63058 a.u. to 0.82353 a.u. From figure (3.3.8), one can see

that there exist two classes of states:

i. Only one energy level below the first ionization threshold (n = 1) of p+µ− is formed at

−92.920408 a.u. due to ground state (1s2) configuration. This level remains invariant

with the variation of γ. The energy eigenvalue of this level is −102.223 503 which is

consistent with the value presented in table (3.3.1) for ground state of p+p+µ− using

990 terms in the nine–exponent Hylleraas type basis set.

ii. Roots lying above n = 1 but below n = 2 ionization threshold of p+µ− are sensitive

with the variation of γ and give rise to flat plateaus in the vicinity of avoided crossings

of the energy eigenroots for some particular energy value. Such behaviour is a clear

signature of resonance states.

Similar classes of states are also observed for other exotic systems: p+µ−µ−, p+p+π−,

p+π−π−, p+p+K− and p+K−K−. An enlarged view of a portion of the stabilization di-

agram (figure 3.3.8) of 1Se state of exotic p+p+µ− ion in the energy range -40.0 a.u. to

-23.23 a.u. is given in figure (3.3.9).

From a closer look at figure (3.3.9), we see that, for a short range of γ, each
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Figure 3.3.9: Enlarged view of the stabilization diagram for the resonance 1Se states of
exotic p+p+µ− ion below n = 2 ionization threshold of p+µ−.

Figure 3.3.10: Calculated density (hollow black circles) and the fitted Lorentzian (solid
line in red) for the resonance 1Se states of exotic p+p+µ− ion having (a) Resonance energy
−Er = 30.27180(a.u.) and width Γ = 5.963× 10−5(a.u.) and (b) Resonance energy −Er =
26.64933(a.u.) and width Γ = 1.03× 10−4(a.u.).

eigenroot becomes almost flat in the vicinity of avoided crossings in the neighborhood of

a particular resonance state. The density of states ρQ(E) is calculated by using equation

(3.2.76) and then fitted by the Lorentzian profile given in the equation (3.2.77). Among
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different fitting curves for each eigenroot corresponding to a particular resonance state, the

fitting curve which gives least χ2 value and where the square of correlation (R2 ≤ 1) leads to

the desired resonance energy (Er) and width (Γ), as described in the methodology section.

For example, figure (3.3.10) shows fitted Lorentzians of the first two resonance 1Se states

of p+p+µ− ion corresponding to energy eigenroot numbers 23 and 28 respectively which

give least χ2 value and square of correlation R2 < 1 in the fitting process. Table (3.3.8)

shows all the resonance energies (Er in a.u.) and widths (Γ in a.u.) of 1Se states of exotic

p+Y Y and p+p+Y ions [Y = µ−, π−,K−] below n = 2 ionization threshold of p+Y atom.

The results have been compared with those available in literature [219,220] for p+Y Y and

p+p+Y [Y = µ−, π−] ions. The comparison shows that resonance energies and widths are

in very good agreement with the available results [219, 220]. To the best of our knowledge

the present calculated resonance energies and widths of p+K−K− and p+p+K− ions are

given for the first time in the literature. Table (3.3.8) shows that the widths of the negative

ions (p+Y Y ) are higher than the corresponding three–body positive counterpart (p+p+Y ),

which indicates that the resonance states of the p+p+Y ions are more long lived against

auto–ionization than the p+Y Y ions.
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Doubly excited states of two–electron atoms

The topic of doubly excited states (DESs) in two-electron atoms has been attracting signif-

icant attention since the early days of quantum chemical research as is still relevant in the

present days, from both theoretical and experimental perspectives. Following the ground-

breaking discovery of the two-electron one-photon peak by Madden and Codling [42, 43]

while measuring the photo-absorption spectra of helium atom placed in the field of syn-

chrotron radiation, the DESs of two-electron atoms are always in the focus of researcher in

the field of atomic structure calculation. Precise knowledge of the structural characteristics

of DESs of different two-electron atoms is essential for analyzing astrophysical data, diag-

nosing lines seen in the solar corona, detecting high temperature discharges and performing

laboratory plasma diagnostics [49,51,221,222]. In this chapter, we give a detailed account of

the works on DESs for the two-electron systems embedded in classical plasma environment.

We investigate the structural properties of high lying doubly excited Fe states of ‘free’ two-

electron systems by solving the Scrödinger equation using Ritz variation principle. This

methodology is further extended to estimate the structural properties of the atoms placed

within classical weakly coupled plasma (WCP) where the potential is modeled by exponen-

tial screened Coulomb potential (ESCP) (1.0.1). Under such plasma environment we have

also estimated the transition energies of different dipole allowed transitions between various

DESs.

4.1 Literature review

The complexity of the estimations of the structural properties of two-electron systems under

WCP environment increases a notch higher than that of one-electron systems because of the

presence of the non-central Coulombic repulsion potential modified by ESCP. The investi-

gation of the effect of WCP on the ground state energy level (1s2;1 Se) of He-like systems

was first introduced by Rogers [223] using radially correlated basis. Lam and Varshni [224]

reported decrease of the ionization energy (known as ionization potential depression or IPD)

of ground state of He atom with respect to the increase in plasma screening strength µD

(equation (1.0.2)). They [224] also found the value of critical screening at which the ground

state energy crosses the first ionization threshold i.e. the energy of He+(1s). A large number

of spectral data (energy, stability or critical parameter, transition probabilities, oscillator

strengths, static and dynamic multipolar polarizabilities etc.) for ground and singly excited

states of two-electron atoms under weakly coupled plasma have been generated by different

workers over the past decades [225–237]. These studies show that, like the one-electron

systems, the increase in µD lessens the number of bound states and pushes the two-electron

energy levels towards the continuum. From the radiative transition point of view, Ray and

Mukherjee [227] showed that for He-like carbon the transition energy for principal quantum
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number conserving transitions (∆n = 0) increases with the increase of µD whereas for prin-

cipal quantum number non-conserving transitions (∆n 6= 0) transition energy decreases as

µD decreases.

From the beginning of this century, many researchers have estimated the energy eigenvalues,

transition energies, multi-pole polarizabilities etc. structural properties of doubly excited

metastable bound Pe, Do, Fe and Go states of two-electron systems (He, Li+, Be2+, H−)

under WCP environment [238–244]. In these works several quantum-chemical approxima-

tion techniques like Ritz variation technique, B-spline method using Hylleraas-CI functions

etc. are employed. Similar to the ground and singly excited states, the energy eigenval-

ues of metastable bound DESs increase with the increase of µD resulting in reduction of

the number of metastable-bound states under second ionization threshold. Level crossing

phenomena of some certain DESs have been observed for the transition Pe → Do as µD

increases [242]. Saha et al. [242] reported a mixture of both red and blue shift of the spec-

tral lines for the transitions between various DESs. In a recent article Zhou et al. [244]

described the variation of some geometric quantities of He-atom such as 〈r〉, 〈r12〉, 〈r<〉,
〈r>〉, 〈cos θ12〉 and 〈θ12〉 for the 1,3Pe and 1,3Do states, with respect to µD.

Resonance parameters (energy and width) of doubly excited 1Se state was first

calculated analytically by Wang and Winkler [245] for H− ion under plasma environment.

They modeled the plasma medium by Debye-Laughton potential which reduces to ESCP

or Debye plasma potential by adjusting the parameters of that potential. Subsequently,

Ho and co-workers published a series of papers [204, 214, 238, 239, 246–256] where they es-

timated the variation of resonance parameters of different doubly excited 1,3Se, 1,3Po, 1De,
1,3Pe, 1,3Do, 1,3Fe and 1,3Go states of two-electron systems like H−, H−, He, Li+, C4+, O6+

and Ne8+ using stabilization and complex co-ordinate rotation (CCR) techniques, under

the WCP environment modeled by ESCP. They have shown that, as µD increases, reso-

nance energy increases while resonance widths may increase or decrease depending upon

the configurations of DESs. Other workers have also estimated the variation of resonance

parameters of two-electron systems under Debye plasma environment where they have used

different quantum-chemical techniques like time-dependent harmonic perturbation [257],

stabilization method using explicitly correlated wave functions [258,259], close-coupling ap-

proximation [260–262] etc. Besides the variations in the resonance parameters with respect

to µD, transformation of Feshbach resonances to shape resonance was also observed [252,262]

for screening parameter µD greater than the critical value (µDC) of screening parameter at

which the resonance energies crosses the one-electron threshold.

There are some relativistic calculations available in literature on DES of two-electron sys-

tems embedded in WCP [263–266]. Das et al. [263] used relativistic Fock-space multirefer-

ence coupled-cluster theory to compute the transition energies and oscillator strengths of the

dipole-allowed (E1) 1S0 →1 P0 transition of C4+, Al11+ and Ar16+ ions at different plasma
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screening µD. Xie et. al. [264] also studied the influence of the plasma on the magnetic-

dipole (M1) and magnetic-quadrupole (M2) transition probabilities and oscillator strengths

of the transitions between various configurations of C4+ using the multi-configuration Dirac-

Hartree-Fock method. Chen et. al. [265] compares the relativistic Flexible Atomic Code

(FAC) computations and multiconfiguration Dirac-Fock (MCDF) method in predicting the

variation of the transition energies for the 1s2(1S) → 1snp(1P )[n = 2, 3] E1 transitions

with respect to µD for C4+, Ne8+, Ar16+ and Kr34+ ions. Using MCDF method Ma et.

al. [266] found that in the dielectronic recombination (DR) process, the total radiative rates

and Auger rates of the intermediate two-electronic states decrease monotonically with in-

creasing the plasma screening µD with an exception of Auger rate first increases and then

decreases for the 2p2(1Se) state with the increase of µD. In their work [266], both the

blueshift and redshift phenomena are observed for the resonance energies with increasing

µD.

Mukherjee and group investigated [267–270] the structural modification of two-electron sys-

tems under SCP described by ion-sphere potential (1.0.3) using different quantum-chemical

approximation techniques like time-dependent perturbation theory, time dependent Hatree-

Fock (HF) theory and Rayleigh-Ritz variation principle with Hylleraas-type correlated wave-

function. The IPD, pressure ionization, level-crossing phenomena etc. with respect to the

IS-radius are the main findings of those studies. Belkhiri et al. [271] computed shifts of

binding energies of different charge states of Al (Al11+ to Al7+) and transition line shifts

of Be-like iron (Fe22+) and titenium atom by using different atomic packages like Los Al-

mos Cowan Atomic Structure (CATS) code in HF or Hatree-Fock-Slater form, FAC and

MARIA codes within ion-sphere potential. A series of theoretical works have been per-

formed [272–276] in the relativistic framework using MCDF method, GRASP2K code in-

cluding correlations via configuration-interaction, FAC etc. The SCP effect was considered

through self-consistent ion-sphere potential or average atom ion-sphere potential to incor-

porate the effects of both temperature and density of the plasma medium. In those works

the shift of Heβ transition line of Cl15+ ion (in the X-ray region) was estimated to verify

available experimental data. Chen [273] and Singh et.al. [275] reported “red-shift” of Heα

and Heβ lines for the He-like Cl15+, Ar16+, Ti20+ and Fe24+ ions with respect to the in-

crease in plasma density. In a very recent article Chandra et.al. [277] reported the energies

and probabilities of 2p2(3P0,1,2)→ 1s2p(1P0,1,2) satellite transition lines for the C4+, Ne8+,

Al11+ and Ar16+ ions within the IS-model where the energy eigenvalues are computed by

both non-relativistic variation technique using correlated Hylleraas-type basis and relativis-

tic MCDF method using modified GRASP2K code. While the above studies are focused on

the radiative transitions, Belkhiri et.al. [278] estimated the variation of auto-ionization rates

as a function of plasma density under the ion-sphere model potential for the non-radiative

transitions between different charge states of Al i.e. for the transitions Al11+ →Al12+,

Al10+ →Al11+, Al9+ →Al10+ and Al8+ →Al9+, using FAC and GIPPER codes.
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A large number of investigations [204, 241–245, 247, 249, 250, 253, 256, 258] have been car-

ried out for the determination of various structural properties of DES of He-like systems in

plasma environments for S, P and D states. The same applies to higher angular momentum

Fe states are quite limited [239,240]. In these works the authors used CI–type basis functions

to calculate energies of metastable bound 1,3Fe states [239, 240] and the energy and width

of 1,3Fe resonance states below n = 3 ionization threshold [239] of He-atom placed within

classical WCP environment modeled by ESCP. The authors simplified their calculations

by approximating the screened electron-electron repulsion potential term by Taylor series

expansion [239, 240]. In this chapter, we have extensively studied the structural properties

of 1,3Fe states of He-atom under pure Coulomb potential (free atom) and ESCP (plasma

embedded atom) using trial wavefunction expanded in multi-exponent Hylleraas-type basis

set. Energies of the metastable bound 1,3Fe states are calculated using Ritz variation prin-

ciple for different screening conditions of the potential. “Soft wall” strategy [206, 213, 279]

of the stabilization method [212] is used to determine the resonance parameters of 1,3Fe

states of He-atom for various screening parameters of ESCP. We have calculated the matrix

elements for both the attractive and repulsive parts of ESCP analytically by retaining the

exact form of the potential terms.

4.2 The present method

In this section we will construct the wavefunction for the unnatural even parity Fe state of

two-electron systems, followed by the general variational equation and the necessary basis

integrals to estimate the structural properties of the two-electron systems.

4.2.1 Wavefunction

The DES 1,3Fe of two electron systems can arise from the configurations such as npn′f [n ≥
2 and n′ ≥ 4], ndn′d[n ≥ 3 and n′ ≥ 4 for 1Fe;n, n′ ≥ 3 for 3Fe], ndn′g[n ≥ 3 and n′ ≥
5] etc. (indicated in table-1.0.1). We are going to construct the trial wavefunction by taking

two basic pf and dd configurations explicitly and all other higher configurations will be

incorporated through different powers of r12 in the trial wavefunction. The general form of

the wavefunction of 1,3Fe state of two-electron systems, is given by

Ψ = Ψpf + Ψdd (4.2.1)

where, Ψpf and Ψdd are the wavefunctions representing the pf and dd configurations, respec-

tively. We introduce the coupled angular function Y l1,l2
L,M where L = total angular momentum

quantum number, M = total magnetic quantum number which is considered to be zero in

the present case, l1 and l2 = individual angular momentum quantum numbers. Equation
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(4.2.1) can then be written as

Ψ =
[
f (r1, r2, r12)Y 3,1

3,0 + g (r1, r2, r12)Y 2,2
3,0

]
± exchange (4.2.2)

where f (r1, r2, r12) and g (r1, r2, r12) are the radial parts of pf and dd configurations re-

spectively. r1 and r2 are the distances of two electrons from the nucleus and r12 is the

inter-electronic distance. The ± sign in equation (4.2.2) stands for either singlet or triplet

state. The coupled angular function arising out of pf configuration can be written as,

Y 3,1
3,0 =

1√
2

[
y1

3(1)y−1
1 (2)− y−1

3 (1)y1
1(2)

]
(4.2.3)

while the same for dd configuration is

Y 2,2
3,0 =

1√
10

[
y2

2(1)y−2
2 (2)− y−2

2 (1)y2
2(2) + 2y1

2(1)y−1
2 (2)− 2y−1

2 (1)y1
2(2)

]
(4.2.4)

where, yml (i)[i = 1, 2] represents the spherical harmonics for the uncoupled states. In terms

of individual angular coordinates (θ1, φ1) and (θ2, φ2) of two electrons, ‘y’ can be written

as [158]

y±1
1 (1) = ∓

√
3

8π
sin θ1e

±iφ1

y±1
3 (1) = ∓

√
21

64π
sin θ1

(
5 cos2 θ1 − 1

)
e±iφ1

y0
2(1) =

√
5

16π

(
3 cos2 θ1 − 1

)
y±1

2 (1) = ∓
√

15

8π
sin θ1 cos θ1e

±iφ1

y±2
2 (1) =

√
15

32π
sin2 θ1e

±2iφ1

(4.2.5)

Similarly, y±1
1 (2), y±1

3 (2), y0
2(2), y±1

2 (2) and y±2
2 (2) can be written by replacing (θ1, φ1) by

(θ2, φ2) in equation (4.2.5). Equations (4.2.3) and (4.2.4) can now be recast as

Y 3,1
3,0 =

3
√

7i

16π

(
5 cos2 θ1 − 1

)
sin θ1 sin θ2 sin (φ2 − φ1) (4.2.6)

and Y 2,2
3,0 =

15i

2π
√

10

[
1

4
sin θ1 sin θ2 cos(φ1 − φ2)− cos θ1 cos θ2

]
×

sin θ1 sin θ2 sin(φ1 − φ2) (4.2.7)
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Let us now consider following relations between the polar angles (θ1, φ1, θ2, φ2) and the

Eulerian angles (θ, φ, ψ) [30]

sin θ1 sin θ2 sin(φ2 − φ1) = sin θ12 cos θ

sin θ1 sin θ2 cos(φ2 − φ1) + cos θ1 cos θ2 = cos θ12

cos θ1 = − sin θ cos

(
ψ − θ12

2

)
, cos θ2 = − sin θ cos

(
ψ +

θ12

2

) (4.2.8)

Using these transformation relations, equations (4.2.6) and (4.2.7) becomes,

Y 3,1
3,0 = N

[
− sin θ12

(
5 cos3 θ − 3 cos θ

)
2

+
5

2
sin θ12 cos θ12 sin2 θ cos θ cos 2ψ

+
5

2
sin2 θ12 sin2 θ cos θ sin 2ψ

]
(4.2.9)

Y 2,2
3,0 = M

[
− sin θ12 cos θ12

(
5 cos3 θ − 3 cos θ

)
2

+
5

2
sin θ12 sin2 θ cos θ cos 2ψ

]
(4.2.10)

where, N =
3
√

7i

16π
and M =

15i

8π
√

10
are the normalization constants of Y 3,1

3,0 and Y 2,2
3,0 .

Using equation (3.2.2) we can get real angular momentum Wigner functions D0
3, D2+

3 and

D2−
3 as follows

D0
3 =

5 cos3 θ − 3 cos θ

2

D2+
3 =

√
15

2
cos 2ψ sin2 θ cos θ

D2−
3 =

√
15

2
sin 2ψ sin2 θ cos θ

(4.2.11)

Here we have not written the common factor

√
7

8π2
in D0

3, D2+
3 and D2−

3 . Using equation

(4.2.11), the equations (4.2.9) and (4.2.10) can be modified as

Y 3,1
3,0 = N

[
− sin θ12D

0
3 +

√
15

6
sin 2θ12D

2+
3 +

√
15

6
(1− cos 2θ12)D2−

3

]
(4.2.12)

Y 2,2
3,0 = M

[
− sin θ12 cos θ12D

0
3 +

√
5

3
sin θ12D

2+
3

]
(4.2.13)

On substitution of Y 3,1
3,0 and Y 2,2

3,0 into the equation (4.2.2) we get

Ψ = Nf

[
− sin θ12D

0
3 +

√
15

6
sin 2θ12D

2+
3 +

√
15

6
(1− cos 2θ12)D2−

3

]
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+ Mg

[
− sin θ12 cos θ12D

0
3 +

√
5

3
sin θ12D

2+
3

]
± exchange (4.2.14)

To find the exchange term we will consider the following operations [30] of exchange operator

ε12 on f (r1, r2, r12), g (r1, r2, r12) and Dk±
L (θ, φ, ψ) as

ε12f (r1, r2, r12) = f̃ (r2, r1, r12)

ε12g (r1, r2, r12) = g̃ (r2, r1, r12)

ε12D
k±
L (θ, φ, ψ) = ± (−1)L+kDk±

L (θ, φ, ψ)

Now the equation (4.2.14) becomes,

Ψ = Nf

[
− sin θ12D

0
3 +

√
15

6
sin 2θ12D

2+
3 +

√
15

6
(1− cos 2θ12)D2−

3

]

+ Mg

[
− sin θ12 cos θ12D

0
3 +

√
5

3
sin θ12D

2+
3

]

± Nf̃

[
− sin θ12(−1)3D0

3 +

√
15

6
sin 2θ12(−1)5D2+

3 +

√
15

6
(1− cos 2θ12) (−1)5D2−

3

]

± Mg̃

[
− sin θ12 cos θ12(−1)3D0

3 +

√
5

3
sin θ12(−1)5D2+

3

]

= N

[
− sin θ12

(
f ∓ f̃

)
D0

3 +

√
15

6
sin 2θ12

(
f ∓ f̃

)
D2+

3 +

√
15

6
(1− cos 2θ12)

(
f ∓ f̃

)
D2−

3

]

+ M

[
− sin θ12 cos θ12 (g ∓ g̃)D0

3 +

√
5

3
sin θ12 (g ∓ g̃)D2+

3

]
(4.2.15)

Following the general form of the wavefunction (3.2.1) prescribed by Bhatia and Temkin [30],

we can write Ψ for 1,3Fe state (L = 3 and k = 0,±2) into the following form

Ψ = f0
3D

0
3 + f2+

3 D2+
3 + f2−

3 D2−
3 (4.2.16)

where

f0
3 = −

(
f ∓ f̃

)
sin θ12 −

√
10

7
(g ∓ g̃) sin θ12 cos θ12

f2+
3 =

√
15

6

(
f ∓ f̃

)
sin 2θ12 +

√
50

21
(g ∓ g̃) sin θ12

f2−
3 =

√
15

6

(
f ∓ f̃

)
(1− cos 2θ12)

(4.2.17)
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Here we have ignored the common factor N in equation (4.2.15), as it will not make any

difference to the variational calculation and used
M

N
=

√
10

7
. Upto this point it is not clear

that which of the ∓ sign within the parentheses of f0
3 , f2+

3 and f2−
3 signifies the singlet and

triplet states. In this regard Bhatia and Temkin [30] provided a very useful formula where

the exchange operator acts on fk±L functions as given below,

fk+
L (r2, r1, r12) = ε12f

k+
L (r1, r2, r12) =± (−1)L+kfk+

L (r1, r2, r12)

fk−L (r2, r1, r12) = ε12f
k−
L (r1, r2, r12) =± (−1)L+k+1fk−L (r1, r2, r12)

(4.2.18)

The upper ‘+’ sign and the lower ‘−’ sign signify the singlet and triplet states respectively.

Thus the exchange terms of the three radial functions f0
3 , f2+

3 and f2−
3 of 1,3Fe state now

become,

f0
3 (r2, r1, r12) = ±(−1)3+0f0

3 (r1, r2, r12) = ∓f0
3 (r1, r2, r12)

f2+
3 (r2, r1, r12) = ±(−1)3+2f2+

3 (r1, r2, r12) = ∓f2+
3 (r1, r2, r12)

f2−
3 (r2, r1, r12) = ±(−1)3+2+1f2−

3 (r1, r2, r12) = ±f2−
3 (r1, r2, r12)

(4.2.19)

Thus, f0
3 and f2+

3 are anti-symmetric for singlet case whereas f2−
3 is symmetric for sin-

glet case. This guides us to write the correct forms of f0
3 , f2+

3 and f2−
3 from equation

(4.2.17), which is consistent with the Pauli’s exclusion principle. The equation (4.2.17) is

now modified as,

f0
3 = −F1 sin θ12 −

√
10

7
G1 sin θ12 cos θ12

f2+
3 =

√
15

6
F1 sin 2θ12 +

√
50

21
G1 sin θ12

f2−
3 =

√
15

6
F2(1− cos 2θ12)

(4.2.20)

where, F1 = (f ∓ f̃), F2 = (f ± f̃) and G1 = (g ∓ g̃). The upper sign corresponds to the

singlet state and the lower sign to the triplet state.

4.2.2 Variational equation

In this subsection we will construct the variational equation of 1,3Fe states of two-electron

systems by following the steps as described in section (3.2.2). In the present case, the three

particles are two electrons (m1 = m2 = 1 a.u.) and the nucleus which is infinitely heavy

with respect to the electrons. Here the nucleus will be static and the mass polarization

term will not appear. Thus, in equations (3.2.35), (3.2.36) and (3.2.37) we put A = B =
1

2
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and C = 0 to write the general variational equation (3.2.41) of two-electron systems as:

∆

∫ [(
∂Ψ

∂r1

)2

+

(
∂Ψ

∂r2

)2

+

(
1

r2
1

+
1

r2
2

)(
∂Ψ

∂θ12

)2

+

{
1

r2
1 sin2 θ12

sin2

(
ψ +

θ12

2

)
+

1

r2
2 sin2 θ12

sin2

(
ψ − θ12

2

)}(
∂Ψ

∂θ

)2

+

{
1

r2
1 sin2 θ12

cot2 θ cos2

(
ψ +

θ12

2

)
+

1

r2
2 sin2 θ12

cot2 θ cos2

(
ψ − θ12

2

)}(
∂Ψ

∂ψ

)2

+
1

4

(
1

r2
1

+
1

r2
2

)(
∂Ψ

∂ψ

)2

+

(
1

r2
2

− 1

r2
1

)
∂Ψ

∂θ12

∂Ψ

∂ψ

+

{
1

r2
1 sin2 θ12

cot θ sin (2ψ + θ12) +
1

r2
2 sin2 θ12

cot θ sin (2ψ − θ12)

}
∂Ψ

∂θ

∂Ψ

∂ψ

+ 2 (Veff − E) |Ψ|2
]
dτ~r1, ~r2 = 0 (4.2.21)

We now put Ψ of equation (4.2.16) with D−functions given by the equation (4.2.11) and

perform integrations over the Eulerian angles (θ, φ, ψ). This modifies the variational equa-

tion (4.2.21) to take the following form:

∆

∫ {
1

2

[
2∑
i=1

(
∂f0

3

∂ri

)2

+

(
∂f2+

3

∂ri

)2

+

(
∂f2−

3

∂ri

)2
]

+
1

2

(
1

r2
1

+
1

r2
2

)[(
∂f0

3

∂θ12

)2

+

(
∂f2+

3

∂θ12

)2

+

(
∂f2−

3

∂θ12

)2
]

+
1

2

(
1

r2
1

+
1

r2
2

)[(
f2+

3

)2
+
(
f2−

3

)2]
+

(
1

r2
2

− 1

r2
1

)[
f2−

3

∂f2+
3

∂θ12
− f2+

3

∂f2−
3

∂θ12

]
+

1

sin2 θ12

(
1

r2
1

+
1

r2
2

)[
3
(
f0

3

)2
+ 2

(
f2+

3

)2
+ 2

(
f2−

3

)2]
+

√
15 cos θ12

sin2 θ12

(
1

r2
1

+
1

r2
2

)
f0

3 f
2+
3

+

√
15

sin θ12

(
1

r2
2

− 1

r2
1

)
f0

3 f
2−
3 + 2 (Veff − E)

[(
f0

3

)2
+
(
f2+

3

)2
+
(
f2−

3

)2]}
dτ = 0

(4.2.22)

where dτ = r2
1 r

2
2 sin θ12 dr1 dr2 dθ12. Using the explicit forms of f0

3 , f
2+
3 and f2−

3 from

equation (4.2.20), the variational equation (4.2.22) becomes

∆

∫ {
sin2 θ12

(
1 +

5

3
cos2 θ12

) ∣∣∣∇sF1

∣∣∣2 +
5

3
sin4 θ12

∣∣∣∇sF2

∣∣∣2
+ 2

(
1

r2
1

+
1

r2
2

)
sin θ12 cos θ12

[(
10

3
cos2 θ12 −

2

3

)
F1
∂F1

∂θ12
+

10

3
sin2 θ12F2

∂F2

∂θ12

]
+

10

3

(
1

r2
2

− 1

r2
1

)
sin3 θ12 cos θ12

(
F2
∂F1

∂θ12
− F1

∂F2

∂θ12

)
− 40

3

(
1

r2
2

− 1

r2
1

)
sin2 θ12F1F2

+ 2

(
1

r2
1

+
1

r2
2

)[(
5

2
cos4 θ12 −

11

3
cos2 θ12 +

23

6

)
F 2

1 +

(
−5

2
sin4 θ12 +

20

3
sin2 θ12

)
F 2

2

]



4: Doubly excited states of two–electron atoms 115

+
10

7
sin2 θ12

(
5

3
+ cos2 θ12

) ∣∣∣∇sG1

∣∣∣2 +
10

7

(
1

r2
1

+
1

r2
2

)[(
cos2 2θ12 − 4 cos2 θ12 +

25

3

)
G2

1

]
+

20

7

(
1

r2
1

+
1

r2
2

)
sin θ12 cos θ12

(
cos 2θ12 +

5

3

)
G1

∂G1

∂θ12

+
16

3

√
10

7
sin2 θ12 cos θ12 (∇sF1.∇sG1)

+ 2

√
10

7

(
1

r2
1

+
1

r2
2

)
sin θ12

(
11

3
cos2 θ12 − 1

)
G1

∂F1

∂θ12

+
2

3

√
10

7

(
1

r2
1

+
1

r2
2

)
sin θ12

(
13 cos2 θ12 − 5

)
F1
∂G1

∂θ12

+
10

3

√
10

7

(
1

r2
2

− 1

r2
1

)
sin3 θ12

(
F2
∂G1

∂θ12
−G1

∂F2

∂θ12

)
+

8

3

√
10

7

(
1

r2
1

+
1

r2
2

)
cos θ12

(
5− cos2 θ12

)
F1G1 −

40

3

√
10

7

(
1

r2
2

− 1

r2
1

)
cos θ12 sin2 θ12F2G1

+ 2 (Veff − E)

[
sin2 θ12

(
1 +

5

3
cos2 θ12

)
F 2

1 +
5

3
sin4 θ12F

2
2

+
10

7
sin2 θ12

(
5

3
+ cos2 θ12

)
G2

1 +
16

3

√
10

7
sin2 θ12 cos θ12F1G1

]}
dτ = 0 (4.2.23)

where,

∣∣∣∇sU ∣∣∣2 =

(
∂U

∂r1

)2

+

(
∂U

∂r2

)2

+

(
1

r2
1

+
1

r2
2

)(
∂U

∂θ12

)2

(4.2.24)

is called the s-part of the variational equation which can be derived from (3.2.42), (3.2.43)

and (3.2.44) with A = B =
1

2
, C = 0 and multiplying each term by a factor ‘2’. The

expression for
∣∣∣∇sU ∣∣∣2 in terms of (r1, r2, r12) can be formulated from the expression of

kinetic energy term for 1,3Se state (3.2.48) with m1 = m2 = 1, M → ∞ and multiplying

each term by a factor ‘2’, which will give the following form,

∣∣∣∇sU ∣∣∣2 =

(
∂U

∂r1

)2

+

(
∂U

∂r2

)2

+ 2

(
∂U

∂r12

)2

+ 2 cos(r1, r12)
∂U

∂r1
.
∂U

∂r12

+ 2 cos(r2, r12)
∂U

∂r2
.
∂U

∂r12
(4.2.25)

where cos (r1, r12) =
r2

1 + r2
12 − r2

2

2 r1 r12
and cos (r2, r12) =

r2
2 + r2

12 − r2
1

2 r2 r12
. Thus using (4.2.25) we

can write s-parts
∣∣∣∇sF1

∣∣∣2 and
∣∣∣∇sF2

∣∣∣2 for pf terms and
∣∣∣∇sG1

∣∣∣2 for dd terms. In equation

(4.2.23) the s-part ∇sF1.∇sG1 for pf -dd mixing terms is defined as,

∇sF1.∇sG1 =
∂F1

∂r1

∂G1

∂r1
+
∂F1

∂r2

∂G1

∂r2
+

(
1

r2
1

+
1

r2
2

)
∂F1

∂θ12

∂G1

∂θ12
(4.2.26)
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To find ∇sF1.∇sG1 in (r1, r2, r12) let us write,∣∣∣∇s (F1 +G1)
∣∣∣2 =

∣∣∣∇sF1

∣∣∣2 +
∣∣∣∇sG1

∣∣∣2 + 2∇sF1.∇sG1 (4.2.27)

Using (4.2.24), L.H.S of the above equation (4.2.27) can be expanded as follows:

∣∣∣∇s (F1 +G1)
∣∣∣2 =

(
∂F1

∂r1
+
∂G1

∂r1

)2

+

(
∂F1

∂r2
+
∂G1

∂r2

)2

+ 2

(
∂F1

∂r12
+
∂G1

∂r12

)2

+ 2 cos(r1, r12)

(
∂F1

∂r1
+
∂G1

∂r1

)
.

(
∂F1

∂r12
+
∂G1

∂r12

)
+ 2 cos(r2, r12)

(
∂F1

∂r2
+
∂G1

∂r2

)
.

(
∂F1

∂r12
+
∂G1

∂r12

)
=

∣∣∣∇sF1

∣∣∣2 +
∣∣∣∇sG1

∣∣∣2 + 2

[
∂F1

∂r1

∂G1

∂r1
+
∂F1

∂r2

∂G1

∂r2
+ 2

∂F1

∂r12

∂G1

∂r12

+
1

2
cos(r1, r12)

(
∂F1

∂r1

∂G1

∂r12
+
∂F1

∂r12

∂G1

∂r1

)
+

1

2
cos(r2, r12)

(
∂F1

∂r2

∂G1

∂r12
+
∂F1

∂r12

∂G1

∂r2

)]
(4.2.28)

Comparing (4.2.27) and (4.2.28),

∇sF1.∇sG1 =
∂F1

∂r1

∂G1

∂r1
+
∂F1

∂r2

∂G1

∂r2
+ 2

∂F1

∂r12

∂G1

∂r12

+
1

2
cos(r1, r12)

(
∂F1

∂r1

∂G1

∂r12
+
∂F1

∂r12

∂G1

∂r1

)
+

1

2
cos(r2, r12)

(
∂F1

∂r2

∂G1

∂r12
+
∂F1

∂r12

∂G1

∂r2

)
(4.2.29)

Using F1 = (f∓ f̃), F2 = (f± f̃) and G1 = (g∓ g̃) the variational equation (4.2.23) assumes

the following final form,

∆

∫
{2 (Tpf + Tdd + Tpfdd)

+ 2 (Veff − E)

[
8

3
sin2 θ12

(
f2 + f̃2

)
∓ 2 sin2 θ12

(
1 +

5

3
cos 2θ12

)
ff̃

+
10

7
sin2 θ12

(
5

3
+ cos2 θ12

)(
g2 + g̃2 ∓ 2gg̃

)
+

16

3

√
10

7
sin2 θ12 cos θ12

(
fg + f̃ g̃ ∓ fg̃ ∓ f̃g

)]}
dτ = 0 (4.2.30)
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where, Tpf , Tdd and Tpfdd are the K.E. parts corresponding to the pf , dd and mixed pf −dd
configurations respectively and given by,

Tpf =
4

3
sin2 θ12

( ∂f
∂r1

)2

+

(
∂f̃

∂r1

)2

+

(
∂f

∂r2

)2

+

(
∂f̃

∂r2

)2

∓2

(
∂f

∂r1

∂f̃

∂r1
+
∂f

∂r2

∂f̃

∂r2

)
+ 2


(
∂f

∂r12

)2

+

(
∂f̃

∂r12

)2

∓ 2
∂f

∂r12

∂f̃

∂r12


+ cos(r1, r12)

(
∂f

∂r1

∂f

∂r12
+
∂f̃

∂r1

∂f̃

∂r12
∓ ∂f

∂r1

∂f̃

∂r12
∓ ∂f̃

∂r1

∂f

∂r12

)

+ cos(r2, r12)

(
∂f

∂r2

∂f

∂r12
+
∂f̃

∂r2

∂f̃

∂r12
∓ ∂f

∂r2

∂f̃

∂r12
∓ ∂f̃

∂r2

∂f

∂r12

)]

+
5

3
sin4 θ12

[
2

(
± ∂f
∂r1

∂f̃

∂r1
± ∂f

∂r2

∂f̃

∂r2

)
± 4

∂f

∂r12

∂f̃

∂r12

± cos(r1, r12)

(
∂f

∂r1

∂f̃

∂r12
+
∂f̃

∂r1

∂f

∂r12

)
± cos(r2, r12)

(
∂f

∂r2

∂f̃

∂r12
+
∂f̃

∂r2

∂f

∂r12

)]

+

(
1

r2
1

+
1

r2
2

)
2

3
sin2 θ12 cos θ12

r1r2

r12

[
4

(
f
∂f

∂r12
+ f̃

∂f̃

∂r12

)
∓

(5 cos θ12 − 1)

(
f
∂f̃

∂r12
+ f̃

∂f

∂r12

)]
±
(

1

r2
2

− 1

r2
1

)
10

3
sin4 θ12 cos θ12

r1r2

r12

(
f̃
∂f

∂r12
− f ∂f̃

∂r12

)

+

(
1

r2
1

+
1

r2
2

)[(
8− 16

3
cos2 θ12

)(
f2 + f̃2

)
± 2ff̃

(
1

3
− 5 cos4 θ12 + 2 cos2 θ12

)]
−20

3
sin2 θ12

(
1

r2
2

− 1

r2
1

)(
f2 − f̃2

)
(4.2.31)

Tdd =
5

7
sin2 θ12

(
cos2 θ12 +

5

3

)[(
∂g

∂r1

)2

+

(
∂g̃

∂r1

)2

+

(
∂g

∂r2

)2

+

(
∂g̃

∂r2

)2

∓2

(
∂g

∂r1

∂g̃

∂r1
+
∂g

∂r2

∂g̃

∂r2

)
+ 2

{(
∂g

∂r12

)2

+

(
∂g̃

∂r12

)2

∓ 2
∂g

∂r12

∂g̃

∂r12

}

+ cos(r1, r12)

(
∂g

∂r1

∂g

∂r12
+
∂g̃

∂r1

∂g̃

∂r12
∓ ∂g

∂r1

∂g̃

∂r12
∓ ∂g̃

∂r1

∂g

∂r12

)
+ cos(r2, r12)

(
∂g

∂r2

∂g

∂r12
+
∂g̃

∂r2

∂g̃

∂r12
∓ ∂g

∂r2

∂g̃

∂r12
∓ ∂g̃

∂r2

∂g

∂r12

)]
+

10

7

(
1

r2
1

+
1

r2
2

)
sin2 θ12 cos θ12

(
cos 2θ12 +

5

3

)
r1r2

r12

(
g
∂g

∂r12
+ g̃

∂g̃

∂r12
∓ g ∂g̃

∂r12
∓ g̃ ∂g

∂r12

)
+

5

7

(
1

r2
1

+
1

r2
2

)(
cos2 2θ12 − 4 cos2 θ12 +

25

3

)(
g2 + g̃2 ∓ 2gg̃

)
(4.2.32)
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and

Tpfdd =
8

3

√
10

7
sin2 θ12 cos θ12

[(
∂f

∂r1

∂g

∂r1
+
∂f̃

∂r1

∂g̃

∂r1
∓ ∂f

∂r1

∂g̃

∂r1
∓ ∂f̃

∂r1

∂g

∂r1

)

+

(
∂f

∂r2

∂g

∂r2
+
∂f̃

∂r2

∂g̃

∂r2
∓ ∂f

∂r2

∂g̃

∂r2
∓ ∂f̃

∂r2

∂g

∂r2

)

+2

(
∂f

∂r12

∂g

∂r12
+

∂f̃

∂r12

∂g̃

∂r12
∓ ∂f

∂r12

∂g̃

∂r12
∓ ∂f̃

∂r12

∂g

∂r12

)

+
1

2
cos(r1, r12)

{(
∂f

∂r1

∂g

∂r12
+
∂f̃

∂r1

∂g̃

∂r12
∓ ∂f

∂r1

∂g̃

∂r12
∓ ∂f̃

∂r1

∂g

∂r12

)

+

(
∂g

∂r1

∂f

∂r12
+
∂g̃

∂r1

∂f̃

∂r12
∓ ∂g

∂r1

∂f̃

∂r12
∓ ∂g̃

∂r1

∂f

∂r12

)}

+
1

2
cos(r2, r12)

{(
∂f

∂r2

∂g

∂r12
+
∂f̃

∂r2

∂g̃

∂r12
∓ ∂f

∂r2

∂g̃

∂r12
∓ ∂f̃

∂r2

∂g

∂r12

)

+

(
∂g

∂r2

∂f

∂r12
+
∂g̃

∂r2

∂f̃

∂r12
∓ ∂g

∂r2

∂f̃

∂r12
∓ ∂g̃

∂r2

∂f

∂r12

)}]

+

√
10

7

(
1

r2
1

+
1

r2
2

)
sin2 θ12

(
11

3
cos2 θ12 − 1

)
r1r2

r12

(
g
∂f

∂r12
+ g̃

∂f̃

∂r12
∓ g ∂f̃

∂r12
∓ g̃ ∂f

∂r12

)

+
1

3

√
10

7

(
1

r2
1

+
1

r2
2

)
sin2 θ12

(
13 cos2 θ12 − 5

) r1r2

r12

(
f
∂g

∂r12
+ f̃

∂g̃

∂r12
∓ f ∂g̃

∂r12
∓ f̃ ∂g

∂r12

)
+

10

3

√
10

7

(
1

r2
2

− 1

r2
1

)
sin4 θ12

r1r2

r12

[(
f
∂g

∂r12
− f̃ ∂g̃

∂r12

∓f ∂g̃

∂r12
± f̃ ∂g

∂r12

)
+

(
−g ∂f

∂r12
+ g̃

∂f̃

∂r12
∓ g ∂f̃

∂r12
± g̃ ∂f

∂r12

)]

+
4

3

√
10

7

(
1

r2
1

+
1

r2
2

)
cos θ12

(
5− cos2 θ12

) (
fg + f̃ g̃ ∓ fg̃ ∓ f̃g

)
+

20

3

√
10

7

(
1

r2
1

− 1

r2
2

)
cos θ12 sin2 θ12

(
fg − f̃ g̃ ∓ fg̃ ± f̃g

)
(4.2.33)

4.2.3 Basis set

The trial radial functions f (r1, r2, r12) and g (r1, r2, r12) are expanded in multi-exponent

Hylleraas type basis set as

f (r1, r2, r12) =

s1∑
k=1

rlk+3
1 rmk+1

2 rnk12

 p1∑
i=1

Ckiiηi(1)ηi(2) +

p1∑
i=1

p1∑
j>i

Ckijηi(1)ηj(2)

(4.2.34)

g (r1, r2, r12) =

s2∑
k=1

rlk+2
1 rmk+2

2 rnk12

 p2∑
i=1

Dkiiξi(1)ξi(2) +

p2∑
i=1

p2∑
j>i

Dkijξi(1)ξj(2)

(4.2.35)
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The characteristics of different parameters used in the above two equations (4.2.34) and

(4.2.35) are described below

1. (lk,mk, nk) ≥ (0, 0, 0).

2. s1 and s2 are the numbers of elements in the sets of the powers of r1, r2 and r12 for

pf and dd configurations respectively.

3. ηi(j) = e−ρirj and ξi(j) = e−νirj . where ρi and νi are the non-linear parameters for

pf and dd configurations respectively.

4. p1 and p2 denote the number of non-linear parameters for pf and dd configurations

respectively.

5. Ckij and Dkij are the linear variational parameters for pf and dd configurations re-

spectively.

6. The dimensions of the multi-exponent basis of pf and dd configurations are N1 =
p1(p1+1)

2 × s1 and N2 = p2(p2+1)
2 × s2 respectively. Hence the total dimension of the

wavefunction Ψ is N = N1 +N2

The non-linear parameters ρi and νi are selected as described in subsection 3.2.3. The

equations (4.2.34) and (4.2.35) can be rewritten as:

f (r1, r2, r12) =

N1∑
i=1

CiXi (r1, r2, r12) (4.2.36)

g (r1, r2, r12) =

N2∑
i=1

DiYi (r1, r2, r12) (4.2.37)

It is evident from the equation (4.2.30) that the necessary integrals for the calculation of

matrix elements of the Hamiltonian matrix H and overlap matrix S in the generalized

eigenvalue equation (3.2.59) are of the following forms:

〈O1F |O2G〉 =

∫
(O1F ) (O2G) dτ (4.2.38)

where the functions F and G are replaced by f , f̃ , g and g̃, as required. Using the integral

(4.2.38), the general form of matrix elements, where no mixing of pf and dd configurations
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takes place, may be written as:

〈O1f |O2f〉ij =
1

2

∫
[(O1Xi) (O2Xj) + (O1Xj) (O2Xi)] dτ

〈O1f̃ |O2f̃〉ij =
1

2

∫ [(
O1X̃i

)(
O2X̃j

)
+
(
O1X̃j

)(
O2X̃i

)]
dτ

〈O1f |O2f̃〉ij =
1

2

∫ [
(O1Xi)

(
O2X̃j

)
+ (O1Xj)

(
O2X̃i

)]
dτ

〈O1g|O2g〉ij =
1

2

∫
[(O1Yi) (O2Yj) + (O1Yj) (O2Yi)] dτ

〈O1g̃|O2g̃〉ij =
1

2

∫ [(
O1Ỹi

)(
O2Ỹj

)
+
(
O1Ỹj

)(
O2Ỹi

)]
dτ

〈O1g|O2g̃〉ij =
1

2

∫ [
(O1Yi)

(
O2Ỹj

)
+ (O1Yj)

(
O2Ỹi

)]
dτ

(4.2.39)

Other relevant general forms of the matrix elements where the mixing of pf and dd config-

urations has been considered, are given by

〈O1f |O2g〉ij =
1

2

∫
(O1Xi) (O2Yj) dτ

〈O1f̃ |O2g̃〉ij =
1

2

∫ (
O1X̃i

)(
O2Ỹj

)
dτ

〈O1f |O2g̃〉ij =
1

2

∫
(O1Xi)

(
O2Ỹj

)
dτ

〈O1f̃ |O2g〉ij =
1

2

∫ (
O1X̃i

)
(O2Yj) dτ

(4.2.40)

To visualize how the matrix looks like under the basis set expansion technique, let us take a

sample calculation with N1 = N2 = 2 i.e. f = C1X1 +C2X2 and g = D1Y1 +D2Y2. Hence,

we can write the Hamiltonian matrix H as

H =


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44


In this matrix H11, H12, H21 and H22 contain only pf terms, H33, H34, H43 and H44 contain

only dd terms and H13, H14, H23, H24, H31, H32, H41 and H42 contain pf − dd mixed terms.

Finally we solve the generalized eigenvalue equation [162]

H C = ES C (4.2.41)

where H is the Hamiltonian matrix, S is the overlap matrix, C is the column vector and E

is the energy eigenvalue.
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4.2.4 Basis integrals

The integrals appearing in the present calculation are of two types:

(i) The first type of the integrals is given by

A(m,n, l;α, β) =

∫ ∞
r1=0

∫ ∞
r2=0

∫ r1+r2

|r1−r2|
rm1 r

n
2 r

l
12e
−αr1−βr2dr1dr2dr12 (4.2.42)

with the conditions: m ≥ 0, n ≥ 0, l ≥ 0 and α, β > 0. This integral is evaluated as

described previously in equation (3.2.66).

(ii) Another type of integral is of the form

A(−1,m, l;α, β) =

∫ ∞
0

r−1
1 e−αr1dr1

∫ ∞
0

rm2 e
−βr2dr2

∫ r1+r2

|r1−r2|
rl12dr12

=

∫ ∞
0

r−1
1 e−αr1dr1

∫ r1

0
rm2 e

−βr2dr2

∫ r1+r2

r1−r2
rl12dr12

+

∫ ∞
0

rm2 e
−βr2dr2

∫ r2

0
r1
−1e−αr1dr1

∫ r1+r2

r2−r1
rl12dr12

= I1 + I2 (4.2.43)

where I1 and I2 are given by

I1 =

∫ ∞
0

r−1
1 e−αr1dr1

∫ r1

0
rm2 e

−βr2dr2

∫ r1+r2

r1−r2
rl12dr12

=
1

(l + 1)

∫ ∞
0

r−1
1 e−αr1dr1

∫ r1

0
rm2 e

−βr2dr2

[
(r1 + r2)l+1 − (r2 − r1)l+1

]
(4.2.44)

I2 =

∫ ∞
0

rm2 e
−βr2dr2

∫ r2

0
r1
−1e−ar1dr1

∫ r1+r2

r2−r1
rl12dr12

=
1

(l + 1)

∫ ∞
0

rm2 e
−βr2dr2

∫ r2

0
r1
−1e−αr1dr1

[
(r1 + r2)l+1 − (r2 − r1)l+1

]
(4.2.45)

For convenience, we describe the evaluation of I2 first. Let us take l + 1 = n and use

the binomial expansion to get the following relation

(r1 + r2)n − (r2 − r1)n = 2

n−1
2∑
i=0

n!

(n− 2i− 1)! (2i+ 1)!
rn−2i−1

2 r2i+1
1 (n = odd)
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= 2

n−2
2∑
i=0

n!

(n− 2i− 1)! (2i+ 1)!
rn−2i−1

2 r2i+1
1 (n = even)

(4.2.46)

For even l i.e. odd n, equation (4.2.45) becomes

I2 =
2

n

n−1
2∑
i=0

n!

(n− 2i− 1)! (2i+ 1)!

∫ ∞
0

rm+n−2i−1
2 e−βr2dr2

∫ r2

0
r1

2ie−αr1dr1

(4.2.47)

Using the standard integral [156]

∫ R

0
rne−νrdr =

n!

νn+1
− e−νR

n∑
k=0

n!

k!

Rk

νn−k+1

equation (4.2.47) can be written as

I2 =
2

n

n−1
2∑
i=0

n!(m+ n− 2i− 1)!

(2i+ 1)(n− 2i− 1)!

1

α2i+1βm+n−2i

− 2

n

n−1
2∑
i=0

2i∑
j=0

n!(m+ n− j − 1)!

(2i+ 1)(n− 2i− 1)!(2i− j)!
1

αj+1(α+ β)m+n−j (4.2.48)

When l is odd i.e. n is even, then I2 will be given by,

I2 =
2

n

n−2
2∑
i=0

n!(m+ n− 2i− 1)!

(2i+ 1)(n− 2i− 1)!

1

α2i+1βm+n−2i

− 2

n

n−2
2∑
i=0

2i∑
j=0

n!(m+ n− j − 1)!

(2i+ 1)(n− 2i− 1)!(2i− j)!
1

αj+1(α+ β)m+n−j (4.2.49)

Following the similar procedure we formulate I1 for two different cases like, even l,

I1 =
2

n

(m+ n)!

βm+n+1
ln

(
α+ β

α

)

+
2

n

n−1
2
−1∑

i=0,n>1

n!(m+ 2i+ 1)!

(n− 2i− 1)(2i+ 1)!

1

αn−2i−1βm+2i+2

− 2

n

n−1
2
−1∑

i=0

m+2i+1∑
j=0

(m+ 2i+ 1)!n!(m+ n− j − 1)!

(m+ 2i+ 1− j)!(2i+ 1)!(n− 2i− 1)!

1

(α+ β)m+n−jβj+1
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− 2

n

m+n−1∑
j=0

(m+ n)!

(m+ n− j)
1

(α+ β)m+n−jβj+1
(4.2.50)

and odd l,

I1 =
2

n

n−2
2∑
i=0

n!(m+ 2i+ 1)!

(2i+ 1)!(n− 2i− 1)

1

αn−2i−1βm+2i+2

− 2

n

n−2
2∑
i=0

m+2i+1∑
j=0

n!(m+ 2i+ 1)!(m+ n− j − 1)!

(2i+ 1)!(n− 2i− 1)!(m+ 2i+ 1− j)!
1

βj+1(α+ β)m+n−j

(4.2.51)

4.3 Results and Discussions

In the first phase, we estimate the energy eigenvalues of metastable bound 1,3Fe states of

several two-electron systems (Z = 2 − 18) under ‘free’ environment by sake of considering

trial wavefunction consisting of only the pf -part. A slow convergence pattern of the energy

eigenvalues of the metastable bound states (MBSs) is observed. In the next phase, the

dd-part is included in the trial wavefunction. Similarly, the effect of the mixing of pf and

dd-parts in the trial wavefunction is also demonstrated in case of the resonance 1,3Fe states

of free He atom.

In the second part of this section we have studied the variation of different structural prop-

erties of 1,3Fe states of two-electron systems embedded under classical WCP environment.

The variation of transition energies for the dipole allowed transitions 1,3Fe →1,3 Do are

studied with respect to screening lengths of classical WCP in a simplistic manner by only

considering pf -part in the trial wavefunction. Then we have taken more appropriate trial

wavefunction consisted of both pf and dd-parts for He atom embedded in classical WCP and

done an extensive study on the variation of different structural properties of both metastable

bound and resonance 1,3Fe states with respect to different plasma screening lengths.

4.3.1 Structural properties under free environment

The energy eigenvalues of 1,3Fe states of He atom are estimated by considering only the

most dominant configuration pf -part of the wavefunction (4.2.34). The radial function

f (r1, r2, r12) is expanded using nine-exponent (p = 9) Hylleraas basis set with N = 900.

Figure (4.3.1) shows the stabilization diagram of the first 40 energy eigenroots with respect

to 288 different values of γ1, where γ1 is the common ratio in the geometrical sequence

following ρi = ρi−1γ1. There are two different classes of states in the figure:

1. Below He+(2p) threshold energy −0.5 a.u., the energy eigenroots are insensitive to
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Figure 4.3.1: Stabilization diagram of 3Fe states of He atom upto He+(3p) ionization thresh-
old of energy −0.2222 a.u.

the variation in γ1. These are metastable bound 3Fe states.

2. Above He+(2p) threshold the energy of each eigenroot increases as γ1 is increased.

These eigenroots produce flat plateaus in the vicinity of avoided crossings which shows

a clear signature of resonance states of 3Fe symmetry.

The investigation on the convergence of energy eigenvalues with respect to the size of the

wavefunction of the metastable bound 1,3Fe states of He atom are given in table (4.3.1).

Table 4.3.1: Energy eigenvalues (−E in a.u.) of metastable bound 1,3Fe states having configurations

2pnf [n = 4− 20] of free He atom for basis size N = 450(s1 = 10), 675(s1 = 15) and 900(s1 = 20).

1Fe 3Fe

State N −E State N −E
2p4f 450 0.5319942932 2p4f 450 0.5319856206

675 0.5319943001 675 0.5319856301

900 0.5319943002 900 0.5319856694

0.5319954369509a 0.5319913263465a

2p5f 450 0.5203849389 2p5f 450 0.5203783809

675 0.5203849437 675 0.5203784120
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Continuation of Table (4.3.1)

1Fe 3Fe

State N −E State N −E
900 0.5203849438 900 0.5203784183

0.5203856710486a 0.5203828592839a

2p6f 450 0.5141127585 2p6f 450 0.5141083122

675 0.5141127614 675 0.5141083351

900 0.5141127621 900 0.5141083381

0.5141132181781a 0.5141114291180a

2p7f 450 0.5103454370 2p7f 450 0.5103423957

675 0.5103454391 675 0.5103424102

900 0.5103454396 900 0.5103424135

0.510345738040a 0.510344564686a

2p8f 450 0.5079073308 2p8f 450 0.5079052020

675 0.5079073438 675 0.5079052108

900 0.5079073441 900 0.5079052145

0.50790754830b 0.5079067461a

2p9f 450 0.5062390572 2p9f 450 0.5062379263

675 0.5062395124 675 0.5062379456

900 0.5062395140 900 0.5062379673

0.50623965811b 0.506239088a

2p10f 450 0.5050424416 2p10f 450 0.5050473631

675 0.5050486254 675 0.5050474167

900 0.5050486314 900 0.5050474726

0.50504873915b 0.50504832108b

2p11f 450 0.5041085253 2p11f 450 0.5041654011

675 0.5041686197 675 0.5041670098

900 0.5041687782 900 0.5041677606

0.504168863147b 0.50416854777b

2p12f 450 0.5033383724 2p12f 450 0.5034782360

675 0.5034979961 675 0.5034899203

900 0.5035003593 900 0.5034985413

0.503500444342b 0.50350020079b

2p13f 450 0.5026656389 2p13f 450 0.5029345287

675 0.5029675061 675 0.5029593264

900 0.5029805595 900 0.5029758865

0.502980780358b 0.50298058847b

2p14f 450 0.5020002734 2p14f 450 0.5024906614

675 0.5025467159 675 0.5025275941

900 0.5025670113 900 0.5025579394

0.502568796718b 0.50256864290b

2p15f 450 0.4979800866 2p15f 450 0.5020901684

675 0.5020136499 675 0.50219931652

900 0.5022266858 900 0.50221121909
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Continuation of Table (4.3.1)

1Fe 3Fe

State N −E State N −E
0.502236675558b 0.50223655040b

2p16f 450 0.4886154512 2p16f 450 0.5017092551

675 0.5016587221 675 0.5018079826

900 0.5019354674 900 0.5018829299

0.5019650343034b 0.50196493112b

2p17f 450 0.4710085902 2p17f 450 0.5013595350

675 0.5003490984 675 0.5013856792

900 0.5016927483 900 0.5014888818

0.501740032588b 0.50173994653b

2p18f 450 0.4401811708 2p18f 450 0.5006619355

675 0.4973037549 675 0.5009365421

900 0.5014930654 900 0.5010619401

0.5015515739b 0.5015515014b

2p19f 450 0.3887485157 2p19f 450 0.4991539664

675 0.4920110819 675 0.5001065942

900 0.5007156652 900 0.5007815172

0.501392b 0.5013921b

2p20f 450 0.3040516778 2p20f 450 0.4980315374

675 0.4833901370 675 0.4981659745

900 0.5006178973 900 0.4987499987

a [240],b [280]

The lowest bound energy values of the 1Fe states are estimated using three different sets of

the limiting values of nine-exponents (ρ1, ρ9) as (0.13, 4.0), (0.1, 4.0) and (0.01, 4.0), whereas

the same for 3Fe states are estimated using four different sets of (ρ1, ρ9) as (0.25, 4.0),

(0.1, 4.0), (0.05, 4.0) and (0.01, 4.0). Table (4.3.1) shows that the convergence of energy

eigenvalues decreases from lower to upper metastable bound 1,3Fe states. The energy values

are compared with the available results in literature [240,280] as shown in table (4.3.1). It

can be seen from the table (4.3.1) that, the energy eigenvalues obtained by Kar et. al. [240]

and Eiglsperger et. al. [280] are more negative than our present calculated values.

The energy eigenvalues and effective quantum number (n∗) of metastable bound
1,3Fe states of Li+ to Ar16+ (Z = 3−18) are given in the table (4.3.2). The effective quantum

numbers (n∗) are calculated from the equation from the quantum defect theory [281]

E = −1

2

[(
Z

Ni

)2

+

(
Z − 1

n∗

)2
]

(4.3.1)

where, E is the energy of the state below complete ionization and Ni is the inner electron

quantum number. In the present case Ni = 2. Our results are compared with those available
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in literature [282] which is also reflected in the table (4.3.2). The comparison shows similar

features as that of the He atom. However, for some of the states, no such data are available

in literature for comparison.

Table 4.3.2: Energy eigenvalues (−E in a.u.) and effective quantum numbers (n∗) of metastable

bound 1,3Fe states having configurations 2pnf [n = 4− 20] of Li+ to Ar16+ (Z = 3− 18) ions.

1Fe 3Fe

Ion State -E n∗ -E n∗

Li+ 2p4f 1.252511 3.960419 1.252420 3.961833

1.252515231764a 3.960353617514a 1.252450638234a 3.961357068025a

2p5f 1.206292 4.960108 1.206227 4.962092

1.20629449566a 4.96003141641a 1.206251595683a 4.961340665488a

2p6f 1.181305 5.959935 1.181262 5.962212

1.181306379a 5.959861923a 1.1812794195a 5.96128922690a

2p7f 1.166288 6.959901 1.166260 6.962262

1.1662896a 6.95976635a 1.1662720a 6.96125015a

2p8f 1.156566 7.959856 1.156546 7.962379

2p9f 1.149904 8.961495 1.149899 8.962394

2p10f 1.145151 9.962462 1.145151 9.962462

2p11f 1.141650 10.959932 1.141642 10.962566

2p12f 1.138982 11.959977 1.138976 11.962544

2p13f 1.136908 12.959719 1.136903 12.962441

2p14f 1.135263 13.959756 1.135259 13.962477

2p15f 1.133936 14.960407 1.133933 14.962919

2p16f 1.132852 15.959705 1.132849 15.962754

2p17f 1.131953 16.960119 1.131951 16.962558

2p18f 1.131200 17.960530 1.131199 17.961979

2p19f 1.130563 18.960966 1.130558 18.969493

2p20f 1.130111 19.781629 1.130038 19.924430

Be2+ 2p4f 2.285835 3.967789 2.285581 3.969553

2.285840435960a 3.967751130897a 2.285639440599a 3.969146875345a

2p5f 2.182357 4.967582 2.182182 4.969967

2.182359664331a 4.967545627247a 2.182228822190a 4.969328681292a

2p6f 2.126366 5.967482 2.126253 5.970152

2.1263673969a 5.96744929071a 2.126285925a 5.9693738957a

2p7f 2.092697 6.967443 2.092622 6.970263

2.0926982a 6.96739779a 2.0926454a 6.9693829a

2p8f 2.070889 7.967404 2.070837 7.970328

2p9f 2.055960 8.967418 2.055923 8.970384

2p10f 2.045295 9.967383 2.045268 9.970355

2p11f 2.037412 10.967327 2.037390 10.970553

2p12f 2.031421 11.967302 2.031404 11.970541

2p13f 2.026761 12.967465 2.026748 12.970616
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

2p14f 2.023067 13.967243 2.023056 13.970575

2p15f 2.020087 14.967481 2.020078 14.970835

2p16f 2.017650 15.967389 2.017643 15.970556

2p17f 2.015631 16.967305 2.015625 16.970563

2p18f 2.013939 17.967616 2.013934 17.970839

2p19f 2.012508 18.967597 2.012503 18.971390

2p20f 2.011286 19.968077 2.011282 19.971616

B3+ 2p4f 3.631775 3.973172 3.631307 3.975008

3.63178147087a 3.97314696448a 3.631390336345a 3.974681092280a

2p5f 3.448482 4.973017 3.448167 4.975440

3.44848492847a 4.97299437381a 3.44823320775a 4.97493037865a

2p6f 3.349239 5.972957 3.349037 5.975650

3.349240870a 5.972932525a 3.349084879a 5.975011116a

2p7f 3.289536 6.972917 3.289402 6.975759

3.2895368a 6.9729005a 3.2894359a 6.9750395a

2p8f 3.250851 7.972906 3.250759 7.975822

2p9f 3.224363 8.972896 3.224297 8.975878

2p10f 3.205425 9.973543 3.205376 9.976583

2p11f 3.189685 11.120984 3.189641 11.124768

2p12f 3.178997 12.171951 3.178965 12.175559

2p13f 3.170688 13.232561 3.170662 13.236328

2p14f 3.164094 14.305068 3.164070 14.309461

2p15f 3.158758 15.394183 3.158735 15.399430

2p16f 3.154394 16.497405 3.154373 16.503302

2p17f 3.150779 17.616189 3.150760 17.622684

2p18f 3.147739 18.756824 3.147734 18.758887

2p19f 3.145161 19.919983 3.145124 19.938287

2p20f 3.142965 21.102377 3.142716 21.250158

C4+ 2p4f 5.290270 3.977107 5.289558 3.978900

5.29027795753a 3.97708682340a 5.289661360120a 3.978639250204a

2p5f 5.004636 4.976980 5.004162 4.979319

5.00463919882a 4.97696418412a 5.00424519430a 4.97890824179a

2p6f 4.849907 5.976937 4.849606 5.979510

4.849908858a 5.976921310a 4.849665342a 5.979002189a

2p7f 4.756793 6.976915 4.756594 6.979620

4.75679392a 6.9769022a 4.75663661a 6.979040226a

2p8f 4.696445 7.976907 4.696308 7.979690

2p9f 4.655116 8.976907 4.655019 8.979715

2p10f 4.625579 9.976920 4.625508 9.979742
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

2p11f 4.603741 10.976902 4.603687 10.979760

2p12f 4.587141 11.976881 4.587099 11.979768

2p13f 4.574225 12.977167 4.574192 12.980053

2p14f 4.563980 13.977609 4.563954 13.980450

2p15f 4.555713 14.978790 4.555691 14.981748

2p16f 4.548938 15.982028 4.548919 15.985132

2p17f 4.543310 16.988730 4.543294 16.991869

2p18f 4.538579 18.000291 4.538565 18.003558

2p19f 4.534542 19.023099 4.534529 19.026680

2p20f 4.531002 20.079835 4.530991 20.083399

N5+ 2p4f 7.261297 3.980066 7.260319 3.981780

7.26130514460a 3.98005218186a 7.26043935330a 3.981569320540a

2p5f 6.850806 4.979961 6.850162 4.982172

6.85080960411a 4.97994902415a 6.85025899833a 4.981839016900a

2p6f 6.628362 5.979929 6.627954 5.982354

6.628363930a 5.979917697a 6.628024153a 5.9819369788a

2p7f 6.494464 6.979916 6.494196 6.982449

6.4944651a 6.9799055a 6.4942457a 6.98197886a

2p8f 6.407668 7.979909 6.407483 7.982521

2p9f 6.348211 8.980044 6.348079 8.982700

2p10f 6.305718 9.980115 6.305621 9.982795

2p11f 6.274294 10.980322 6.274221 10.983007

2p12f 6.250405 11.980607 6.250348 11.983331

2p13f 6.230878 13.038673 6.230827 13.041814

2p14f 6.216116 14.055261 6.216075 14.058425

2p15f 6.204192 15.076329 6.204159 15.079471

2p16f 6.194429 16.101480 6.194401 16.104728

2p17f 6.186279 17.138800 6.186257 17.141878

2p18f 6.179393 18.191342 6.179374 18.194520

2p19f 6.173492 19.266428 6.173476 19.269607

2p20f 6.168348 20.377538 6.168335 20.380595

O6+ 2p4f 9.544842 3.982365 9.543587 3.983983

9.54485107280a 3.98235280803a 9.54371957137a 3.983812014932a

2p5f 8.986986 4.982273 8.986164 4.984349

8.98698988676a 4.98226347983a 8.98627272866a 4.984074551558a

2p6f 8.684600 5.982251 8.684082 5.984515

8.684602473a 5.982239697a 8.684160333a 5.9841724017a

2p7f 8.502546 6.982246 8.502206 6.984609

8.50254794a 6.98223230a 8.5022626a 6.98421535a
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

2p8f 8.384518 7.982239 8.384284 7.984669

2p9f 8.303666 8.982246 8.303499 8.984717

2p10f 8.245861 9.982475 8.245738 9.984973

2p11f 8.203121 10.982612 8.203028 10.985127

2p12f 8.170624 11.982929 8.170552 11.985458

2p13f 8.145344 12.983282 8.145287 12.985829

2p14f 8.125210 13.988255 8.125164 13.990825

2p15f 8.107893 15.069069 8.107851 15.072002

2p16f 8.094587 16.094123 8.094553 16.097016

2p17f 8.083519 17.127359 8.083490 17.130333

2p18f 8.074224 18.168157 8.074199 18.171217

2p19f 8.066230 19.233382 8.066213 19.235851

2p20f 8.059229 20.338356 8.059188 20.345399

F7+ 2p4f 12.140900 3.984194 12.139356 3.985721

12.14090927076a 3.98418501875a 12.13950016801a 3.985578204205a

2p5f 11.413173 4.984113 11.412168 4.986059

11.41317664739a 4.98410609294a 11.41228577247a 4.985830437001a

2p6f 11.018620 5.984096 11.017988 5.986213

11.018622523a 5.984087511a 11.018073607a 5.9859262493a

2p7f 10.781034 6.984122 10.780619 6.986332

10.7810413a 6.9840831a 10.7806871a 6.985969246a

2p8f 10.626979 7.984215 10.626684 7.986562

2p9f 10.521423 8.984534 10.521219 8.986847

2p10f 10.445916 9.985718 10.445777 9.987881

2p11f 10.389938 10.990131 10.389834 10.992289

2p12f 10.347096 12.003409 10.347009 12.005761

2p13f 10.313940 13.014067 10.313879 13.016168

2p14f 10.287695 14.024516 10.287646 14.026629

2p15f 10.266389 15.044133 10.266342 15.046635

2p16f 10.248509 16.096286 10.248468 16.098959

2p17f 10.233047 17.209515 10.232999 17.213339

2p18f 10.211977 19.181068 10.211908 19.188680

2p19f 10.186256 22.856023 10.186170 22.872085

2p20f 10.177034 24.798841 10.176961 24.816255

Ne8+ 2p4f 15.049466 3.985684 15.047626 3.987123

15.04947593532a 3.98567656525a 15.04778041165a 3.987002559633a

2p5f 14.129364 4.985612 14.128172 4.987436

14.12936788309a 4.98560578775a 14.12829797405a 4.987243469809a

2p6f 13.630421 5.985596 13.629671 5.987583
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

13.630422927a 5.985590933a 13.629763942a 5.9873363597a

2p7f 13.329943 6.985595 13.329452 6.987662

13.32994444a 6.98558854a 13.3295192a 6.98737884a

2p8f 13.135092 7.985630 13.134756 7.987743

2p9f 13.001597 8.985661 13.001357 8.987812

2p10f 12.906154 9.985783 12.905978 9.987948

2p11f 12.835548 10.986268 12.835416 10.988429

2p12f 12.781773 11.988858 12.781669 11.991071

2p13f 12.739992 12.990598 12.739911 12.992790

2p14f 12.706857 13.992406 12.706793 13.994571

2p15f 12.680121 14.994961 12.680068 14.997167

2p16f 12.658004 16.010079 12.657957 16.012461

2p17f 12.639445 17.042215 12.639406 17.044599

2p18f 12.622479 18.184305 12.622428 18.188092

2p19f 12.604086 19.725651 12.604043 19.729727

2p20f 12.592190 20.959726 12.592141 20.965299

Na9+ 2p4f 18.270539 3.986919 18.268398 3.988277

18.27054868630a 3.98691334478a 18.26856003131a 3.988174230763a

2p5f 17.135558 4.986855 17.134175 4.988571

17.13556233814a 4.98684914338a 17.13430934555a 4.988403784836a

2p6f 16.520001 5.986841 16.519134 5.988703

16.520002960a 5.986837049a 16.519231389a 5.9884933851a

2p7f 16.149256 6.986839 16.148688 6.988777

16.14925691a 6.98683603a 16.14875893a 6.98853510a

2p8f 15.908826 7.986843 15.908437 7.988826

2p9f 15.744092 8.986848 15.743816 8.988852

2p10f 15.626317 9.986856 15.626114 9.988879

2p11f 15.539211 10.986875 15.539057 10.988918

2p12f 15.472528 11.994720 15.472856 11.989063

2p13f 15.420942 12.998155 15.421353 12.989138

2p14f 15.379978 14.003405 15.380494 13.989257

2p15f 15.346841 15.012883 15.347535 14.989455

2p16f 15.319621 16.028399 15.320534 15.990935

2p17f 15.296921 17.053775 15.297692 17.015664

2p18f 15.277685 18.096176 15.278779 18.031692

2p19f 15.261007 19.173631 15.260964 19.176663

2p20f 15.246294 20.303240 15.246355 20.298136

Mg10+ 2p4f 21.804116 3.987960 21.801669 3.989243

21.80412595849a 3.98795494500a 21.80183895368a 3.989154246319a
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

2p5f 20.431755 4.987900 20.430180 4.989517

20.43175918580a 4.98789617386a 20.43031995723a 4.989372864234a

2p6f 19.687360 5.987890 19.686374 5.989640

19.687362146a 5.987886177a 19.686476020a 5.9894590800a

2p7f 19.238977 6.987890 19.238332 6.989710

19.23897839a 6.98788616a 19.23840642a 6.989499690a

2p8f 18.948178 7.987902 18.947737 7.989761

2p9f 18.748924 8.987912 18.748610 8.989797

2p10f 18.606463 9.987931 18.606232 9.989834

2p11f 18.501095 10.987975 18.500921 10.989883

2p12f 18.420940 11.988576 18.420806 11.990484

2p13f 18.358596 12.988978 18.358489 12.990916

2p14f 18.308896 13.994956 18.308811 13.996882

2p15f 18.267538 15.037822 18.267466 15.039846

2p16f 18.232922 16.116563 18.232876 16.118155

2p17f 18.204634 17.194470 18.204563 17.197454

2p18f 18.181584 18.253195 18.181526 18.256111

2p19f 18.161895 19.331296 18.161838 19.334700

2p20f 18.144794 20.441013 18.144739 20.444896

Al11+ 2p4f 25.650197 3.988848 25.647442 3.990063

2p5f 24.017954 4.988793 24.016185 4.990319

2p6f 23.132498 5.988785 23.131391 5.990436

2p7f 22.599107 6.988786 22.598384 6.990501

2p8f 22.253153 7.988813 22.252658 7.990566

2p9f 22.016098 8.988837 22.015745 8.990618

2p10f 21.846601 9.988900 21.846342 9.990694

2p11f 21.721220 10.989122 21.721025 10.990919

2p12f 21.625579 11.993058 21.625427 11.994879

2p13f 21.551393 12.994549 21.551273 12.996378

2p14f 21.492519 13.996722 21.492424 13.998532

2p15f 21.445031 14.999273 21.444953 15.001102

2p16f 21.406172 16.002219 21.406106 16.004098

2p17f 21.373949 17.006348 21.373892 17.008295

2p18f 21.346587 18.025782 21.346539 18.027734

2p19f 21.323359 19.051988 21.323317 19.054005

2p20f 21.302666 20.130941 21.302629 20.133038

Si12+ 2p4f 29.808779 3.989615 29.805714 3.990768

2p5f 27.894154 4.989564 27.892189 4.991009

2p6f 26.855415 5.989556 26.854187 5.991118
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

2p7f 26.229645 6.989560 26.228843 6.991181

2p8f 25.823763 7.989567 25.823215 7.991221

2p9f 25.545631 8.989574 25.545241 8.991251

2p10f 25.346763 9.989584 25.346476 9.991278

2p11f 25.199667 10.989620 25.199451 10.991316

2p12f 25.087774 11.990110 25.087606 11.991824

2p13f 25.000743 12.990352 25.000611 12.992064

2p14f 24.931698 13.990664 24.931592 13.992382

2p15f 24.876004 14.991052 24.875918 14.992767

2p16f 24.830405 15.992084 24.830333 15.993826

2p17f 24.792037 17.010200 24.791975 17.012006

2p18f 24.759949 18.029525 24.759899 18.031259

2p19f 24.730700 19.138353 24.730647 19.140552

2p20f 24.706440 20.231656 24.706399 20.233665

P13+ 2p4f 34.279865 3.990284 34.276486 3.991379

2p5f 32.060355 4.990236 32.058194 4.991607

2p6f 30.856109 5.990230 30.854760 5.991710

2p7f 30.130594 6.990231 30.129713 6.991767

2p8f 29.659995 7.990235 29.659393 7.991802

2p9f 29.337504 8.990243 29.337076 8.991831

2p10f 29.106914 9.990249 29.106599 9.991852

2p11f 28.936353 10.990264 28.936115 10.991876

2p12f 28.806642 11.990433 28.806457 11.992060

2p13f 28.705727 12.990535 28.705581 12.992168

2p14f 28.625668 13.990657 28.625552 13.992278

2p15f 28.561089 14.990823 28.560995 14.992439

2p16f 28.508229 15.991303 28.508151 15.992931

2p17f 28.464302 16.994948 28.464236 16.996601

2p18f 28.426749 18.021466 28.426693 18.023139

2p19f 28.395128 19.047073 28.395079 19.048800

2p20f 28.366136 20.159605 28.366097 20.161235

S14+ 2p4f 39.063452 3.990872 39.059758 3.991916

2p5f 36.516557 4.990827 36.514199 4.992130

2p6f 35.134583 5.990821 35.133111 5.992229

2p7f 34.301950 6.990823 34.300989 6.992283

2p8f 33.761851 7.990826 33.761195 7.992314

2p9f 33.391724 8.990828 33.391257 8.992337

2p10f 33.127066 9.990830 33.126723 9.992351

2p11f 32.931304 10.990831 32.931044 10.992365
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

2p12f 32.782444 11.990841 32.782244 11.992373

2p13f 32.666619 12.990845 32.666462 12.992376

2p14f 32.574731 13.990845 32.574604 13.992391

2p15f 32.500609 14.990873 32.500506 14.992416

2p16f 32.439946 15.991035 32.439860 15.992598

2p17f 32.389652 16.991738 32.389581 16.993286

2p18f 32.346881 18.008851 32.346819 18.010461

2p19f 32.310679 19.029190 32.310626 19.030814

2p20f 32.278212 20.108901 32.278167 20.110527

Cl15+ 2p4f 44.159541 3.991393 44.155530 3.992389

2p5f 41.262760 4.991351 41.260203 4.992593

2p6f 39.690835 5.991345 39.689240 5.992686

2p7f 38.743714 6.991348 38.742674 6.992737

2p8f 38.129331 7.991352 38.128620 7.992770

2p9f 37.708279 8.991378 37.707774 8.992812

2p10f 37.407184 9.991480 37.406812 9.992929

2p11f 37.184473 10.991578 37.184192 10.993036

2p12f 37.015107 11.991786 37.014891 11.993241

2p13f 36.883273 12.992484 36.883102 12.993949

2p14f 36.778449 13.995845 36.778312 13.997313

2p15f 36.694092 14.997323 36.693981 14.998786

2p16f 36.625059 15.999056 36.624966 16.000544

2p17f 36.567812 17.001815 36.567733 17.003332

2p18f 36.519640 18.009615 36.519572 18.011167

2p19f 36.478161 19.037881 36.478103 19.039445

2p20f 36.442081 20.091848 36.442022 20.093717

Ar16+ 2p4f 49.568131 3.991858 49.563803 3.992810

2p5f 46.298963 4.991818 46.296208 4.993004

2p6f 44.524864 5.991814 44.523147 5.993092

2p7f 43.455887 6.991816 43.454767 6.993141

2p8f 42.762436 7.991821 42.761671 7.993173

2p9f 42.287194 8.991830 42.286649 8.993201

2p10f 41.947327 9.991958 41.946927 9.993339

2p11f 41.695944 10.992045 41.695642 10.993433

2p12f 41.504770 11.992248 41.504538 11.993633

2p13f 41.356011 12.992546 41.355828 12.993935

2p14f 41.237637 13.996279 41.237489 13.997683

2p15f 41.142415 14.997749 41.142295 14.999150

2p16f 41.064482 15.999591 41.064383 16.000994
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Continuation of Table (4.3.2)

1Fe 3Fe

Ion State -E n∗ -E n∗

2p17f 40.999872 17.002176 40.999787 17.003622

2p18f 40.945690 18.006010 40.945617 18.007484

2p19f 40.898984 19.030762 40.898919 19.032313

2p20f 40.858603 20.073679 40.858545 20.075302

a [282]

For the determination of the resonance parameters i.e. energy (Er) and width (Γ) of 3Fe

states below He+(3p) threshold of free He atom, we have used stabilization method. The

resonance parameters are estimated by calculating density of states (DOS) ρQ(E) from

equation (3.2.76) and fitting those ρQ(E) by Lorentzian profile given in equation (3.2.77).

Er and Γ for first four 3Fe states below He+(3p) energy threshold are given in table (4.3.3)

and compared with the results available in literature [281,283–286]. The comparison shows

that the present calculated Er values are slightly more positive than the one obtained in

previous works [281, 283–286]. Thus the trial wavefunction containing only pf terms fails

to achieve the desired accuracy.

The reason behind the loss of precision in both the metastable bound and the resonance state

calculations is due to the non-inclusion of the dd-part (Ψdd) explicitly in the wavefunction

(4.2.1), as the mere basis-set expansion of Ψpf cannot include the dd–configuration in the

radial part explicitly. Thus, for the further analysis we will use the general wavefunction

(4.2.1) of Fe states where both pf and dd parts are expanded in Hylleraas basis-set. The

variational upper-bound of energy eigenvalues of the metastable bound 3Fe states having

configurations 2pnf [n > 4] are estimated using following two techniques:

1. In the first method we have taken double exponent basis set expansions (4.2.34) and

(4.2.35), with p1 = p2 = 2 which implies that we have considered two sets of non-linear

parameters (ρ1,ρ2) and (ν1,ν2) for pf and dd–configurations, respectively. These non-

linear parameters are optimized using Nelder-Mead algorithm [161]. The details of the

optimization procedure is described in the subsection 3.2.3. Table (4.3.4) shows the

optimized energy eigenvalues and non-linear parameters for 2pnf [n = 4− 6] configu-

rations of 3Fe states of He atom for different basis size (N). For further improvement

of our present results, we have fixed the optimized non-linear parameters ρ1, ρ2, ν1

and ν2 for the highest value of N as given in the table (4.3.4) and then increased N

to achieve the desired level of accuracy in the energy eigenvalues. The 2nd and 3rd

columns of table (4.3.5) show the energy eigenvalues of 3Fe(2pnf ;n = 4 − 9) states

for N = 750 and N = 900 terms in the basis set respectively. The energy eigenvalues

of 2pnf(n = 4 − 6) are converged upto 11-th decimal place whereas the same for

2pnf(n = 7 − 9) states show convergence upto 8-th decimal place. The process of
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Table 4.3.3: Positions (−Er in a.u.) and widths (Γ in a.u.) of first four resonance states of
(3Fe) below He+(3p) threshold. The notation P [−Q] stands for P × 10−Q.

Present work Other works

States −Er Γ −Er Γ

3Fe(1) 0.26607 8.34[-5] 0.31069a 1.98[-3]a

0.3111b 2.131[-3]b

0.310725c 1.95 [-3]c

0.309915d

0.310749d
3Fe(2) 0.24801 4.30[-5] 0.262825a 4.5[-4]a

0.2628b 4.77[-4]b

0.26283c 4.4[-4]c

0.26264d

0.262598e
3Fe(3) 0.24426 6.12[-7] 0.25826a 1.68[-4]a

0.2583b 1.83[-4]b

0.258275c 1.5[-4]c

0.258205d

0.258199e
3Fe(4) 0.23434 1.57[-5] 0.246805a 2.1[-4]a

0.2468b 2.27[-4]b

0.246715c

0.246653d

a [283], b [284], c [285], d [286] and e [281]

diagonalization using double–exponent basis is quite involving and time consuming

because, in this process, one have to pick a particular energy-root (or configuration)

to optimize at a lower basis and then carry out further calculation at a higher basis,

say for example, N = 750 or 900.

2. As an alternative to the previous method, one-shot diagonalization using nine–exponent

basis (p1 = p2 = 9) is used to estimate the energy eigenvalues of metastable bound
3Fe states. Two types of nine–exponent basis sets have been considered − symmet-

ric and asymmetric. In symmetric basis, the number of powers of (r1, r2, r12) in the

basis set expansions (4.2.34) and (4.2.35), are equal i.e. s1 = s2, while for the later

case s1 > s2(= 2) is considered. The 4-th and 5-th columns of table (4.3.5) show the

convergence behavior of the energy eigenvalues of 3Fe(2pnf, n = 4−18) states for sym-

metric basis corresponding to N = 900(s1 = s2 = 10) and N = 1530(s1 = s2 = 17)
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respectively. Similarly the last two columns of table (4.3.5) show the convergence be-

havior of the energy eigenvalues of 3Fe(2pnf, n = 4− 22) states for asymmetric basis

corresponding to N = 1350(s1 = 28, s2 = 2) and N = 1530(s1 = 32, s2 = 2) respec-

tively. It is clear from the table (4.3.5) that the asymmetric nine-exponent basis with

N = 1530 yields lower variational energy eigenvalues for most of the configurations.

The lowest energy eigenvalues obtained in the present work along with those available in

literature [240, 280, 281, 286] are given in table (4.3.6). The values of effective quantum

number n∗ are also given in table (4.3.6).

Table 4.3.6: Comparison of energy eigenvalues (−E in a.u.) and effective quantum number (n∗) of

metastable bound 2pnf 3Fe [n = 4− 22] states of helium.

Present work Other works

n −E n∗ −E n∗

4 0.5319913263513 3.9534 0.5319913263465c 3.953382897c

0.531968a 3.95483a

0.531985b

0.5319913251d

5 0.5203828613614 4.9528 0.5203828592839c 4.953382897c

0.520367a 4.95477a

0.520375b

0.5203828583d

6 0.5141114292752 5.9525 0.5141114291180c 5.952501354c

0.514101a 5.95476a

0.514105b

0.5141114284d

7 0.5103445647079 6.9523 0.510344564686c 6.95230621c

0.51034456422d

8 0.5079067462761 7.9522 0.5079067461c 7.9521782c

0.50790674595d

9 0.5062390886855 8.9521 0.506239088c 8.952090c

0.50623908834d

10 0.5050483266668 9.9520 0.50504832108d

11 0.5041685678390 10.9520 0.50416854777d

12 0.5035002056984 11.9519 0.50350020079d

13 0.5029805937175 12.9519 0.50298058847d

14 0.5025688702456 13.9513 0.50256864290d

15 0.5022365925360 14.9517 0.50223655040d

16 0.5019652118089 15.9507 0.50196493112d

17 0.5017401328842 16.9509 0.50173994653d

18 0.5015521073696 17.9483 0.5015515014d

19 0.5013960356746 18.9250 0.5013921d

20 0.5012636821483 19.8914

21 0.5011543410393 20.8122
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Continuation of Table (4.3.6)

Present work Other works

n −E n∗ −E n∗

22 0.5010511403513 21.8099

a [281], b [286], c [240], d [280]

Kar and Ho [240] used 2200 terms in their wavefunction expanded in purely exponential

correlated basis set to obtain the energy eigenvalues for 3Fe(2pnf, n = 4 − 9) states. The

only calculation available for 3Fe(2pnf, n = 10−19) states is due to Eiglsperger et. al. [280]

where they considered 16,000 terms in the wavefunction expanded in Coulomb-Sturmenium

basis set. A comparison with other theoretical results as shown in table (4.3.6) reveals that

the present energy eigenvalues are lowest yet obtained. It is remarkable that the energy

eigenvalues using only 900 terms in the symmetric double exponent basis set are better than

those available in the literature. Therefore, one obvious benefit of the current approach is

the significant decrease in the number of terms in the basis set. The explicit inclusion

of the dd configuration, expanded in the Hylleraas basis set, is what makes the current

wavefunction a much more improved one as compared to the ones used by other workers.

For instance, the energy value of the 2p4f(3Fe) state as calculated by using 900 terms in

the nine-exponent wavefunction without dd configuration is −0.53198567 a.u. as given in

table (4.3.1), while the energy improves to −0.53199132 a.u. for the same state upon the

inclusion of dd configuration. Thus, the inclusion of the dd configuration contributes 0.001%

to the energy value of the 2p4f(3Fe) state. This contribution decreases as we move towards

the He+(2p) threshold, e.g. it decreases to 0.0002% for the 2p9f state.

The accuracy of the wavefunction is tested by estimating the expectation values

of inter-electronic angles < θ12 >, different one and two-particle moments like 〈r1〉,
〈
r2

1

〉
,

〈r12〉 and
〈
r2

12

〉
and the virial factor (ξ) defined as,

ξ = 1−
∣∣∣∣ 〈V 〉2〈T 〉

∣∣∣∣ (4.3.2)

where, 〈V 〉 and 〈T 〉 are the expectation values of potential and kinetic energies respectively.

All the mentioned expectation values are quoted in table (4.3.7). It can be seen from

table (4.3.7) that the moments 〈r1〉,
〈
r2

1

〉
, 〈r12〉 and

〈
r2

12

〉
gradually increase as we move

towards the higher excited states. The angle 〈θ12〉 is estimated approximately by taking

cosine inverse of 〈cos θ12〉 and expressed in degrees. Table (4.3.7) shows that 〈θ12〉 decreases

very slowly from 2p4f to 2p22f states. It is well known fact that for a perfectly central

potential, ξ = 0. From the second column of table (4.3.7) it can be seen that, ξ ∼ 10−11

for 2p4f configuration and the values of ξ increases gradually for the higher excited states.

This indicates that, the nature of the overall potential of the two-electron atom remains

nearly central as we investigate the lower states and the potential gradually looses its central
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nature as the higher excited states are considered.

For the investigations on the resonance 3Fe states of He-atom, we have diagonalized the

Table 4.3.7: The virial-factor ξ, expectation values of inter-electronic angles (in degree),
different one and two-particle moments of metastable bound 2pnf 3Fe [n = 4 − 22] states
of He below He+(2p) threshold. The notation P [±Q] stands for P × 10±Q. All values are
given in atomic units.

n ξ 〈r1〉
〈
r21

〉
〈r12〉

〈
r212

〉
〈θ12〉

4 1.28 [-11] 9.96 [+0] 1.73 [+2] 1.77 [+1] 3.47 [+2] 90.761
5 5.45 [-11] 1.66 [+1] 5.42 [+2] 3.09 [+1] 1.08 [+3] 90.388
6 6.87 [-11] 2.48 [+1] 1.26 [+3] 4.72 [+1] 2.53 [+3] 90.223
7 4.35 [-12] 3.45 [+1] 2.50 [+3] 6.66 [+1] 5.00 [+3] 90.140
8 3.56 [-10] 4.57 [+1] 4.45 [+3] 8.89 [+1] 8.89 [+3] 90.094
9 1.62 [-10] 5.84 [+1] 7.33 [+3] 1.14 [+2] 1.47 [+4] 90.065
10 1.12 [-09] 7.25 [+1] 1.14 [+4] 1.43 [+2] 2.28 [+4] 90.048
11 2.30 [-09] 8.82 [+1] 1.69 [+4] 1.74 [+2] 3.39 [+4] 90.036
12 4.59 [-08] 1.05 [+2] 2.43 [+4] 2.08 [+2] 4.85 [+4] 90.027
13 1.03 [-07] 1.24 [+2] 3.37 [+4] 2.46 [+2] 6.74 [+4] 90.021
14 2.43 [-07] 1.44 [+2] 4.57 [+4] 2.86 [+2] 9.13 [+4] 90.017
15 2.52 [-07] 1.66 [+2] 6.05 [+4] 3.29 [+2] 1.21 [+5] 90.014
16 3.76 [-06] 1.89 [+2] 7.88 [+4] 3.76 [+2] 1.58 [+5] 90.011
17 1.88 [-05] 2.14 [+2] 1.01 [+5] 4.25 [+2] 2.02 [+5] 90.009
18 1.43 [-05] 2.41 [+2] 1.28 [+5] 4.79 [+2] 2.56 [+5] 90.008
19 2.59 [-04] 2.66 [+2] 1.59 [+5] 5.30 [+2] 3.19 [+5] 90.008
20 1.51 [-03] 3.11 [+2] 2.32 [+5] 6.19 [+2] 4.65 [+5] 90.014
21 1.13 [-04] 3.55 [+2] 2.81 [+5] 7.07 [+2] 5.61 [+5] 90.006
22 9.03 [-04] 3.90 [+2] 3.65 [+5] 7.78 [+2] 7.30 [+5] 90.009

Hamiltonian matrix 1840 times using symmetric nine-exponent Hylleraas basis set with

N = 1530 for different values of γ1 ranging from 0.456 to 0.732 keeping γ2 constant at 0.6,

where γ1 and γ2 are the common ratios in the geometrical sequences ρi = ρi−1γ1 (pf−part)

and νi = νi−1γ2 (dd−part), respectively. The highest value of the ρ sequence i.e. ρ9 is fixed

at 8.0 while ρ1 of any set differs from that of the previous one by 0.001. The plot of each

energy eigenroot versus γ1 produces the stabilization diagram. A portion of the stabilization

diagram in the energy range -0.325 a.u. to -0.225 a.u. is given in figure (4.3.2) where one can

see flat plateaus in the vicinity of avoided crossings which signify the existence of resonance

states. For instance, it is evident from figure (4.3.2) that the resonance positions are in the

vicinity of −0.310 a.u., −0.264 a.u., −0.258 a.u. ... etc.

The determination of the actual resonance parameters is a two-step process. First,

we take an energy eigenroot and numerically estimate the spectral DOS ρQ(E) following

equation (3.2.76) at different energies. For a better understanding we consider the energy

eigen root no. 13 in the energy range -0.330 a.u. to -0.300 a.u. where one of the plateaus

lies around -0.310 a.u. as depicted in figure–4.3.3(a) and the numerically estimated DOS

at the corresponding energies are plotted in figure–4.3.3(b). The figure–4.3.3(b) shows a

peak of the DOS right at the center of the platue (following the red line) which locates

the resonance energy position. As one root may produce plateau at different energies,

corresponding peaks of DOS will occur at those points. The DOS peaks of root no. 13
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Figure 4.3.2: Enlarged view of stabilization diagram for 3Fe states of He atom in the
energy range -0.325 a.u. to -0.225 a.u. which shows several resonance states below He+(3p)
threshold.

in the full range of energy is given in figure (4.3.4). It clearly shows three peaks at three

different energies for first three resonances. It is also evident that the resonances are isolated

as the separation of peaks are greater than the widths of the consecutive resonances. The

next part is to consider DOS of each isolated resonance and to fit it with Lorentzian profile

[equation (3.2.77)] to extract the desired position and width of the resonance in energy

scale. As an example, the estimated DOSs [hollow black circles] and the fitted Lorentzian

[red lines] for the second and third resonances (figure–4.3.4) of root no. 13 are shown in

figure (4.3.5). The fitting to the first curve yields resonance position Er at −0.26284 a.u.

and width Γ = 0.00045 a.u. Similar fitting for the second curve yields resonance position

Er at −0.25826 a.u. and width Γ = 0.00017 a.u. Repeated calculations of DOS near the

flat plateau of each of the eigenroots for the resonance state and subsequent Lorentzians

are carried out for a particular resonance. The position and width of a particular resonance

state is chosen with respect to the best fitting parameters, as discussed in section (3.2.5).

In table (4.3.8), the convergence behavior of first twelve 3Fe resonance states below
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Figure 4.3.3: Plot of DOS corresponding to lowest platue of eigen root no. 13 of 3Fe state
of He-atom.

Figure 4.3.4: Plot of DOS in the full energy range of eigen root no. 13 of 3Fe state of
He-atom below He+(3p) threshold.
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Figure 4.3.5: Plot of DOSs of second and third resonance states originated from energy
eigenroot no. 13 of 3Fe state of He atom below He+(3p) threshold.

He+(3p) threshold are shown.

Table 4.3.8: Convergence behavior for the position (−Er in a.u.) and width (Γ in a.u.) of 3Fe

resonance states below He+(3p) threshold. The notation P [±Q] stands for P × 10±Q.

State N −Er Γ

1 900 0.31077 1.98 [-3]

1530 0.31075 1.98 [-3]

2 900 0.26284 4.5 [-4]

1530 0.26284 4.5 [-4]

3 900 0.25827 1.7 [-4]

1530 0.25826 1.7 [-4]

4 900 0.24681 2.1 [-4]

1530 0.24680 2.4 [-4]

5 900 0.24439 1.1 [-4]

1530 0.24438 1.2 [-4]

6 900 0.24130 8.5 [-9]

1530 0.24130 6.9 [-11]

7 900 0.23871 1.2 [-4]

1530 0.23871 1.1 [-4]

8 900 0.23730 7.0 [-5]

1530 0.23730 7.0 [-5]
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Continuation of Table (4.3.8)

State N −Er Γ

9 900 0.23559 5.3 [-11]

1530 0.23560 3.1 [-12]

10 900 0.23403 8.0 [-5]

1530 0.23404 6.0 [-5]

11 900 0.23315 4.0 [-5]

1530 0.23315 4.0 [-5]

12 900 0.23207 5.8 [-9]

1530 0.23210 5.6 [-10]

It is clear from table (4.3.8) that the values of resonance parameters (Er,Γ) are converged

upto at least 4th decimal place when the numbers of terms (N) in the wavefunction are

increased from 900 to 1530. Resonance energy (Er) and width (Γ) of first 19 number of 3Fe

states below He+(3p) threshold using 1530 terms in the Hylleraas basis set are summarized

in table (4.3.9).

Table 4.3.9: Positions (−Er in a.u.), widths (Γ in a.u.), effective quantum number (n∗), the energy

gap between the threshold and resonance energy values (εr), relative energies (Rε) and relative

widths (RΓ) of resonance states of (3Fe) below He+(3p) threshold. Present results are compared

with the available theoretical estimates. The notation P [±Q] stands for P × 10±Q.

Class States −Er Γ n∗ εr Rε RΓ

Other works

−Er Γ

A

1 0.31075 1.98 [-3] 2.37654 0.08853 0.31069a 1.98 [-3]a

0.3111b 2.131 [-3]b

0.310725c 1.95 [-3]c

0.309915d

0.310749e

2 0.26284 4.5 [-4] 3.50854 0.04062 2.18 4.40 0.262825a 4.5 [-4]a

0.2628b 4.77 [-4]b

0.26283c 4.4 [-4]c

0.26264d

0.262598e

3 0.24680 2.4 [-4] 4.51039 0.02458 1.65 1.87 0.246805a 2.1 [-4]a

0.2468b 2.27 [-4]b

0.246715e

0.246653d

4 0.23871 1.1 [-4] 5.50686 0.01649 1.49 2.18 0.238705a 1.1 [-4]a

0.238645d

0.238597e

5 0.23404 6.0 [-5] 6.50455 0.01182 1.39 1.83 0.234035a 6.6 [-5]a

0.233963e

6 0.23110 4.0 [-5] 7.50469 0.00878 1.34 1.50
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Continuation of Table (4.3.9)

Class States −Er Γ n∗ εr Rε RΓ

Other works

−Er Γ

7 0.22914 3.0 [-5] 8.50162 0.00692 1.26 1.33

8 0.22754 7.0 [-5] 9.69661 0.00532 1.30 0.42

B

1 0.25826 1.7 [-4] 3.72483 0.03604 0.25826a 1.68 [-4]a

0.2583b 1.83 [-4]b

0.258275c 1.5 [-4]c

0.258205d

0.258199e

2 0.24438 1.2 [-4] 4.75031 0.02216 1.62 1.42 0.244385a 1.1 [-4]a

0.2444b 1.14 [-4]b

0.244345d

0.244341e

3 0.23730 7.0 [-5] 5.75859 0.01508 1.47 1.71 0.237295a 6.6 [-5]a

0.237265d

0.237255e

4 0.23315 4.0 [-5] 6.76424 0.01093 1.38 1.75 0.233155a

0.233113e

5 0.23051 3.0 [-5] 7.76723 0.00829 1.32 1.34

6 0.22885 1.7 [-4] 8.68562 0.00663 1.25 0.18

C

1 0.24130 6.9 [-11] 5.11942 0.01908 0.2413a

0.2413b 1.61 [-11]b

0.24124d

0.241293e

2 0.23560 3.1 [-12] 6.11354 0.01338 1.43 22.26 0.2356a

0.235535d

0.235563e

3 0.23211 5.6 [-10] 7.11468 0.00988 1.35 0.01 0.2321a

4 0.22982 4.3 [-9] 8.11226 0.00759 1.31 0.13

5 0.22824 1.9 [-8] 9.14566 0.00598 1.27 0.23

a [283], b [284], c [285], d [286], e [281]

The present calculated resonance parameters are compared with the results available in the

literature [281, 283–286]. The comparison shows excellent agreement between the present

resonance parameters below He+(3p) threshold with other works. Moreover, it has been

found that the effect of the inclusion of dd configurations varies from 14% to 3% for the

energy positions of first six resonances. For instance, the energy position of the first reso-

nance below He+(3p) threshold excluding dd configurations is –0.26607 a.u. (table 4.3.3)

while the same using the mixed (pf and dd) wavefunction (equation 4.2.1) is –0.31077 a.u.

(table 4.3.9). The resonance energy of 3p4f(3Fe) state lies above the 3d2(3Fe) state, and
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for this reason, we may infer that it is not possible to include dd configuration by just

increasing the powers of r12 in the pf configuration. This insight will be useful while calcu-

lating the resonance parameters of such higher symmetry states in future. It is worthwhile

to mention that Ho and Bhatia [36] constructed the general Do wavefunction as a combi-

nation of pd and df configurations and opined that such mixing is necessary to facilitate

better convergence of energy of metastable bound 2pnd states. However, Bhattacharyya

et. al. [287] showed that sufficient accuracy of the enery eigenvalues of 2pnd states may be

achieved by considering only pd configurations. Moreover it appears from the calculation

of Saha et. al. [288] that the parameters of the resonances of Do below He+(3p) threshold

estimated using only pd configurations are more or less in agreement with those estimated

using general Do wavefunction of Ho and Bhatia [36]. Thus in contrast to the Do states,

the mixing of pf and dd configurations in the Fe wavefunction (4.2.1) not only leads to the

better convergence of the metastable bound states, but also extremely necessary to get a

complete picture about the accurate structure of resonance states above He+(2p) threshold

for the even parity F state of He atom.

As the individual angular momenta do not commute with the two-electron Hamil-

tonian, the labels denoting them may only act as an indicator of the dominant contributions

to various excited states. The 3Fe resonances below He+(3p) threshold can arise from three

possible dominant configurations: 3dnd [n ≥ 3], 3pnf [n ≥ 4] and 3dng [n ≥ 5]. Bachau

et. al. [284] estimated the percentage contribution of the major configurations to few lower

lying resonances of this symmetry by projecting the closed channel wavefunction expanded

in hydrogenic basis. The resonances estimated in the present work are categorized in three

classes as A, B and C for the dominant configurations 3dnd [n ≥ 3], 3pnf [n ≥ 4] and 3dng

[n ≥ 5] respectively by comparing with the previous results [283, 284]. Such classification

are supported by systematic estimation of the following parameters:

i. Effective quantum number (n∗), given in equation (4.3.1).

ii. Energy difference, [εr(n) = Eth − Er, between the threshold energy (Eth) and the

estimated resonance energy (Er) of n−th resonance state.

iii. Energy difference ratio Rε =
εr(n− 1)

εr(n)
.

iv. Width ratio RΓ =
Γ(n− 1)

Γ(n)
, Γ(n) being the width of n−th resonance state.

It is noticeable that

1. For 3dnd [n ≥ 3] (class A) and 3pnf [n ≥ 4] (class B) states, n∗ < n, while for 3dng

[n ≥ 5] (class C) states, n∗ > n.

2. In general, the resonances of class A are broader than class B for the same outer

electron principle quantum number (n). The width of the resonance states gradually
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decreases for higher excited states for both class A and class B. The present method

determines extremely narrow width of the class C resonances. In fact, Kar and Ho

[283] also reported the positions of first three dg resonances without any estimate of

widths. The only estimate of width of the 3d5g state is of the order of nano–eV [284].

Thus the higher members of the dg series should have much lesser width making its

determination extremely challenging.

3. As the dg resonances (class C) show apparently very feeble width, these states may

de-excite to lower lying 3d4f (3Do) states via dipole transition. We, therefore, pre-

dict the transition energies of 269 meV, 424 meV, 519 meV, 606 meV and 625 meV

corresponding to the transition 3dng(3Fe) → 3d4f(3Do) [n = 5 − 9] respectively.

The energy eigenvalue of the 3d4f(3Do) state is taken as −0.25118 a.u. [288]. The

conversion factor 1a.u. = 27.21138 eV has been used [289].

4. For the 3dnd (class A) and 3pnf (class B) states, although the effective quantum

numbers and Rε shows more or less a systematic pattern (gradual decrements for

higher excited states), RΓ shows an irregularity for few states as is evident from table

(4.3.9). Such inconsistency for RΓ may be resolved with more accurate parameters

calculated with larger number of terms in the basis set. This kind of analysis based

on Rε and RΓ was done earlier by Bylicki et. al. [290, 291] in case of high–lying 1Se,
1Po, 1De, 1Do and 1Fe resonances of negative hydrogen ion.

The expectation values of repulsive potential 〈Vr〉, attractive potential 〈−Va〉, their ratio

η =
〈Vr〉
〈−Va〉

, < θ12 >, 〈r1〉,
〈
r2

1

〉
, 〈r12〉 and

〈
r2

12

〉
for different 3Fe resonances states of He

below He+(3p) threshold are listed in table (4.3.10). For this purpose, we have to construct

the resonance wavefunction appropriately. We have chosen γ1 value for a particular energy

eigenroot at which the corresponding spectral DOS reaches its maxima. The finding on the

expectations are as follows:

1. Table (4.3.10) shows that for each class of states, η gradually decreases as the res-

onance states come closer to the He+(3p) threshold. Thus the repulsive part of the

potential decreases in comparison to the attractive part of the potential. For instance,

in case of class A, η ∼ 15% for the first state and η ∼ 2.5% for the eighth state. Sim-

ilarly for class B, η ∼ 11.2% for the first state and η ∼ 3.3% for the sixth state. This

in turn supports the fact of gradual decreasing nature of width of the resonances.

2. On the other hand 〈r1〉 and 〈r12〉 increases for the energetically higher excited states

for each class of states. It shows that the system becomes more and more diffuse for

higher excited states, in fact it appears that the electrons are moving away from each

other as well as from the nucleus.
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Table 4.3.10: The expectation values of repulsive potential 〈Vr〉, attractive potential 〈−Va〉
[their ratio η = 〈Vr〉

〈−Va〉 ], inter-electronic angles < θ12 >(in degree) and different one and

two-particle moments e.g. 〈r1〉,
〈
r2

1

〉
, 〈r12〉,

〈
r2

12

〉
for different 3Fe resonances states of He

below He+(3p) threshold. The notation P [±Q] stands for P × 10±Q. All values are given
in atomic units.

Class States 〈Vr〉 〈−Va〉 η 〈r1〉
〈
r21

〉
〈r12〉

〈
r212

〉
〈θ12〉

A

1 1.10 [-1] 7.54 [-1] 1.46 [-1] 6.84 [+0] 6.56 [+1] 1.08 [+1] 1.46 [+2] 97.776
2 6.67 [-2] 5.98 [-1] 1.12 [-1] 1.07 [+1] 1.61 [+2] 1.83 [+1] 3.77 [+2] 103.335
3 4.34 [-2] 5.39 [-1] 8.03 [-2] 1.65 [+1] 4.39 [+2] 2.94 [+1] 9.73 [+2] 104.469
4 2.99 [-2] 5.09 [-1] 5.88 [-2] 2.39 [+1] 1.02 [+3] 4.42 [+1] 2.19 [+3] 105.469
5 2.18 [-2] 4.91 [-1] 4.44 [-2] 3.28 [+1] 2.05 [+3] 6.21 [+1] 4.32 [+3] 105.932
6 1.66 [-2] 4.79 [-1] 3.46 [-2] 4.33 [+1] 3.69 [+3] 8.30 [+1] 7.71 [+3] 106.243
7 1.30 [-2] 4.72 [-1] 2.76 [-2] 5.54 [+1] 6.19 [+3] 1.07 [+2] 1.28 [+4] 106.413
8 1.11 [-2] 4.68 [-1] 2.37 [-2] 6.97 [+1] 1.03 [+4] 1.34 [+2] 2.05 [+4] 89.384

B

1 6.50 [-2] 5.84 [-1] 1.11 [-1] 1.11 [+1] 1.71 [+2] 1.74 [+1] 3.34 [+2] 89.435
2 4.12 [-2] 5.31 [-1] 7.76 [-2] 1.75 [+1] 5.05 [+2] 2.97 [+1] 9.93 [+2] 88.397
3 2.85 [-2] 5.04 [-1] 5.66 [-2] 2.53 [+1] 1.17 [+3] 4.53 [+1] 2.31 [+3] 87.902
4 2.09 [-2] 4.88 [-1] 4.28 [-2] 3.48 [+1] 2.33 [+3] 6.41 [+1] 4.61 [+3] 87.667
5 1.59 [-2] 4.77 [-1] 3.34 [-2] 4.57 [+1] 4.16 [+3] 8.58 [+1] 8.27 [+3] 87.424
6 1.63 [-2] 4.78 [-1] 3.41 [-2] 5.34 [+1] 6.16 [+3] 1.02 [+2] 1.23 [+4] 90.249

C

1 4.07 [-2] 5.24 [-1] 7.77 [-2] 1.67 [+1] 4.45 [+2] 2.73 [+1] 8.17 [+2] 79.635
2 2.83 [-2] 4.99 [-1] 5.65 [-2] 2.51 [+1] 1.14 [+3] 4.37 [+1] 2.16 [+3] 78.277
3 2.06 [-2] 4.85 [-1] 4.26 [-2] 3.52 [+1] 2.41 [+3] 6.37 [+1] 4.62 [+3] 77.478
4 1.58 [-2] 4.75 [-1] 3.31 [-2] 4.68 [+1] 4.42 [+3] 8.68 [+1] 8.56 [+3] 77.139
5 1.26 [-2] 4.69 [-1] 2.68 [-2] 5.99 [+1] 7.46 [+3] 1.13 [+2] 1.46 [+4] 76.877

3. From the last column of the table (4.3.10), it can be seen that the inter-electronic

angle < θ12 > increases for the upper excited states of class A, while it decreases for

the upper excited states of class B and class C. To be specific, < θ12 > varies in the

range 970 to 1060, 890 to 870 and 790 to 760 for class A, class B and class C states

respectively.

Thus along with the quantities n∗, εk, Rε andRΓ as mentioned in table (4.3.9), the properties

listed in table (4.3.10) are also significant for classification of the resonance states below

He+(3p) threshold.

Let us now consider the resonance states above He+(3p) threshold. A portion of

the stabilization diagram in the energy range -0.225 a.u. to -0.125 a.u. i.e. lying between

He+(3p) and He+(4p) thresholds is depicted in figure (4.3.6). Figure (4.3.6) clearly reveals

that presence of several resonances in this energy regime. Resonance energy (Er) and width

(Γ) of first thirty 3Fe resonance states below He+(4p) threshold are summarized in table

(4.3.11). The 3Fe resonances below He+(4p) threshold can arise from 4dnd [n ≥ 4], 4pnf

[n ≥ 4], 4fnf [n ≥ 4], 4dng [n ≥ 5] and 4fnh [n ≥ 6] dominant configurations. Different

structural parameters like n∗, 〈Vr〉, 〈−Va〉, η =
〈Vr〉
〈−Va〉

, < θ12 > , 〈r1〉,
〈
r2

1

〉
, 〈r12〉 and〈

r2
12

〉
of the respective resonance states are also given in table (4.3.11) with a view to

classifying them according to the dominant configurations. In contrast to the resonance

states below He+(3p), any systemic trend of the structural parameters are hardly found for
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Figure 4.3.6: Stabilization plot for 3Fe states of He atom in the energy range -0.225 a.u. to
-0.125 a.u. showing a series of resonance states below He+(4p) threshold.

the resonance states below He+(4p) threshold. Thus we have listed the resonances according

to their energy values (from lower to higher), without classifying them on the basis of the

dominant configurations. The Resonance energies (Er) and widths (Γ) of the resonance

states lying between He+(4p− 7p) thresholds are given in table (4.3.12).

Table 4.3.12: Positions (−Er in a.u.), widths (Γ in a.u.), effective quantum number (n∗) for different
3Fe resonances states of He below He+(5p), He+(6p) and He+(7p) threshold. The notation P [±Q]

stands for P × 10±Q. All values are given in atomic units.

Below He+(5p) Below He+(6p) Below He+(7p)

States −Er Γ n∗ −Er Γ n∗ −Er Γ n∗

1 0.12385 6.2 [-5] 3.37676 0.07941 6.0 [-5] 4.57825 0.05346 2.5 [-4] 6.28851

2 0.12187 1.5 [-5] 3.45568 0.07723 4.3 [-4] 4.80298 0.05297 2.6 [-4] 6.41403

3 0.12058 2.3 [-4] 3.51017 0.07604 3.8 [-4] 4.94052 0.05104 3.3 [-4] 6.99328

4 0.11920 3.8 [-4] 3.57142 0.07557 1.3 [-4] 4.99819 0.05082 3.8 [-4] 7.06976

5 0.11898 2.5 [-4] 3.58149 0.07445 3.0 [-4] 5.14420 0.05024 1.0 [-4] 7.28408

6 0.11760 5.1 [-4] 3.64662 0.07292 2.8 [-4] 5.36604 0.05005 1.4 [-4] 7.35864
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Continuation of Table (4.3.12)

Below He+(5p) Below He+(6p) Below He+(7p)

States −Er Γ n∗ −Er Γ n∗ −Er Γ n∗

7 0.11656 6.5 [-4] 3.69812 0.07175 7.1 [-4] 5.55650 0.04859 1.2 [-4] 8.01995

8 0.11427 6.7 [-5] 3.81968 0.06709 7.4 [-4] 6.58395 0.04686 1.5 [-4] 9.09566

9 0.11312 6.7 [-4] 3.88543 0.06686 3.0 [-4] 6.65059 0.04516 1.6 [-4] 10.72893

10 0.11224 3.5 [-4] 3.93810 0.06494 2.1 [-4] 7.29929 0.04290 1.7 [-4] 15.49066

11 0.11085 5.5 [-4] 4.02584 0.06438 2.9 [-4] 7.52733

12 0.10926 7.0 [-4] 4.13378 0.06263 1.3 [-4] 8.40695

13 0.10822 1.3 [-4] 4.20926 0.06228 2.6 [-4] 8.62296

14 0.10638 1.2 [-4] 4.35359 0.06139 8.0 [-5] 9.25731

15 0.10539 2.6 [-4] 4.43765 0.06007 5.2 [-4] 10.52404

16 0.10394 2.6 [-4] 4.57007 0.05819 7.0 [-4] 13.77655

17 0.10227 2.0 [-4] 4.73832 0.05717 3.6 [-4] 17.59841

18 0.10191 2.2 [-4] 4.77709 0.05564 1.2 [-4] 76.94837

19 0.10008 8.4 [-5] 4.99002

20 0.09803 2.1 [-4] 5.26651

21 0.09753 8.8 [-5] 5.34064

22 0.09572 2.5 [-4] 5.63901

23 0.09285 2.0 [-4] 6.23831

24 0.09044 3.3 [-4] 6.91880

25 0.08871 1.4 [-4] 7.57706

26 0.08775 8.7 [-5] 8.03167

27 0.08691 1.1 [-4] 8.50578

28 0.085845 6.8 [-5] 9.24895

29 0.085052 1.2 [-4] 9.94840

30 0.084614 1.9 [-4] 10.40989

31 0.083472 7.6 [-5] 12.00038

32 0.082917 1.4 [-4] 13.09232

33 0.08171 2.1 [-4] 17.09963

So far, we have studied resonance parameters and different expectation values of 3Fe states

of free He atom. To get a proper visualization of the resonance states, we estimate the two

particle radial probability density ρ(r1, r2). As an example, we discuss the classes of states

A, B and C in this light. Two particle radial probability density is defined as

ρ(r1, r2) =

∫ r1+r2

r12=|r1∼r2|
r12dr12

∫ π

θ=0

∫ 2π

φ=0

∫ 2π

ψ=0
|Ψ|2 sin θdθdφdψ (4.3.3)

Ψ is defined in equation (4.2.16). For the 3Fe resonance states of He having configurations

3d2 (class A), 3p4f (class B) and 3d5g (class C) lying below He+(3p) threshold, ρ(r1, r2) are

plotted in figure (4.3.7). The density plot for 3d2 configuration exhibits similar behavior as

the two-electron ground state [292] showing a maximum along the symmetry line r1 = r2.
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Table 4.3.11: Positions (−Er in a.u.), widths (Γ in a.u.), effective quantum number (n∗),
the ratio between expectation values of repulsive potential 〈Vr〉, attractive potential 〈−Va〉

[η =
〈Vr〉
〈−Va〉

], inter-electronic angles < θ12 >(in degree) and different one and two-particle

moments e.g. 〈r1〉,
〈
r2

1

〉
, 〈r12〉,

〈
r2

12

〉
for different 3Fe resonances states of He below He+(4p)

threshold. The notation P [±Q] stands for P × 10±Q. All values are given in atomic units.

States −Er Γ n∗ η 〈r1〉
〈
r21

〉
〈r12〉

〈
r212

〉
〈θ12〉

1 0.22207 1.8 [-4] 2.26956 3.28 [-2] 5.73 [+1] 7.72 [+3] 1.09 [+2] 1.54 [+4] 89.085
2 0.2187 2.1 [-4] 2.31001 4.02 [-2] 4.76 [+1] 5.47 [+3] 9.02 [+1] 1.09 [+4] 89.448
3 0.21389 3.1 [-4] 2.37169 4.76 [-2] 4.02 [+1] 3.98 [+3] 7.56 [+1] 7.96 [+3] 90.454
4 0.20705 3.7 [-4] 2.46857 5.50 [-2] 3.40 [+1] 2.91 [+3] 6.29 [+1] 5.79 [+3] 88.530
5 0.19788 5.3 [-4] 2.61927 6.33 [-2] 2.92 [+1] 2.19 [+3] 5.34 [+1] 4.38 [+3] 89.512
6 0.18903 5.4 [-4] 2.79443 1.04 [-1] 1.67 [+1] 7.45 [+2] 2.95 [+1] 1.58 [+3] 104.178
7 0.18404 2.4 [-4] 2.91012 8.64 [-2] 2.21 [+1] 1.33 [+3] 3.96 [+1] 2.68 [+3] 94.377
8 0.17834 1.2 [-3] 3.06167 1.27 [-1] 1.49 [+1] 5.32 [+2] 2.39 [+1] 1.07 [+3] 91.943
9 0.16668 9.2 [-4] 3.46354 9.77 [-2] 1.99 [+1] 1.06 [+3] 3.42 [+1] 2.11 [+3] 89.631
10 0.15878 6.0 [-5] 3.84729 1.10 [-1] 1.82 [+1] 6.79 [+2] 3.06 [+1] 1.45 [+3] 100.183
11 0.15778 2.6 [-4] 3.90553 1.07 [-1] 1.79 [+1] 5.09 [+2] 3.15 [+1] 1.23 [+3] 110.336
12 0.15224 5.9 [-4] 4.28431 1.08 [-1] 2.04 [+1] 8.34 [+2] 3.34 [+1] 1.67 [+3] 90.229
13 0.1476 3.0 [-4] 4.70360 1.24 [-1] 1.81 [+1] 4.57 [+2] 2.83 [+1] 9.18 [+2] 90.594
14 0.14685 1.2 [-4] 4.78364 1.02 [-1] 2.21 [+1] 9.99 [+2] 3.76 [+1] 2.05 [+3] 93.799
15 0.1455 4.0 [-5] 4.93864 9.21 [-2] 2.24 [+1] 7.48 [+2] 3.88 [+1] 1.70 [+3] 103.584
16 0.14514 9.0 [-5] 4.98259 1.19 [-1] 1.93 [+1] 5.33 [+2] 2.93 [+1] 1.01 [+3] 85.276
17 0.1434 5.0 [-4] 5.21286 9.03 [-1] 2.19 [+1] 1.01 [+3] 3.82 [+1] 2.11 [+3] 95.959
18 0.14075 4.4 [-4] 5.63436 9.13 [-2] 2.55 [+1] 1.08 [+3] 4.30 [+1] 2.21 [+3] 92.365
19 0.13998 2.4 [-4] 5.77735 9.49 [-2] 2.58 [+1] 1.06 [+3] 4.26 [+1] 2.08 [+3] 88.699
20 0.13925 1.7 [-4] 5.92348 7.72 [-2] 2.97 [+1] 1.47 [+3] 5.40 [+1] 3.35 [+3] 109.571
21 0.13877 3.6 [-4] 6.02584 8.38 [-2] 2.80 [+1] 1.31 [+3] 4.88 [+1] 2.79 [+3] 97.637
22 0.13747 9.0 [-5] 6.33215 7.27 [-2] 3.48 [+1] 2.48 [+3] 6.18 [+1] 4.91 [+3] 88.794
23 0.13564 5.0 [-5] 6.85510 5.97 [-2] 3.97 [+1] 2.75 [+3] 7.47 [+1] 6.24 [+3] 115.556
25 0.13314 8.0 [-5] 7.83741 6.02 [-2] 4.52 [+1] 3.91 [+3] 8.15 [+1] 7.88 [+3] 92.945
26 0.13154 1.0 [-4] 8.74371 5.39 [-2] 5.54 [+1] 6.14 [+3] 1.01 [+2] 1.23 [+4] 89.327
27 0.13032 2.0 [-4] 9.69458 5.54 [-2] 6.19 [+1] 8.14 [+3] 1.14 [+2] 1.63 [+4] 88.458
28 0.12878 2.9 [-4] 11.50109 4.97 [-2] 7.26 [+1] 1.16 [+4] 1.35 [+2] 2.32 [+4] 89.766
29 0.12766 2.1 [-4] 13.71021 4.86 [-2] 7.24 [+1] 1.18 [+4] 1.35 [+2] 2.35 [+4] 88.858
30 0.12588 1.8 [-4] 23.83656 5.90 [-2] 5.76 [+1] 8.03 [+3] 1.07 [+2] 1.62 [+4] 96.553

In contrast, the density plot for 3p4f configuration exhibits a lesser probability density

along the symmetry line. In fact the maximum probability density appears at two different

regions on the either sides of the symmetry line. In case of 3d5g state the probability

density vanishes along the symmetry line and therefore two distinct regions having finite

probability density are observed. Thus the structures of two particle radial probability

densities for three classes of states below He+(3p) are quite distinct.

4.3.2 Structural properties under classical weakly coupled plasma

For the investigation on the effect of classical weakly coupled plasma (WCP) on the metastable

bound 2pnf(n = 4−6) 1,3Fe states of two electron systems− He, Li+ and Be2+, the effective

potential is modeled by exponential screened Coulomb potential (ESCP) as given in equa-

tion (3.3.1). In the begining, we start with only the pf part in the wavefunction (4.2.16).

The wavefunction is expanded in nine–exponent (p1 = 9) Hylleraas basis set. The energy
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Figure 4.3.7: Two particle radial probability density ρ(r1, r2) for three 3Fe resonance states
of He atom with the dominant 3d2 (left), 3p4f (middle) and 3d5g (right) configurations.

eigenvalues of 2pnf(n = 4− 6) 1,3Fe states of He atom for N1 = 675 are given in the table

(4.3.13) for different values of plasma screening length λD (1.0.2) ranging from 100 a.u. to

10 a.u. The present estimated energy eigenvalues are compared with some data available in

literature [240,283]. The comparison reveals that except for the 2p4f state at λD = 100 a.u.,

the calculated energy eigenvalues are lowest yet obtained which establishes the efficiency of

the present method as well as the completeness of the wavefunction only on pf–part in case

of metastable bound 1,3Fe states. The last two columns of table (4.3.13) show the energy

eigenvalues of 2s and 2p states of He+ for the whole range of λD. The energy eigenvalues of

2s and 2p are calculated by solving the variational equation of one-electron systems given

by

δ

∫ {(
∂f

∂r

)2

+
l(l + 1)

r2
− E + Z

e
− r
λD

r

}
dr = 0 (4.3.4)

‘l’ being the angular momentum of the one-electron state. The radial function f(r) is

expanded in terms of exponential basis set as

f(r) =
∑
i

Cie
−ρir (4.3.5)

We have used 101 (i = 100) terms in the basis set and the exponents are taken in a

geometrical sequence ρi = ρi−1γ, γ is the geometrical ratio. The energy eigenvalues (E) are

determined by solving the generalized eigenvalue equation (3.2.59). It is found from table

(4.3.13) that 2s and 2p energies are different from each other for each λD which is a direct

consequence of non-Coulomb central potential (3.3.1) and the 2s state remains more bound
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Table 4.3.13: Variation of energy eigenvalues (−E in a.u.) for the 2pnf [n = 4 − 6] 1,3Fe

states of He and 2s, 2p states of He+ with respect to the screening length λD (a.u.).

1Fe 3Fe

λD 2p4f 2p5f 2p6f 2p4f 2p5f 2p6f He+(2s) He+(2p)

100 0.503055 0.492022 0.486401 0.503047 0.492017 0.486397 0.480296 0.480247

0.502956a 0.491928a 0.4863145a 0.502952a 0.4919255a 0.486313a

0.50306068b 0.503052113b

90 0.499965 0.489058 0.483572 0.499957 0.489052 0.483569 0.478143 0.478083

80 0.496136 0.485400 0.480100 0.496128 0.485394 0.480097 0.475462 0.475386

70 0.491267 0.480775 0.475736 0.491259 0.480770 0.475733 0.472031 0.471932

0.491074a 0.4805995a 0.4755835a 0.4910705a 0.480597a 0.4755805a

60 0.484869 0.474742 0.470087 0.484862 0.474737 0.470085 0.467484 0.467350

50 0.476090 0.466543 0.462494 0.476083 0.466539 0.462493 0.461173 0.460981

0.4757375a 0.4662415a 0.4622235a 0.4757335a 0.466237a 0.462197a

0.476090624b 0.476087092b

40 0.463300 0.454773 0.451782 0.463293 0.454770 0.451781 0.451823 0.451525

0.462784a 0.454351a 0.46278a 0.454334a

30 0.442973 0.436545 0.435913 0.442968 0.436543 0.435913 0.436545 0.436025

0.4421585a 0.4421485a

20 0.406087 0.405856 0.405709 0.406086 0.405856 0.405709 0.407104 0.405970

0.4060876b 0.4060871b

10 0.322848 0.322699 0.321485 0.322848 0.322699 0.321485 0.327085 0.322761

a [283], b [240]

than 2p state as λD decreases i.e., as effect of plasma increases.

From table (4.3.13) it can also be seen that, as λD decreases the energies of

2pnf (1,3Fe, n = 4− 6) states are pushed towards the continuum which is the outcome of

the fact that ESCP becomes more and more positive with respect to the decrease in λD. It

is worthwhile to mention that 1Fe states are more bound than 3Fe states for each configura-

tions but at a very low value of λD, both 1Fe and 3Fe states become nearly degenerate. For

example, from table (4.3.13), it can be seen that the energy eigenvalue of 2p4f (1Fe) state

remains more bound than 2p4f (3Fe) state in the range λD = 100 a.u. to λD = 20 a.u. At

λD = 10 a.u., both the states become (almost) degenerate with energy value −0.322848 a.u.

At these low values of λD, plasma screening increases and the two-electron energy levels

become greatly affected by the continuum embedded states through configuration interac-

tions. Another interesting feature to be noted from table (4.3.13) is that, at a definite low

value of λD, 2pnf (1,3Fe, n = 4− 6) states cross the energy threshold value of He+(2s) but

they still remain below the He+(2p) threshold. For example, at λD = 40 a.u., 2p6f (1Fe)

state energetically just crosses He+(2s) threshold energy but lies below He+(2p) threshold.

This particular value of λD decreases for the lower states like 2p5f and 2p4f of 1Fe symme-

try. Identical behavior is observed for 3Fe states also. At sufficiently low values of λD (i.e.
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high screening), the energy values of He atom come very close to the one-electron (He+)

continuum and tend to merge into the 2p threshold of the respective one-electron (He+)

system. In tables (4.3.14) and (4.3.15) the energy values of 2pnf (1,3Fe, n = 4− 6) states

of Li+ and Be2+ are given respectively, along with their respective one-electron 2s and 2p

threshold energies. All the features observed in case of He atom are also noted for Li+ and

Be2+ ions.

Table 4.3.14: Variation of energy eigenvalues (−E in a.u.) for the 2pnf [n = 4 − 6] 1,3Fe

states of Li+ and 2s, 2p states of Li2+ with respect to the screening length (λD in a.u.).

1Fe 3Fe

λD 2p4f 2p5f 2p6f 2p4f 2p5f 2p6f Li2+(2s) Li2+(2p)

100 1.203600 1.158000 1.133734 1.203510 1.157937 1.133693 1.095298 1.095248

90 1.198297 1.152835 1.128727 1.198207 1.152772 1.128687 1.092033 1.091973

80 1.191703 1.146433 1.122542 1.191614 1.146371 1.122503 1.087964 1.087887

70 1.183284 1.138288 1.114706 1.183195 1.138227 1.114668 1.082748 1.082648

60 1.172159 1.127578 1.104457 1.172071 1.127517 1.104420 1.075823 1.075687

50 1.156775 1.112862 1.090478 1.156688 1.112803 1.090442 1.066182 1.065987

40 1.134107 1.091381 1.070283 1.134022 1.091326 1.070251 1.051840 1051537

30 1.097393 1.057098 1.038579 1.097312 1.057048 1.038553 1.028251 1.027719

20 1.027813 0.993914 0.982019 1.027745 0.993879 0.982008 0.982227 0.981057

10 0.848931 0.846906 0.844900 0.848912 0.845428 0.841774 0.852947 0.848554

Table 4.3.15: Variation of energy eigenvalues (−E in a.u.) for the 2pnf [n = 4 − 6] 1,3Fe

states of Be2+ and 2s, 2p states of Be3+ with respect to the screening length (λD in a.u.).

1Fe 3Fe

λD 2p4f 2p5f 2p6f 2p4f 2p5f 2p6f Be3+(2s) Be3+(2p)

100 2.216939 2.114095 2.058854 2.216686 2.113923 2.058745 1.960298 1.960249

90 2.216938 2.114095 2.051646 2.209165 2.106546 2.051536 1.955923 1.955862

80 2.200052 2.097554 2.042712 2.199800 2.097382 2.042603 1.950465 1.950388

70 2.188072 2.085861 2.031351 2.187821 2.085691 2.031243 1.943464 1.943364

60 2.172202 2.070428 2.016417 2.171952 2.070259 2.016311 1.934159 1.934022

50 2.150179 2.049114 1.995905 2.150086 2.048951 1.995806 1.921186 1.920990

40 2.117577 2.017784 1.965994 2.117332 2.017621 1.965895 1.901848 1.901543

30 2.064350 1.967188 1.918278 2.064110 1.967033 1.918192 1.869937 1.869400

20 1.961936 1.871780 1.830341 1.961713 1.871646 1.830273 1.807292 1.806102

10 1.685196 1.628246 1.623064 1.685048 1.628199 1.619216 1.628414 1.623879

In order to have a comparative study on the modification of doubly excited energy levels of
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two–electron systems, we have displayed the energy level diagram containing three different

DESs - 2p4p (Pe), 2p4d (Do) and 2p4f (Fe) of He-atom along with 2s and 2p states of He+

ion for λD = 100, 50, 30 and 20 a.u. in figure (4.3.8). We have taken the energy values of

Figure 4.3.8: Energy positions of 2p4f (3Fe), 2p4d (3Do) and 2p4p (3Pe) states of He atom
and 2s, 2p energy levels of He+ ion for λD = 100, 50, 30 and 20 a.u.

2p4p (3Pe) and 2p4d (3Do) states of He atom embedded in classical WCP environment from

literature [293, 294]. We note that the energy relationship between the DESs is E2p4f >

E2p4d > E2p4p. Figure (4.3.8) also shows the removal of l-degeneracy between 2s and 2p

states of He+ ion at low values of λD where the energy of 2s is lower than 2p state. It

is interesting to note from figure (4.3.8) that, down to λD = 30 a.u. the three DESs are

energetically lower than both He+(2s) and He+(2p) thresholds. At λD = 20 a.u., the 2p4f

level crosses the He+(2s) threshold whereas 2p4d and 2p4p levels remain below He+(2s)

threshold. Hence, at a low value of λD, the 2p4f (3Fe) level of He merges to the one-

electron (He+) continuum.

Tables (4.3.16)–(4.3.18) show the energies of 2pnf (1,3Fe) → 2pmd (1,3Do) dipole
transitions [n = 4− 6; m = 3− 6] for He, Li+ and Be2+ respectively, as a function of λD.
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Table 4.3.16: Absolute values of the 2pnf(1,3Fe)→ 2pn′d(1,3Do)[n = 4− 6; n′ = 3− 6] transition energies (in meV)

of He atom under WCP.

Screening length (λD) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1Fe → 1Do

2p4f → 2p3d 854.25 851.72 848.21 843.20 835.57 823.21 801.09 754.79 623.78

→ 2p4d 71.70 72.01 72.44 73.01 73.81 75.06 76.97 79.81 77.62

→ 2p5d∗ 264.68 360.44 381.82 413.23

→ 2p6d∗ 433.29

2p5f → 2p3d 1154.46 1148.52 1140.35 1128.69 1111.15 1082.97 1033.10 929.71 630.08

→ 2p4d 371.91 368.81 364.58 358.50 349.40 334.82 308.98 254.73 83.92

→ 2p5d∗ 35.53 63.63 89.69 127.74

→ 2p6d∗ 133.06

2p6f → 2p3d 1307.43 1297.78 1284.57 1265.82 1237.82 1193.17 1114.51 946.91 634.08

→ 2p4d 524.89 518.07 508.80 495.63 476.06 445.02 390.38 271.94 87.92

→ 2p5d 188.50 85.62 54.53 9.39

→ 2p6d 19.89

3Fe → 3Do

2p4f → 2p3d 734.25 732.05 729.02 724.65 718.03 707.29 688.04 647.69 532.15

→ 2p4d 21.93 22.59 23.48 24.75 26.60 29.49 34.28 42.84 55.08

→ 2p5d∗ 288.62 284.67 279.28 271.66

→ 2p6d∗ 445.89

2p5f → 2p3d 1034.40 1028.79 1021.08 1010.07 993.54 966.98 919.97 822.52 538.40

→ 2p4d 322.07 319.32 315.55 310.17 302.12 289.18 266.21 217.67 61.33

→ 2p5d 11.53 12.07 12.79 13.77

→ 2p6d∗ 145.74

2p6f → 2p3d 1187.31 1177.99 1165.24 1147.14 1120.14 1077.10 1001.31 839.68 542.41

→ 2p4d 474.99 468.52 459.71 447.24 428.72 399.29 347.55 234.83 65.34

→ 2p5d 164.44 161.26 156.95 150.84

→ 2p6d 7.17

∗ pf level lies energetically lower than the pd level

Table 4.3.17: Absolute values of the 2pnf(1,3Fe)→ 2pn′d(1,3Do)[n = 4− 6; n′ = 3− 6] transition energies (in meV)

of Li+ ion under WCP.

Screening length (λD) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1Fe → 1Do

2p4f → 2p3d 3229.53 3226.99 3223.50 3218.43 3210.71 3198.09 3175.37 3127.69 2997.69

→ 2p4d 190.39 190.91 191.65 192.69 194.25 196.75 201.14 209.82 230.55

→ 2p5d∗ 1148.05 1143.86 1138.06 1129.78 1117.30 1097.24

→ 2p6d∗ 1848.71 1840.33 1828.78 1812.33 1787.67

2p5f → 2p3d 4470.37 4464.07 4455.36 4442.83 4423.82 4393.02 4338.01 4224.17 3920.13

→ 2p4d 1431.23 1427.99 1423.51 1417.09 1407.36 1391.68 1363.78 1306.30 1152.99

→ 2p5d 92.79 93.22 93.80 94.62 95.81 97.69

→ 2p6d∗ 607.87 603.24 596.92 587.93 574.56

2p6f → 2p3d 5130.68 5120.08 5105.47 5084.53 5052.98 5002.12 4912.11 4728.10 4243.81
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Continuation of Table (4.3.17)

Screening length (λD) in a.u.

Transition 100 90 80 70 60 50 40 30 20

→ 2p4d 2091.54 2084.00 2073.62 2058.79 2036.52 2000.78 1937.88 1810.23 1476.67

→ 2p5d 753.10 749.23 743.90 736.32 724.96 706.79

→ 2p6d 52.44 52.77 53.18 53.77 54.59

3Fe → 3Do

2p4f → 2p3d 2839.04 2836.78 2833.64 2829.13 2822.23 2810.97 2790.70 2748.17 2632.07

→ 2p4d 44.19 44.97 46.07 47.64 49.99 53.78 60.47 73.87 107.00

→ 2p5d∗ 1216.58 1212.10 1205.91 1197.05 1183.72 1162.29

→ 2p6d∗ 1885.17 1876.47 1864.50 1847.42 1821.85

2p5f → 2p3d 4079.14 4073.13 4064.77 4052.77 4034.61 4005.14 3952.52 3843.81 3553.62

→ 2p4d 1284.29 1281.32 1277.19 1271.28 1262.37 1247.95 1222.29 1169.51 1028.54

→ 2p5d 23.52 24.25 25.21 26.59 28.65 31.88

→ 2p6d∗ 645.07 640.12 633.38 623.78 609.48

2p6f → 2p3d 4738.85 4728.51 4714.25 4693.84 4663.11 4613.62 4526.00 4347.08 3876.64

→ 2p4d 1944.00 1936.71 1926.67 1912.35 1890.87 1856.42 1795.77 1672.79 1351.57

→ 2p5d 683.23 679.64 674.69 667.67 657.15 640.35

→ 2p6d∗ 14.64 15.27 16.10 17.29 19.02

∗ pf level lies energetically lower than the pd level

Table 4.3.18: Absolute values of the 2pnf(1,3Fe)→ 2pn′d(1,3Do)[n = 4− 6; n′ = 3− 6] transition energies (in meV)

of Be2+ ion under WCP.

Screening length (λD) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1Fe → 1Do

2p4f → 2p3d 6948.14 6945.64 6942.18 6937.13 6929.45 6916.18 6894.02 6845.82 6713.53

→ 2p4d 309.27 309.91 310.81 312.08 314.03 317.18 322.84 334.38 364.21

→ 2p5d∗ 2649.02 2644.54 2638.32 2629.38 2615.82 2593.85

→ 2p6d∗ 4217.37 4208.40 4196.01 4178.25 4151.41

2p5f → 2p3d 9746.64 9740.19 9731.29 9718.44 9698.86 9666.27 9609.52 9489.74 9166.80

→ 2p4d 3107.77 3104.46 3099.92 3093.38 3083.44 3067.28 3038.34 2978.29 2817.48

→ 2p5d 149.48 150.02 150.80 151.92 153.59 156.24

→ 2p6d∗ 1418.87 1413.85 1406.90 1396.94 1382.00

2p6f → 2p3d 11249.80 11238.81 11223.59 11201.73 11168.58 11114.14 11018.80 10820.54 10294.42

→ 2p4d 4610.93 4603.07 4592.22 4576.68 4553.16 4515.14 4447.62 4309.09 3945.09

→ 2p5d 1652.63 1648.63 1643.10 1635.21 1623.30 1604.11

→ 2p6d 84.29 84.76 85.40 86.35 87.71

3Fe → 3Do

2p4f → 2p3d 6267.78 6265.49 6262.34 6257.71 6250.67 6509.08 6218.23 6174.16 6053.13

→ 2p4d 68.33 69.63 70.35 72.00 74.54 77.13 86.03 101.20 140.68

→ 2p5d∗ 2758.91 2754.21 2747.67 2738.34 2724.12 2705.26

→ 2p6d∗ 4274.57 4265.36 4252.62 4234.40 4206.86

2p5f → 2p3d 9064.10 9057.90 9049.27 9036.81 9017.88 8987.00 8931.50 8815.76 8503.97

→ 2p4d 2864.65 2862.04 2857.28 2851.10 2841.75 2829.15 2799.30 2742.80 2591.53

→ 2p5d 37.41 38.20 39.26 40.76 43.08 46.77

→ 2p6d∗ 1478.25 1472.95 1465.69 1455.30 1439.65
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Continuation of Table (4.3.18)

Screening length (λD) in a.u.

Transition 100 90 80 70 60 50 40 30 20

2p6f → 2p3d 10565.57 10554.80 10539.88 10518.41 10485.88 10433.15 10339.04 10144.79 9629.79

→ 2p4d 4366.12 4358.94 4347.90 4332.71 4309.75 4275.30 4206.84 4071.83 3717.34

→ 2p5d 1538.88 1535.10 1529.87 1522.37 1511.08 1492.91

→ 2p6d 23.22 23.95 24.93 26.31 28.35

∗ pf level lies energetically lower than the pd level

The energy eigenvalues of 2pmd (1,3Do m = 3 − 6) states of WCP embedded He, Li+ and

Be2+ are taken from the work of Saha et. al. [294]. The transition energies given in the

tables are the absolute values of the difference between the 2pnf (1,3Fe) and 2pmd (1,3Do)

levels because for a given λD the energy values of 2pnf (1,3Fe) levels can be higher or

lower with respect to the energy of 2pmd (1,3Do) levels. For instance, in the case of 1Fe

state of He, 2p4f state lies energetically higher than 2p3d (1Do) and 2p4d (1Do) states

but lower than the 2p5d (1Do) and 2p6d (1Do) states. The conversion factor 1 a.u. of

energy = 27.21138 eV [289] has been used. Saha et. al. [294] reported an initial blue

shift (increase in the transition energy) followed by a red shift (decrease in the transition

energy) for 2pmd (3Do) → 2p3p (3Pe) transitions, with respect to the decrease in λD. In

contrast, we find either a blue shift or a red shift for a particular transition scheme. For

instance, the 2p4f (3Fe) → 2p3d (3Do) line for Be2+ gets a gradual red shift with respect

to decreasing λD and a blue shift is observed for the 2p4f (3Fe) → 2p4d (3Do) of the

same ion under similar conditions. Such features are evident from figure (4.3.9) where the

2p4f(1,3Fe)→ 2pnd(1,3Do) [n = 3− 6] transition energies of Be2+ are plotted as a function

of screening length (λD).

The structure calculations of 1,3Fe states of two electron systems under classical

WCP are very limited [240,283] in the literature. In references [240,283], the following two

approximations were made for the sake of simplicity in solving the basis integrals involved

in CI-method:

1. The screened electron-electron repulsion in the potential (1.0.1) is approximated by

expanding it in a Taylor series as

e−r12/λD

r12
≈

M∑
i=0

(−1)i
ri−1

12

λiDi!

where M is the upper limit of the terms in the Taylor series expansion.

2. The inter-electronic distance is approximated by r12 ≈ r1 + r2, which indicates that

the electrons are assumed to be situated in the opposite sides of the nucleus which is

clearly a special case and, not a general picture.

So it is necessary to make an investigation using whole analytic form of the screened poten-

tial as well as proper correlation in the wavefunction. In this subsection we have already
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Figure 4.3.9: Modification of transition energies (in meV) for dipole transitions
2p4f (1,3Fe)→ 2pmd(1,3Do) [m = 3− 6] of Be2+ ion embedded in classical WCP.

discussed the influence of ESCP on the energy eigenvalues of metastable bound 1,3Fe states

of two-electron systems like He, Li+ and Be2+, where the whole analytic form of the screened

potential has been used without any approximation. But the wavefunction we have used

consists only pf configuration, for which we have compromised the numerical accuracy in

the order of 0.001%. Under such circumstances we have executed a precise investigation on

the structural properties of metastable bound and resonance 1,3Fe states under the ESCP

where the entire analytic form of the screened potential retaining its original form (1.0.1)

and considered a complete wavefunction containing both pf and dd configurations which

are expanded in explicitly correlated nine–exponent Hylleraas basis set.

For the investigations on the metastable bound and resonance 1,3Fe states of He

atom under ESCP, we have diagonalized the Hamiltonian matrix 432 times using symmetric

nine–exponent Hylleraas basis set with N = 900 for different values of γ1 so that the lowest

value of ρ can vary from 0.005 a.u. to 0.545 a.u. in a step size of 0.00125 a.u. and kept

γ2 constant, where γ1 (4.2.34) and γ2 (4.2.35) are the common ratios in the geometrical

sequences ρi = ρi−1γ1 (pf−part) and νi = νi−1γ2 (dd−part), respectively. We have selected
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432 different γ1 values which produce 432 sets of energy eigenvalues (E). The highest

value of the ρ sequence i.e. ρ9 is fixed at 8.0 while ρ1 of any set differs from that of the

previous set by 0.001. This process is executed for various plasma conditions by choosing

different values of λD. The lowest bound energies of metastable bound 3Fe and 1Fe states

for different λD are given in tables (4.3.19) and (4.3.20) respectively. In the first row of

the tables the energy eigenvalues of He+(2p) states are given, below which all the energy

eigenvalues of metastable bound 1,3Fe states lie. It can be seen that the energy values

of the MBSs gradually become more and more positive as λD decreases and as a result

the number of states decrease with the decrease of λD. For example, in table (4.3.19) we

see that there are 12 3Fe MBSs in free case (λD = ∞), and the number reduces to 7 for

λD = 100 a.u. and 1 for λD = 20 a.u. Below λD = 20 a.u. there is no MBS of 3Fe symmetry

of He-atom. The present energy eigenvalues of MBSs are compared with that reported by

Kar and Ho [239, 240]. The comparison reveals that under the plasma scenario λD ≤ 100

a.u. our present calculated energy values are lowest yet obtained. Thus we have achieved

better accuracy in the determination of the energy eigenvalues of metastable bound 1,3Fe

states under plasma using 900 terms in the multi-exponent Hylleraas type basis set which

is smaller than the number of terms used in the correlated CI-type basis sets (1160− 1296

terms) [239] and (1800 − 2200 terms) [240] and as a consequence, the computational time

is substantially reduced. The reason behind this advantage lies in the fact that we use an

exact analytic form of the matrix element of the potential part.

Structural properties like electron-electron repulsive potential 〈Vr〉, electron-nucleus

attractive potential 〈Va〉 and their ratio η =

∣∣∣∣〈Va〉〈Vr〉
∣∣∣∣, 〈cos θ12〉, 〈θ12〉, 〈r1〉,

〈
r2

1

〉
, 〈r12〉 and〈

r2
12

〉
of 3Fe and 1Fe MBSs of He atom for different λD are shown in the tables (4.3.21) and

(4.3.22), respectively. It is to be mentioned that in case of free atom we have estimated

the inter-electronic angles 〈θ12〉 by taking the cosine inverse of 〈cos θ12〉 (tables 4.3.21 and

4.3.22). However, in the present case, 〈θ12〉 is determined by the following relation [295]

〈θ12〉 ≈
π

2
− 3π

2
〈cos θ12〉 (4.3.6)

Tables (4.3.21) and (4.3.22) show that both 〈r1〉 and 〈r12〉 increase when λD decreases for
1,3Fe states. This shows that as λD decreases, the size of the atom expands.

Table 4.3.21: Expectation values of repulsive potential 〈Vr〉, attractive potential 〈Va〉, ratio of

attractive to repulsive potential η, inter-electronic angles 〈θ12〉 (in degree) using (4.3.6), different

one and two-particle moments of metastable bound 2pnf 3Fe [n = 4− 15] states of He atom below

He+(2p) threshold for different screening length λD of classical weakly coupled plasma. The notation

P [±Q] stands for P × 10±Q. All values are given in atomic units.

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

2p4f ∞ 6.38[-2] -1.12[+0] 17.65 9.96[+0] 1.72[+2] 1.76[+1] 3.47[+2] 93.59

100 5.39[-2] -1.08[+0] 20.17 1.00[+1] 1.78[+2] 1.79[+1] 3.57[+2] 93.47
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Continuation of Table 4.3.21

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

70 4.97[-2] -1.07[+0] 21.53 1.02[+1] 1.83[+2] 1.81[+1] 3.67[+2] 93.36

50 4.41[-2] -1.04[+0] 23.74 1.04[+1] 1.93[+2] 1.86[+1] 3.88[+2] 93.17

40 3.93[-2] -1.02[+0] 26.15 1.07[+1] 2.06[+2] 1.91[+1] 4.13[+2] 92.95

30 3.13[-2] -9.96[-1] 31.78 1.14[+1] 2.39[+2] 2.05[+1] 4.79[+2] 92.52

25 2.48[-2] -9.69[-1] 38.96 1.23[+1] 2.86[+2] 2.24[+1] 5.73[+2] 92.09

20 1.41[-2] -9.28[-1] 65.49 1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] 91.25

2p5f ∞ 4.07[-2] -1.08[+0] 26.56 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] 91.82

100 3.08[-2] -1.04[+0] 33.79 1.71[+1] 5.79[+2] 3.19[+1] 1.15[+3] 91.69

70 2.67[-2] -1.02[+0] 38.36 1.77[+1] 6.19[+2] 3.30[+1] 1.23[+3] 91.56

50 2.13[-2] -1.00[+0] 46.93 1.88[+1] 7.03[+2] 3.52[+1] 1.40[+3] 91.35

40 1.67[-2] -9.83[-1] 58.64 2.02[+1] 8.27[+2] 3.81[+1] 1.65[+3] 91.12

30 8.98[-3] -9.51[-1] 105.83 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] 90.65

2p6f ∞ 2.81[-2] -1.05[+0] 37.48 2.48[+1] 1.26[+3] 4.72[+1] 2.52[+3] 91.05

100 1.84[-2] -1.01[+0] 55.18 2.64[+1] 1.43[+3] 5.04[+1] 2.87[+3] 90.90

70 1.44[-2] -1.00[+0] 69.09 2.81[+1] 1.64[+3] 5.39[+1] 3.28[+3] 90.77

50 9.42[-3] -9.78[-1] 103.87 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] 90.55

40 5.01[-3] -9.60[-1] 191.34 4.06[+1] 3.52[+3] 7.89[+1] 7.05[+3] 90.31

2p7f ∞ 2.06[-2] -1.04[+0] 50.39 3.44[+1] 2.50[+3] 6.65[+1] 5.00[+3] 90.66

100 1.10[-2] -1.00[+0] 90.45 3.86[+1] 3.14[+3] 7.48[+1] 6.28[+3] 90.50

70 7.34[-3] -9.86[-1] 134.26 4.37[+1] 4.04[+3] 8.50[+1] 8.08[+3] 90.36

50 2.53[-3] -9.65[-1] 381.10 6.40[+1] 8.91[+3] 1.25[+2] 1.78[+4] 90.13

2p8f ∞ 1.57[-2] -1.03[+0] 65.32 4.56[+1] 4.45[+3] 8.89[+1] 8.90[+3] 90.44

100 6.43[-3] -9.92[-1] 154.20 5.53[+1] 6.51[+3] 1.08[+2] 1.30[+4] 90.27

70 2.95[-3] -9.77[-1] 331.09 7.15[+1] 1.09[+4] 1.40[+2] 2.18[+4] 90.14

2p9f ∞ 1.24[-2] -1.02[+0] 82.20 5.83[+1] 7.33[+3] 1.14[+2] 1.46[+4] 90.31

100 3.38[-3] -9.86[-1] 291.23 8.00[+1] 1.37[+4] 1.57[+2] 2.74[+4] 90.13

2p10f ∞ 9.99[-3] -1.02[+0] 102.05 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] 90.21

100 1.33[-3] -9.82[-1] 733.41 1.25[+2] 3.38[+4] 2.48[+2] 6.76[+4] 90.05

2p11f ∞ 7.99[-3] -1.01[+0] 127.19 9.15[+1] 1.81[+4] 1.80[+2] 3.63[+4] 90.14

2p12f ∞ 6.15[-3] -1.01[+0] 164.69 1.17[+2] 3.00[+4] 2.33[+2] 6.00[+4] 90.08

2p13f ∞ 6.75[-3] -1.01[+0] 149.84 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] 90.14

2p14f ∞ 5.08[-3] -1.00[+0] 198.36 1.83[+2] 7.49[+4] 3.63[+2] 1.49[+5] 90.09

2p15f ∞ 7.02[-3] -1.00[+0] 142.97 2.12[+2] 1.11[+5] 4.22[+2] 2.23[+5] 90.20

a [239]
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Table 4.3.22: Expectation values of repulsive potential 〈Vr〉, attractive potential 〈Va〉, ratio of

attractive to repulsive potential η =

∣∣∣∣ 〈Va〉〈Vr〉
∣∣∣∣, inter-electronic angles 〈θ12〉 (in degree) using (4.3.6),

different one and two-particle moments of metastable bound 2pnf 1Fe [n = 4 − 15] states of He

atom below He+(2p) threshold for different screening length λD of classical weakly coupled plasma.

The notation P [±Q] stands for P × 10±Q. All values are given in atomic units.

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

2p4f ∞ 6.39[-2] -1.12[+0] 17.64 9.96[+0] 1.72[+2] 1.76[+1] 3.46[+2] 93.46

100 5.39[-2] -1.08[+0] 20.15 1.00[+1] 1.77[+2] 1.78[+1] 3.57[+2] 93.36

70 4.97[-2] -1.07[+0] 21.52 1.02[+1] 1.83[+2] 1.81[+1] 3.67[+2] 93.25

50 4.41[-2] -1.04[+0] 23.73 1.04[+1] 1.93[+2] 1.86[+1] 3.87[+2] 93.07

40 3.93[-2] -1.02[+0] 26.14 1.07[+1] 2.06[+2] 1.91[+1] 4.13[+2] 92.87

30 3.13[-2] -9.96[-1] 31.76 1.14[+1] 2.39[+2] 2.05[+1] 4.79[+2] 92.45

25 2.49[-2] -9.69[-1] 38.93 1.23[+1] 2.86[+2] 2.24[+1] 5.73[+2] 92.05

20 1.41[-2] -9.28[-1] 65.43 1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] 91.23

2p5f ∞ 4.07[-2] -1.08[+0] 26.55 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] 91.73

100 3.08[-2] -1.04[+0] 33.76 1.71[+1] 5.79[+2] 3.19[+1] 1.15[+3] 91.61

70 2.67[-2] -1.02[+0] 38.33 1.77[+1] 6.18[+2] 3.30[+1] 1.23[+3] 91.49

50 2.13[-2] -1.00[+0] 46.90 1.88[+1] 7.03[+2] 3.52[+1] 1.40[+3] 91.29

40 1.67[-2] -9.83[-1] 58.59 2.02[+1] 8.27[+2] 3.81[+1] 1.65[+3] 91.08

30 8.99[-3] -9.51[-1] 105.71 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] 90.63

2p6f ∞ 2.82[-2] -1.05[+0] 37.46 2.48[+1] 1.26[+3] 4.72[+1] 2.52[+3] 90.99

100 1.84[-2] -1.01[+0] 55.14 2.64[+1] 1.43[+3] 5.04[+1] 2.87[+3] 90.85

70 1.44[-2] -1.00[+0] 69.04 2.81[+1] 1.64[+3] 5.39[+1] 3.28[+3] 90.73

50 9.43[-3] -9.78[-1] 103.78 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] 90.52

40 5.02[-3] -9.60[-1] 191.11 4.06[+1] 3.52[+3] 7.88[+1] 7.05[+3] 90.29

2p7f ∞ 2.06[-2] -1.04[+0] 50.37 3.44[+1] 2.50[+3] 6.65[+1] 5.00[+3] 90.61

100 1.10[-2] -1.00[+0] 90.38 3.86[+1] 3.14[+3] 7.48[+1] 6.28[+3] 90.46

70 7.35[-3] -9.86[-1] 134.16 4.37[+1] 4.04[+3] 8.50[+1] 8.08[+3] 90.34

50 2.53[-3] -9.65[-1] 380.59 6.40[+1] 8.91[+3] 1.25[+2] 1.78[+4] 90.13

2p8f ∞ 1.57[-2] -1.03[+0] 65.29 4.56[+1] 4.44[+3] 8.89[+1] 8.90[+3] 90.41

100 6.44[-3] -9.92[-1] 154.09 5.52[+1] 6.51[+3] 1.08[+2] 1.30[+4] 90.25

70 2.95[-3] -9.77[-1] 330.77 7.14[+1] 1.09[+4] 1.40[+2] 2.18[+4] 90.13

2p9f ∞ 1.24[-2] -1.02[+0] 82.17 5.83[+1] 7.33[+3] 1.14[+2] 1.46[+4] 90.29

100 3.39[-3] -9.86[-1] 291.01 8.00[+1] 1.37[+4] 1.57[+2] 2.74[+4] 90.12

2p10f ∞ 9.99[-3] -1.02[+0] 102.02 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] 90.20

100 1.34[-3] -9.82[-1] 732.32 1.25[+2] 3.38[+4] 2.48[+2] 6.76[+4] 90.04

2p11f ∞ 7.99[-3] -1.01[+0] 127.14 9.14[+1] 1.81[+4] 1.80[+2] 3.63[+4] 90.12

2p12f ∞ 6.15[-3] -1.01[+0] 164.66 1.17[+2] 3.00[+4] 2.33[+2] 6.00[+4] 90.07

2p13f ∞ 6.74[-3] -1.01[+0] 150.09 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] 90.13

2p14f ∞ 5.07[-3] -1.00[+0] 198.97 1.83[+2] 7.49[+4] 3.64[+2] 1.49[+5] 90.08

2p15f ∞ 6.76[-3] -1.00[+0] 147.92 2.15[+2] 1.13[+5] 4.27[+2] 2.26[+5] 90.17

a [239]
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In the last phase, we focus on the resonance energy and width of 1,3Fe states under WCP.

Tables (4.3.23) and (4.3.24) show the resonance energies (Er) and widths (Γ) respectively

for the resonance 3Fe states below the He+(3p) threshold with respect to different values

of λD and the present results are compared with only available values from literature [239].

Similar to the MBSs the number of resonance 3Fe states decrease with respect to the

decrease of λD. In tables (4.3.23) and (4.3.24), the resonance 3Fe states are associated with

the dominant electronic configurations 3dnd [n ≥ 3], 3pnf [n ≥ 4] and 3dng [n ≥ 5] as

described below:

i. 3dnd [3 ≤ n ≤ 10] configurations signify 3Fe(1), 3Fe(2), 3Fe(4), 3Fe(7), 3Fe(10),
3Fe(13), 3Fe(16) and 3Fe(19) states.

ii. 3pnf [4 ≤ n ≤ 10] configurations signify 3Fe(3), 3Fe(5), 3Fe(8), 3Fe(11), 3Fe(14),
3Fe(17) and 3Fe(20) states.

iii. 3dng [5 ≤ n ≤ 9] configurations signify 3Fe(6),3 Fe(9),3 Fe(12),3 Fe(15) and 3Fe(18)

states.

It can be observed from table (4.3.24) that the width (Γ) decreases with the decrease of λD
for most of the states except the 3dng [5 ≤ n ≤ 9] states. In this context we have explored

the changes of the structural properties of resonance 3Fe states of He atom below He+(3p)

threshold, similar to the metastable bound 3Fe states with respect to λD, which is presented

in table (4.3.25). Resonance 3Fe states show similar features for the variation of 〈Va〉, 〈Vr〉,
η, 〈r1〉,

〈
r2

1

〉
, 〈r12〉 and

〈
r2

12

〉
with the changes in λD as noted in case of metastable bound

3Fe states. Table (4.3.25) also shows that, inter-electronic angle 〈θ12〉 values decrease with

the decrease of λD for both 3dnd and 3pnf states whereas it increase as λD decreases for

3dng states. Therefore, it can be concluded that there is a direct relationship between

changes in the inter-electronic angle 〈θ12〉 and width Γ, with respect to λD. Moreover, the

data presented in tables (4.3.24) and (4.3.25) suggest that, the small acute inter-electronic

angles correspond to very feeble resonance widths (higher autoionizing lifetime), as observed

for 3dng states. As a result, 3dng states are extremely stable against autoionization in the

free case and become more prone to autoionization when λD decreases.

Table 4.3.25: Expectation values of repulsive potential 〈Vr〉, attractive potential 〈Va〉, ratio of

attractive to repulsive potential η =

∣∣∣∣ 〈Va〉〈Vr〉
∣∣∣∣, inter-electronic angles 〈θ12〉 (in degree) using (4.3.6),

different one and two-particle moments 〈r1〉,
〈
r2
1

〉
, 〈r12〉 and

〈
r2
12

〉
of resonance 3Fe states of He

atom below He+(3p) threshold under classical weakly coupled plasma. All values are given in atomic

units. The notation P [±Q] stands for P × 10±Q.

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

3Fe(1) ∞ 1.11[-1] -7.49[-1] 6.75 6.70[+0] 5.70[+1] 1.04[+1] 1.28[+2] 126.85

100 1.01[-1] -7.10[-1] 7.01 6.63[+0] 5.46[+1] 1.03[+1] 1.24[+2] 127.06

70 9.74[-2] -6.93[-1] 7.12 6.62[+0] 5.42[+1] 1.03[+1] 1.23[+2] 126.86

50 9.23[-2] -6.71[-1] 7.26 6.61[+0] 5.39[+1] 1.02[+1] 1.22[+2] 126.69

40 8.84[-2] -6.49[-1] 7.35 6.59[+0] 5.27[+1] 1.02[+1] 1.20[+2] 127.12
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Continuation of Table (4.3.25)

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

30 8.13[-2] -6.18[-1] 7.60 6.62[+0] 5.38[+1] 1.02[+1] 1.22[+2] 126.68

25 7.60[-2] -5.93[-1] 7.79 6.64[+0] 5.42[+1] 1.03[+1] 1.23[+2] 126.64

20 6.86[-2] -5.55[-1] 8.09 6.71[+0] 5.51[+1] 1.04[+1] 1.25[+2] 126.77

15 5.69[-2] -4.94[-1] 8.68 6.88[+0] 5.83[+1] 1.07[+1] 1.32[+2] 126.50

12 4.63[-2] -4.32[-1] 9.33 7.14[+0] 6.34[+1] 1.11[+1] 1.44[+2] 126.52
3Fe(2) ∞ 6.67[-2] -5.96[-1] 8.93 1.07[+1] 1.59[+2] 1.82[+1] 3.74[+2] 152.41

100 5.70[-2] -5.57[-1] 9.76 1.08[+1] 1.62[+2] 1.83[+1] 3.80[+2] 152.03

70 5.30[-2] -5.40[-1] 10.17 1.09[+1] 1.66[+2] 1.85[+1] 3.87[+2] 151.71

50 4.79[-2] -5.17[-1] 10.80 1.10[+1] 1.71[+2] 1.88[+1] 3.99[+2] 151.04

40 4.35[-2] -4.98[-1] 11.43 1.12[+1] 1.79[+2] 1.91[+1] 4.15[+2] 150.50

30 3.65[-2] -4.66[-1] 12.77 1.16[+1] 1.95[+2] 1.99[+1] 4.47[+2] 149.18

25 3.11[-2] -4.41[-1] 14.18 1.20[+1] 2.13[+2] 2.07[+1] 4.85[+2] 148.05

20 2.33[-2] -4.03[-1] 17.30 1.30[+1] 2.56[+2] 2.25[+1] 5.75[+2] 146.73
3Fe(3) ∞ 6.50[-2] -5.83[-1] 8.96 1.10[+1] 1.70[+2] 1.73[+1] 3.34[+2] 87.32

100 5.53[-2] -5.43[-1] 9.81 1.11[+1] 1.73[+2] 1.74[+1] 3.39[+2] 86.99

70 5.13[-2] -5.26[-1] 10.24 1.12[+1] 1.76[+2] 1.76[+1] 3.45[+2] 86.83

50 4.63[-2] -5.04[-1] 10.89 1.13[+1] 1.82[+2] 1.79[+1] 3.56[+2] 86.22

40 4.19[-2] -4.84[-1] 11.56 1.15[+1] 1.89[+2] 1.82[+1] 3.71[+2] 85.84

30 3.48[-2] -4.53[-1] 12.99 1.20[+1] 2.08[+2] 1.90[+1] 4.05[+2] 84.46

25 2.93[-2] -4.27[-1] 14.57 1.25[+1] 2.31[+2] 1.99[+1] 4.50[+2] 82.68

20 2.08[-2] -3.89[-1] 18.69 1.39[+1] 3.01[+2] 2.25[+1] 5.81[+2] 77.07
3Fe(4) ∞ 4.32[-2] -5.38[-1] 12.46 1.65[+1] 4.41[+2] 2.95[+1] 9.81[+2] 158.78

100 3.37[-2] -4.99[-1] 14.79 1.67[+1] 4.58[+2] 3.00[+1] 1.01[+3] 155.89

70 2.97[-2] -4.82[-1] 16.24 1.72[+1] 4.86[+2] 3.09[+1] 1.07[+3] 156.97

50 2.47[-2] -4.60[-1] 18.61 1.78[+1] 5.29[+2] 3.21[+1] 1.16[+3] 155.25

40 2.05[-2] -4.41[-1] 21.45 1.86[+1] 5.85[+2] 3.37[+1] 1.27[+3] 153.64

30 1.38[-2] -4.10[-1] 29.54 2.09[+1] 7.57[+2] 3.80[+1] 1.62[+3] 151.75
3Fe(5) ∞ 4.12[-2] -5.30[-1] 12.88 1.74[+1] 5.05[+2] 2.97[+1] 9.95[+2] 82.44

100 3.19[-2] -4.92[-1] 15.40 1.77[+1] 5.23[+2] 3.01[+1] 1.02[+3] 78.25

70 2.76[-2] -4.74[-1] 17.17 1.83[+1] 5.61[+2] 3.13[+1] 1.10[+3] 79.77

50 2.26[-2] -4.52[-1] 20.01 1.91[+1] 6.20[+2] 3.28[+1] 1.21[+3] 76.79

40 1.83[-2] -4.33[-1] 23.58 2.02[+1] 7.01[+2] 3.48[+1] 1.36[+3] 72.94

30 1.14[-2] -4.02[-1] 35.09 2.34[+1] 9.83[+2] 4.09[+1] 1.90[+3] 62.83
3Fe(6) ∞ 4.04[-2] -5.23[-1] 12.93 1.68[+1] 4.55[+2] 2.75[+1] 8.35[+2] 40.86

100 3.04[-2] -4.83[-1] 15.89 1.73[+1] 4.85[+2] 2.85[+1] 8.96[+2] 42.11

70 2.59[-2] -4.65[-1] 17.98 1.79[+1] 5.31[+2] 2.98[+1] 9.85[+2] 43.44

50 2.00[-2] -4.43[-1] 22.13 1.92[+1] 6.26[+2] 3.24[+1] 1.17[+3] 45.81

40 1.40[-2] -4.21[-1] 30.12 2.25[+1] 9.20[+2] 3.89[+1] 1.75[+3] 53.29
3Fe(7) ∞ 2.98[-2] -5.08[-1] 17.01 2.39[+1] 1.02[+3] 4.42[+1] 2.20[+3] 161.74

100 2.04[-2] -4.69[-1] 22.95 2.49[+1] 1.12[+3] 4.62[+1] 2.40[+3] 159.20

70 1.66[-2] -4.52[-1] 27.17 2.61[+1] 1.23[+3] 4.86[+1] 2.64[+3] 159.15

50 1.20[-2] -4.31[-1] 35.91 2.84[+1] 1.49[+3] 5.31[+1] 3.16[+3] 157.30
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Continuation of Table (4.3.25)

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

40 8.87[-3] -4.13[-1] 46.62 3.08[+1] 1.81[+3] 5.78[+1] 3.81[+3] 150.06
3Fe(8) ∞ 2.85[-2] -5.03[-1] 17.67 2.53[+1] 1.17[+3] 4.53[+1] 2.31[+3] 80.32

100 1.90[-2] -4.64[-1] 24.32 2.65[+1] 1.29[+3] 4.75[+1] 2.54[+3] 75.03

70 1.51[-2] -4.47[-1] 29.51 2.81[+1] 1.46[+3] 5.05[+1] 2.87[+3] 73.93

50 1.14[-2] -4.29[-1] 37.65 3.01[+1] 1.72[+3] 5.52[+1] 3.44[+3] 89.70

40 6.73[-3] -4.08[-1] 60.73 3.57[+1] 2.44[+3] 6.53[+1] 4.78[+3] 58.94
3Fe(9) ∞ 2.80[-2] -4.99[-1] 17.76 2.52[+1] 1.16[+3] 4.40[+1] 2.20[+3] 34.77

100 1.79[-2] -4.59[-1] 25.59 2.71[+1] 1.36[+3] 4.78[+1] 2.58[+3] 38.17

70 1.37[-2] -4.42[-1] 32.17 2.92[+1] 1.60[+3] 5.20[+1] 3.06[+3] 40.89

50 6.80[-3] -4.18[-1] 61.46 3.96[+1] 3.12[+3] 7.32[+1] 6.15[+3] 69.33
3Fe(10) ∞ 2.17[-2] -4.90[-1] 22.52 3.29[+1] 2.05[+3] 6.21[+1] 4.33[+3] 163.34

100 1.25[-2] -4.51[-1] 35.86 3.55[+1] 2.41[+3] 6.73[+1] 5.06[+3] 159.16

70 8.99[-3] -4.35[-1] 48.40 3.89[+1] 2.93[+3] 7.41[+1] 6.12[+3] 159.57

50 4.71[-3] -4.14[-1] 88.03 4.91[+1] 4.87[+3] 9.33[+1] 9.76[+3] 96.51
3Fe(11) ∞ 2.09[-2] -4.87[-1] 23.27 3.47[+1] 2.32[+3] 6.39[+1] 4.60[+3] 76.04

100 1.14[-2] -4.48[-1] 38.99 3.82[+1] 2.84[+3] 7.08[+1] 5.61[+3] 73.67

70 7.94[-3] -4.32[-1] 54.41 4.24[+1] 3.52[+3] 7.88[+1] 6.94[+3] 65.72
3Fe(12) ∞ 2.08[-2] -4.84[-1] 23.20 3.48[+1] 2.36[+3] 6.30[+1] 4.52[+3] 30.16

100 1.11[-2] -4.45[-1] 39.99 3.96[+1] 3.12[+3] 7.28[+1] 6.04[+3] 37.76

70 6.24[-3] -4.28[-1] 68.58 4.97[+1] 5.04[+3] 9.30[+1] 9.84[+3] 45.72
3Fe(13) ∞ 1.64[-2] -4.78[-1] 29.07 4.36[+1] 3.76[+3] 8.36[+1] 7.82[+3] 162.69

100 7.54[-3] -4.40[-1] 58.37 5.00[+1] 4.97[+3] 9.62[+1] 1.02[+4] 160.82

70 4.50[-3] -4.25[-1] 94.44 5.81[+1] 6.81[+3] 1.12[+2] 1.40[+4] 158.04
3Fe(14) ∞ 1.59[-2] -4.77[-1] 29.87 4.57[+1] 4.16[+3] 8.56[+1] 8.24[+3] 73.07

100 7.80[-3] -4.41[-1] 56.58 5.18[+1] 5.46[+3] 9.87[+1] 1.09[+4] 93.25

70 3.70[-3] -4.23[-1] 114.22 6.48[+1] 8.56[+3] 1.23[+2] 1.69[+4] 57.61
3Fe(15) ∞ 1.54[-2] -4.75[-1] 30.69 4.77[+1] 4.60[+3] 8.87[+1] 8.93[+3] 30.34

100 4.92[-3] -4.35[-1] 88.43 6.93[+1] 9.94[+3] 1.33[+2] 1.98[+4] 88.76
3Fe(16) ∞ 1.36[-2] -4.72[-1] 34.67 5.47[+1] 6.13[+3] 1.05[+2] 1.25[+4] 143.56
3Fe(17) ∞ 1.32[-2] -4.72[-1] 35.67 5.67[+1] 6.63[+3] 1.08[+2] 1.32[+4] 87.60
3Fe(18) ∞ 1.06[-2] -4.66[-1] 43.76 6.99[+1] 1.01[+4] 1.34[+2] 2.03[+4] 89.12
3Fe(19) ∞ 1.46[-2] -4.78[-1] 32.76 6.41[+1] 9.26[+3] 1.23[+2] 1.85[+4] 90.23
3Fe(20) ∞ 1.72[-2] -4.82[-1] 28.01 5.17[+1] 6.17[+3] 9.84[+1] 1.23[+4] 91.24

The resonance parameters (Er and Γ) of 1Fe states below He+(3p) threshold for different λD

are given in the tables (4.3.26) and (4.3.27) respectively. These tables reveal similar features

as discussed in case of 3Fe states. Structural properties like 〈Vr〉, 〈Va〉, 〈θ12〉 and different

moments– 〈r1〉,
〈
r2

1

〉
, 〈r12〉 and

〈
r2

12

〉
of resonance 1Fe states below He+(3p) threshold are

also estimated for different λD, as shown in table (4.3.28).
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Table 4.3.28: Expectation values of repulsive potential 〈Vr〉, attractive potential 〈Va〉, ratio of

attractive to repulsive potential η =

∣∣∣∣ 〈Va〉〈Vr〉
∣∣∣∣, inter-electronic angles 〈θ12〉 (in degree) using (4.3.6),

different one and two-particle moments 〈r1〉,
〈
r2
1

〉
, 〈r12〉 and

〈
r2
12

〉
of resonance 1Fe states of He

atom below He+(3p) threshold under classical weakly coupled plasma. All values are given in atomic

units. The notation P [±Q] stands for P × 10±Q.

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

1Fe(1) ∞ 6.55[-2] -6.02[-1] 9.18 1.01[+1] 1.37[+2] 1.68[+1] 3.07[+2] 135.10

100 5.60[-2] -5.63[-1] 10.04 1.01[+1] 1.38[+2] 1.68[+1] 3.10[+2] 134.91

70 5.22[-2] -5.46[-1] 10.45 1.01[+1] 1.40[+2] 1.69[+1] 3.14[+2] 134.74

50 4.74[-2] -5.24[-1] 11.05 1.02[+1] 1.43[+2] 1.71[+1] 3.20[+2] 134.47

40 4.34[-2] -5.05[-1] 11.64 1.03[+1] 1.46[+2] 1.73[+1] 3.27[+2] 134.21

30 3.71[-2] -4.75[-1] 12.78 1.06[+1] 1.54[+2] 1.77[+1] 3.43[+2] 133.78

25 3.24[-2] -4.50[-1] 13.88 1.08[+1] 1.62[+2] 1.81[+1] 3.61[+2] 133.49

20 2.59[-2] -4.15[-1] 16.03 1.13[+1] 1.81[+2] 1.90[+1] 3.99[+2] 133.32
1Fe(2) ∞ 7.01[-2] -5.92[-1] 8.44 1.00[+1] 1.32[+2] 1.58[+1] 2.76[+2] 108.87

100 6.04[-2] -5.52[-1] 9.14 1.01[+1] 1.34[+2] 1.59[+1] 2.81[+2] 108.47

70 5.64[-2] -5.36[-1] 9.49 1.02[+1] 1.37[+2] 1.60[+1] 2.85[+2] 107.96

50 5.12[-2] -5.13[-1] 10.02 1.03[+1] 1.42[+2] 1.63[+1] 2.94[+2] 107.26

40 4.68[-2] -4.94[-1] 10.55 1.05[+1] 1.47[+2] 1.65[+1] 3.04[+2] 106.16

30 3.96[-2] -4.62[-1] 11.67 1.09[+1] 1.62[+2] 1.72[+1] 3.32[+2] 104.11

25 3.38[-2] -4.37[-1] 12.89 1.14[+1] 1.80[+2] 1.80[+1] 3.67[+2] 101.59

20 2.49[-2] -3.97[-1] 15.97 1.26[+1] 2.37[+2] 2.03[+1] 4.77[+2] 95.63
1Fe(3) ∞ 4.19[-2] -5.39[-1] 12.86 1.58[+1] 4.03[+2] 2.81[+1] 8.75[+2] 140.41

100 3.25[-2] -5.00[-1] 15.37 1.61[+1] 4.18[+2] 2.86[+1] 9.05[+2] 139.72

70 2.88[-2] -4.83[-1] 16.76 1.63[+1] 4.33[+2] 2.90[+1] 9.36[+2] 139.14

50 2.42[-2] -4.62[-1] 19.05 1.68[+1] 4.62[+2] 2.99[+1] 9.95[+2] 138.28

40 2.05[-2] -4.44[-1] 21.66 1.74[+1] 4.99[+2] 3.10[+1] 1.06[+3] 137.66

30 1.47[-2] -4.14[-1] 28.17 1.88[+1] 5.95[+2] 3.38[+1] 1.26[+3] 137.76

25 1.03[-2] -3.90[-1] 37.80 2.07[+1] 7.47[+2] 3.76[+1] 1.58[+3] 140.57
1Fe(4) ∞ 4.32[-2] -5.34[-1] 12.36 1.62[+1] 4.22[+2] 2.77[+1] 8.60[+2] 103.51

100 3.36[-2] -4.95[-1] 14.72 1.66[+1] 4.44[+2] 2.83[+1] 9.01[+2] 102.08

70 2.97[-2] -4.78[-1] 16.09 1.69[+1] 4.66[+2] 2.90[+1] 9.41[+2] 100.27

50 2.47[-2] -4.56[-1] 18.47 1.76[+1] 5.11[+2] 3.02[+1] 1.02[+3] 96.76

40 2.04[-2] -4.37[-1] 21.44 1.86[+1] 5.78[+2] 3.20[+1] 1.15[+3] 92.85

30 1.36[-2] -4.07[-1] 29.82 2.10[+1] 7.59[+2] 3.64[+1] 1.49[+3] 79.96
1Fe(5) ∞ 4.04[-2] -5.23[-1] 12.93 1.68[+1] 4.56[+2] 2.75[+1] 8.35[+2] 39.67

100 3.03[-2] -4.83[-1] 15.93 1.74[+1] 4.91[+2] 2.86[+1] 9.04[+2] 40.59

70 2.57[-2] -4.65[-1] 18.07 1.80[+1] 5.38[+2] 3.00[+1] 9.97[+2] 41.81

50 1.98[-2] -4.42[-1] 22.28 1.94[+1] 6.40[+2] 3.27[+1] 1.19[+3] 44.57

40 8.91[-3] -4.15[-1] 46.58 2.88[+1] 1.53[+3] 5.34[+1] 3.18[+3] 133.47
1Fe(6) ∞ 2.90[-2] -5.08[-1] 17.52 2.32[+1] 9.53[+2] 4.26[+1] 2.01[+3] 143.51

100 1.97[-2] -4.69[-1] 23.73 2.40[+1] 1.03[+3] 4.43[+1] 2.18[+3] 141.86

70 1.62[-2] -4.53[-1] 27.86 2.49[+1] 1.11[+3] 4.60[+1] 2.35[+3] 140.92
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Continuation of Table (4.3.28)

States λD 〈Vr〉 〈Va〉 η 〈r1〉
〈
r2
1

〉
〈r12〉

〈
r2
12

〉
〈θ12〉

50 1.21[-2] -4.32[-1] 35.59 2.65[+1] 1.28[+3] 4.92[+1] 2.69[+3] 138.82

40 1.41[-2] -4.22[-1] 29.74 2.21[+1] 8.79[+2] 3.82[+1] 1.67[+3] 51.32
1Fe(7) ∞ 2.95[-2] -5.05[-1] 17.12 2.39[+1] 1.02[+3] 4.29[+1] 2.07[+3] 100.93

100 1.98[-2] -4.66[-1] 23.46 2.53[+1] 1.16[+3] 4.54[+1] 2.33[+3] 95.65

70 1.62[-2] -4.50[-1] 27.71 2.63[+1] 1.26[+3] 4.74[+1] 2.53[+3] 95.86

50 1.15[-2] -4.28[-1] 37.22 2.90[+1] 1.55[+3] 5.25[+1] 3.10[+3] 88.78

40 7.69[-3] -4.10[-1] 53.33 3.32[+1] 2.11[+3] 6.08[+1] 4.20[+3] 81.39
1Fe(8) ∞ 2.80[-2] -4.99[-1] 17.77 2.52[+1] 1.16[+3] 4.40[+1] 2.19[+3] 32.73

100 1.80[-2] -4.59[-1] 25.48 2.71[+1] 1.37[+3] 4.78[+1] 2.59[+3] 35.04

70 1.38[-2] -4.42[-1] 32.02 2.91[+1] 1.59[+3] 5.18[+1] 3.04[+3] 37.80

50 5.38[-3] -4.16[-1] 77.29 4.25[+1] 3.54[+3] 8.05[+1] 7.23[+3] 123.43
1Fe(9) ∞ 2.12[-2] -4.90[-1] 23.09 3.20[+1] 1.93[+3] 6.01[+1] 4.03[+3] 145.03

100 1.21[-2] -4.51[-1] 37.05 3.44[+1] 2.25[+3] 6.49[+1] 4.67[+3] 142.75

70 8.96[-3] -4.36[-1] 48.62 3.69[+1] 2.61[+3] 6.88[+1] 5.41[+3] 140.87

50 7.31[-3] -4.19[-1] 57.28 3.74[+1] 2.77[+3] 6.98[+1] 5.42[+3] 56.30
1Fe(10) ∞ 2.15[-2] -4.88[-1] 22.70 3.32[+1] 2.09[+3] 6.11[+1] 4.20[+3] 98.36

100 1.21[-2] -4.49[-1] 36.97 3.63[+1] 2.53[+3] 6.72[+1] 5.07[+3] 93.32

70 8.61[-3] -4.33[-1] 50.36 3.99[+1] 3.08[+3] 7.42[+1] 6.16[+3] 87.63

50 4.51[-3] -4.13[-1] 91.55 4.95[+1] 4.95[+3] 9.33[+1] 9.89[+3] 82.99
1Fe(11) ∞ 2.12[-2] -4.85[-1] 22.80 3.50[+1] 2.40[+3] 6.33[+1] 4.61[+3] 30.81

100 7.51[-3] -4.40[-1] 58.68 4.79[+1] 4.55[+3] 9.17[+1] 9.34[+3] 138.97

70 5.00[-3] -4.26[-1] 85.22 5.31[+1] 5.65[+3] 1.01[+2] 1.14[+4] 116.89
1Fe(12) ∞ 1.63[-2] -4.77[-1] 29.20 4.39[+1] 3.81[+3] 8.24[+1] 7.64[+3] 94.78

100 7.21[-3] -4.39[-1] 60.89 5.20[+1] 5.40[+3] 9.79[+1] 1.07[+4] 76.15
1Fe(13) ∞ 1.62[-2] -4.77[-1] 29.47 4.42[+1] 3.87[+3] 8.31[+1] 7.76[+3] 96.62

100 3.96[-3] -4.32[-1] 109.24 7.34[+1] 1.10[+4] 1.39[+2] 2.17[+4] 38.90
1Fe(14) ∞ 1.32[-2] -4.72[-1] 35.70 5.39[+1] 5.94[+3] 1.02[+2] 1.19[+4] 95.96
1Fe(15) ∞ 1.06[-2] -4.66[-1] 44.05 6.76[+1] 9.49[+3] 1.30[+2] 1.90[+4] 91.57
1Fe(16) ∞ 9.74[-3] -4.65[-1] 47.74 7.58[+1] 1.21[+4] 1.46[+2] 2.43[+4] 91.49
1Fe(17) ∞ 1.59[-2] -4.79[-1] 30.11 5.82[+1] 7.98[+3] 1.11[+2] 1.59[+4] 90.31
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Concluding remarks and future scope

Research on few–body atomic systems under plasma environment is covered in detail in this

dissertation. The findings of the present work expose several interesting structural proper-

ties of few–body systems under various plasma conditions and open up new directions for

future research. Three types of plasma environments have been considered: (i) Classical

weakly coupled plasma (WCP), (ii) classical dusty plasma (DP) and (iii) quantum plasma

(QP). In each case variational equation has been formed and energy eigenvalues of the

atomic systems considered are estimated by solving the generalized eigenvalue equation.

All calculations are carried out in quadruple precision to ensure the accuracy of the ob-

tained data. In what follows we draw conclusion on the results of present study along with

the some of the possible future applications of the findings in the concerned field of research.

At the beginning, model potentials ‘felt’ by a hydrogenic ion while moving through classical

WCP, classical DP and QP are developed considering the plasma as a dielectric medium.

The model potentials are valid as long as the atom is moving at such a velocity (v) that the

thermal Mach number lies below unity. The physical parameters of plasma, like particle

number density, temperature etc. are incorporated in the screening terms of model poten-

tial experienced by atoms when placed inside the plasma medium. For the cases of classical

WCP and QP, the potentials consist of two parts: (a) exponentially screened Coulomb po-

tential (ESCP) and (b) near field wake potential (NFWP) which depends on ion velocity

(v). For classical DP, in addition to ESCP and NFWP, an additional term dependent on

velocity and dust grain size arises, which is known as “dust potential”. Ritz variational

principle is used to examine the impact of such model potentials on the energy eigenvalues

of 1s0, 2s0, 2p0 and 2p±1 states of moving hydrogen atom using distorted trial wavefunctions

and solving the generalized eigenvalue equation. It is observed that, under plasma envi-

ronment, the energy eigenvalues of H–atom or H–like ions increase with respect to free (no

plasma) and static (v = 0) case and they increase further if velocity of the atom increases.

l−degeneracy is removed in presence of plasma and the velocity of hydrogen atom causes

the removal of |m|−degeneracy giving rise to ‘Stark-like’ splitting of the energy levels. The

variation of transition energies of π and σ components of Lyman–α transitions of plasma

embedded hydrogen atom are also estimated for different velocities of the ion. In all the

cases the π–lines exhibit blue-shift as velocity of the atom increases whereas the σ–lines ex-

hibit blue-shift only in classical weakly coupled plasma and show red-shift in both classical

dusty plasma and quantum plasma environments. The present methodology is extended to

study the influence of quantum plasma potential on the modification of energy eigenvalues

of different states of moving C5+ ion for different densities of the electron-hole quantum

plasma environment. At the instance of an ion moving in a quantum plasma environment,

the level crossing phenomena and incidental degeneracy are detected with respect to the
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ion velocity. Future researchers are expected to explore the structural properties of vari-

ous ions in a quantum plasma environment using the current form of the potential. The

present methodology can be extended to study the variation of transition rate of H–like

systems with respect to ion velocity, which will carry immense application in case of fast

ion diagnostics in research works related to different thermonuclear fusion reactors. Such

studies are being conducted with a great deal of effort as part of the ITER project and

its auxiliary initiatives, such as the JET tokamak and ASDEX upgrade. Research on the

modulation of spectral line features (intensity, profile, broadening, etc.) can help with the

measurement of various plasma parameters, such as energies of plasma ions (using Lyman

lines), fluctuations in the electron density (using Balmer lines) etc.

In the subsequent work, the ground state (1s2;1 Se) energies of three–body systems are

estimated using a flexible multi–exponent Hylleraas type basis–set under Ritz variation

method for various screening parameters of the potential (ESCP) under classical WCP en-

vironment. Motion of all the three particles is incorporated in the variational equation.

Different three–body systems are considered which include exotic systems of XXY, XYY

[X = p+, d+, and t+, Y = µ−, π− and K−] and Ps−(e+e−e−) ions and molecular–like

H+
2 (p+p+e−), D+

2 (d+d+e−) and T+
2 (t+t+e−) ions. Some of the energy values are compared

with the available results from literature and it is found that the present results can be

treated as benchmark for future references. We have also estimated the energy eigenval-

ues of the ground state (1s) of the two–body subsystems of respective three–body ions in

ESCP. For both three–body and its two–body subsystems, the ground state energies gradu-

ally become positive and move towards the destabilization limit (zero energy) as the plasma

screening is increased. It is found that the positively charged three–body systems show the

feature of ‘borromean bindings’ which means the three–body systems exists whereas their

two–body subsystems destabilize for a range of values of plasma screening strength. This

range of plasma screening strength is called ‘borromean window’ which increases as the

mass of the positively charged particle increases. We have also estimated the resonance pa-

rameters (energy and width) of free p+Y Y and p+p+Y [Y = µ−, π−,K−] ions below n = 2

ionization threshold of the respective two–body subsystems using stabilization method. The

current findings are consistent with those found in literature. For the first time ever in the

literature, the resonance parameters for p+K−K− and p+p+K− ions are provided. It is

seen that the present method is capable to produce reasonably accurate bound state ener-

gies and resonance parameters with a smaller number of terms in the basis set expansion as

compared to other existing methods. The present method can be extended in assessing the

effect of surrounding environment of exotic systems and other external confinements. It can

be used to investigate bound state properties of asymmetric three–body exotic systems like

p+d+µ−, p+d+π−, d+t+µ− etc. Borromean bindings of such systems can also be estimated.

For experimental cases, if any such experimental setup is designed, then present work may
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provide the initial guiding data.

The last phase of this thesis deals with different structural properties of high-lying dou-

bly excited 1,3F e states of free and plasma embedded two–electron systems. These doubly

excited states (DES) are classified in two categories viz. metastable bound and resonance

states. For metastable bound 1,3Fe states, Ritz variational method is employed and for

resonance states, the stabilization method is adopted. The 1,3Fe states primarily originate

from pf configuration. Therefore in the first place we have considered the trial wavefunc-

tion consisting only of the most dominant pf configuration, which is expanded in explicitly

correlated multi-exponent Hylleraas type basis set. We have calculated the energy eigen-

values of metastable bound 1,3Fe states of free two-electron systems having atomic number

Z = 2− 18. Only a few of the results could be compared with those available in literature.

From the comparison, it is seen that, although the estimated energy values shows reason-

ably good agreement with the available results but the convergence is quite slow. The next

dominant contribution to 1,3Fe states come from dd configuration and the explicit inclusion

of the dd term in the wavefunction along with the pf term improves the convergence of

energy eigenvalues of metastable bound states. Consequently we have produced benchmark

results for metastable bound 1,3Fe states of He atom which will be useful for future refer-

ences. In case of resonance states, we have adopted the ‘soft–wall’ strategy of stabilization

method to predict the resonance energy and width of nearly 100 resonance states of 3Fe

state of free He atom upto n = 7 ionization threshold. It is seen that, the influence of the

explicit inclusion of pf and dd configurations together in the wavefunction in defining the

resonance state characteristics is quite pronounced. Various structural properties like one–

and two–particle moments, virial factors, inter–electronic angles etc. are estimated for both

metastable–bound as well as resonance 1,3Fe states. The present method could be applied

to other resonance states with different symmetries where explicit configuration mixing is

required. We next consider metastable bound 1,3Fe states of He, Li+ and Be2+ ions em-

bedded in classical WCP represented by ESCP. Instead of using Taylor series expansion of

screened electron-electron repulsion term, we have developed a closed analytic form of the

electron–electron screening term in the Hamiltonian for 1,3Fe states. The trial wavefunc-

tion in this case also is initially constructed in basis set expansion technique keeping the pf

term explicit. It is observed that, when the plasma screening strength increases energy lev-

els become more positive and as a result the number of bound states decreases. Transition

wavelengths for the dipole transitions 2pnf (1,3Fe) → 2pn′d (1,3Do)[n = 4− 6; n′ = 3− 6]

exhibit a gradual blue or red shift with the variation of plasma screening. The study on

complex atomic spectra, such as those from laboratory plasma experiments or astrophys-

ical observations, may extract theoretical support from such findings. For the betterment

of the accuracy of our estimated data, we have considered the mixing of both pf and dd

configurations in the trial wavefunction for the determination of the structural properties of
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meta-stable bound and resonance 1,3Fe states of He atom placed in classical WCP environ-

ment. Most of the energy eigenvalues of the meta-stable bound 1,3Fe states are the lowest

yet obtained. Stabilization method has been used to estimate the resonance parameters of
1,3Fe states (below He+(4p) threshold) of He atom for different plasma screening. Like the

bound states, resonance energies increase and the number of such states decrease with the

decrease as plasma screening strength increases. New features are found on the variation

of resonance widths of those states with respect to plasma screening. It is observed that

the widths of the resonance states with the dominant configurations 3dnd [3 ≤ n ≤ 10] and

3pnf [4 ≤ n ≤ 10] decreases with the increase of plasma screening strength whereas the res-

onance states having dominant configuration 3dng [5 ≤ n ≤ 9] it increases. In this context,

we have demonstrated that width will decrease if the inter-electronic angle increases with

respect to increase of plasma screening strength. For the first time in the literature, the

variations of other structural properties, such as attractive and repulsive potential, one- and

two-particle moments, etc. are also examined for the metastable bound and resonance 1,3Fe

states of the He atom embedded in classical WCP. We anticipate that future researchers in

related areas will take into consideration the current technique as an alternative approach

for structural computations of such high-lying DES.

The real verification of this theoretical results requires highly advanced experimental tech-

niques. At present, in some cases, a meaningful comparison of theoretical and experimental

results could not be done due to scarcity of appropriate experimental data. With the

advent of technology in performing high resolution experiments and in recording precise

astrophysical data, this is quite likely to be possible in future.
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Abstract
An extensive calculation of Borromean windows (BWs) for 22 different configurations of
three-body exotic systems have been done using an explicitly correlated Hylleraas type basis
set. From the variation of BWs with mass relation parameter (q) as observed from our
calculations, a physical argument is being placed to interpret the existence of a BW for only
q < 1 configurations.

Keywords: three-body system, screened Coulomb interaction, Borromean window, variational
method

(Some figures may appear in colour only in the online journal)

1. Introduction

The bound (i.e. stable) state of an N -body system is termed
as a Borromean state if all possible subsystems, i.e. (N − 1),
(N − 2), . . ., 3, 2 body systems become unbound [1]. This
type of state is very interesting and indeed special because
the natural process of forming an N-body system is by adding
the constituent particles one by one. The possibility of the
existence of such a state was first noticed long ago by
Thomas [2] and then by Effimov [3] in the field of nuclear
physics. After almost 35 years, the theoretical predictions
on such states in ultra-cold gases have been experimentally
verified by Kraemer et al [4] and Pollack et al [5]. The
evidence of such states in different disciplines of science e.g.
atomic physics [6–10], molecular physics [11–13], nuclear
physics [2, 3, 14], chemical physics [15] and biology [16] is
now available in the literature. The majority of the theoretical
investigations on Borromean states deal with the systems
in which net interactions within all pairs of particles are
attractive. But in case of three-body systems, interaction
between a pair of particles is always repulsive and thus
provides an interesting case to study Borromean binding. In

5 Permanent Address: Dept. of Physics, Acharya Prafulla Chandra College,
New Barrackpore, Kolkata-700131, India.

the last decade, considerable advancement [6–10, 13] has been
made to study Borromean states of three-body systems under
a screened Coulomb environment represented by the Yukawa
type potential

V (r) =
e−λr

r
, (1)

where λ is the screening parameter. A plasma environment can
simulate such an interaction where the screening parameter
becomes a function of the plasma temperature and density.
However, such a screened Coulomb potential may be
obtained in other physical situations also [17]. With the
increase in screening parameter (λ), the energy eigenvalues
of the three-body and the corresponding two-body subsystem
become more and more positive [6, 7], leading to the complete
fragmentation of the systems. The screening parameter (λ)
at which an N-body system destabilizes under the screened
Coulomb interaction is defined as the critical screening
parameter (λc). The range of the screening parameter, in
which the three-body system is bound despite the two-body
subsystem being unbound, is termed as a Borromean window
(BW). In other words, the BW is the difference between
the critical screening parameters of the three-body and the
corresponding two body subsystem. It is true that for pure
Coulomb interactions, bound states of H+

2 and H− do not

0031-8949/14/015401+13$33.00 1 © 2014 The Royal Swedish Academy of Sciences Printed in the UK
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fit the Borromean definition simply because they do not
show Borromean binding. But in case of screened Coulomb
interactions, it is seen [9, 10, 13, 18] that for a certain
range of screening parameter (λ), the three-body H+

2 exists
in spite of the fact that the two-body sub-system H does
not exist. In contrast, H− and H destabilize for the same
screening parameter. Thus H+

2 shows Borromean binding
whereas H− does not under screened Coulomb interactions.
For example, Bertini et al [13] studied the stability of the
ground state of H+

2 and H− under a screened Coulomb
interaction and found that both the systems show Borromean
binding for a specific range of screening parameters. Kar and
Ho found that the BW exists also for bound P , D, F and G
states of an H+

2 system in a screened Coulomb environment
[9, 10, 18]. Due to the astrophysical abundance of the H+

2
ion, experimental investigations [19–21] have been done to
study the various structural properties of this ion. A few
theoretical works [6–8] are available on the existence of
Borromean binding for muonic molecular ions e.g. ppµ, ddµ,
t tµ etc in the screened Coulomb potential. It is worthwhile
mentioning that structures of Coulombic three-body ions have
been theoretically studied [22–28] for a long time as the x-rays
emitted from these ions provide very useful information
about nuclear structure [29] and the muon catalyzed fusion
processes [29–31] in stellar bodies. Such exotic two-body
ions (XY ) may be formed in experiments during the passage
of hadrons through matter or dense plasma, although they
have low lifetimes. The exotic two-body systems pµ(1S)

and pµ(2S) have been observed experimentally [32–34].
The hardronic hydrogen atoms pY in the ground 1 s state
have a very short lifetime (e.g. ∼10−16 s for pπ and ∼

10−18 s for pK ) due to prompt nuclear absorption via the
strong interaction. Such two-body complexes can further
capture a third particle through collisional processes to form
a three body system X XY or XY Y if the effective collisional
volume is sufficiently small which is true for such massive
systems. Usually the third particle is captured in a very
high angular momentum state and then, by a de-excitation
mechanism, it cascades down to a lower lying state via
dipole radiation, which in turn increases the lifetime of the
three-body system. It has been found that a small fraction
of kaons [35], pions [36] and also antiprotons [37, 38]
stopped in helium media survive for a longer time. Moreover,
recent experimental measurements show that the structural
properties of such exotic systems are gradually coming into
reach due to the advancements in optical technologies and
laser sources [39–42].

Whether a system can be observed in a bound state or
not depends on the masses of constituent particles and on
their mutual interactions as well. The mass relation parameter
(q) of a symmetric three-body system is defined as the ratio
between the mass of the particle that is attracting the other
two (e.g. µ for the ppµ system) and the mass of the one
repelling each particle. Pawlak et al [7] show that the width
of BW depends on the mass relation parameter (q) but as their
work is limited to only three exotic systems ppµ, ddµ and
t tµ, they cannot answer the following subsequent questions :

1. What is the critical value of the mass relation parameter
(q) of a symmetric three-body system at which BW just
opens?

2. What is the asymptotic value of the BW for the mass
relation parameter (q) of a symmetric three-body system
that approaches zero?

These questions need to be addressed in the context of the
study of BWs, as they would provide the knowledge of
the entire range of BWs by considering the two limiting
cases along with the study in the intermediate region. In this
work, we have made an effort to answer these questions by
an extensive calculation for 22 different three-body exotic
systems with an improved wave function. Moreover, we have
been able to elaborate on some of the physical arguments
explaining why q > 1 configurations are disfavored for the
existence of BW when compared to q < 1 ones. In particular,
we have estimated the ground state energy eigenvalues of a
number of exotic X XY (total charge is positive; q < 1) and
XY Y (total charge is negative; q > 1) systems Y = µ, π , K
and X = p, d, t under screened Coulomb interactions. The
present calculations have been done under the framework
of the Rayleigh–Ritz variational method using explicitly
correlated Hylleraas type basis set. It is interesting to note
that X XY systems show Borromean binding whereas XY Y
systems destabilize before the two body XY destabilization
limit, although XY is the two-body subsystem for both
X XY and XY Y systems. A quantitative analysis shows that
as the screening becomes stronger, the binding energy of
X XY systems becomes greater than XY Y systems. From the
study of the variation of relative BW with the mass relation
parameter (q) of the respective exotic systems, it is seen that
relative BW opens for q < 1 and the asymptotic value of the
relative BW is 13 as q → 0. The details of this methodology
are given in section 2, followed by a discussion on the results
in section 3; the conclusion is given in section 4.

2. Methodology

The modified potential of a three-body system in the presence
of a screened Coulomb environment can be expressed as

V = −
e−λr1

r1
−

e−λr2

r2
+

e−λr12

r12
, (2)

where λ is the screened Coulomb parameter. r12 is the distance
between the two identical particles and r1 and r2 are the
distances of the identical particles from the central particle
sitting at origin (e.g. for XY Y and Y X X systems, the central
particles are X and Y respectively).

For the spherically symmetric ground state, the
three-body general variational equation [43] for arbitrary
angular momentum reduces to

δ

∫ [
1

2

(
1

m1
+

1

m3

) (
∂9

∂r1

)2

+
1

2

(
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1
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) (
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dVr1,r2,r12 = 0 (3)
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Table 1. The ground state energy eigenvalues (in au) of exotic XY Y and X XY systems {X : p, d, t ; Y : µ} for the different screening
parameter (λ in au). Relative binding energies (Rµ

X ) (percentage) between X XY and XY Y systems X : p, d, t ; Y : µ are given for the
different screening parameter (λ in au).

−E (au) −E (au) −E (au)
λ pµµ ppµ Rµ

p dµµ ddµ Rµ

d tµµ t tµ Rµ
t

0.0 97.566 984 102.223 497 4.55 102.991 910 109.816 924 6.21 104.944 115 112.972 830 7.11
97.566 984 59a 102.223 491c 102.991 910 6b 109.815 698c 104.944 115 4b 112.971 933c

97.566 983 43b 102.223 5d 109.816 5d 112.971 8d

102.223 503 6e

10.0 87.855 345 92.568 209 5.09 93.260 418 100.145 956 6.87 95.205 930 103.296 334
92.568 199c 100.144 720c 103.295 434c 7.83
92.568 2d 100.145 6d 103.295 3d

50.0 54.839 746 60.038 615 8.66 59.825 553 67.257 235 11.05 61.198 210 70.280 415 12.92
60.038 611c 67.255 863c 70.279 521c

60.038 6d 67.256 7d 70.279 3d

100.0 25.826 355 30.782 620 16.10 29.756 288 36.948 814 19.47 31.198 210 39.591 867 21.20
30.782 618c 36.947 245c 39.591 120c

30.782 5d 36.948 1d 39.590 5d

150.0 8.446 984 11.937 011 29.24 10.982 746 16.485 717 33.38 11. 945 982 18.532 941 35.54
11.937 011c 16.484 151c 18.532 441c

11.936 9d 16.484 8d 18.531 5d

170.0 4.297 395 6.944 875 38.12 6.216 664 10.706 357 41.93 6.968 302 12.460 505 44.08
190.0 1.581 640 3.296 125 52.01 2.858 609 6.191 216 53.82 3.390 177 7.621 487 55.52
200.0 0.731 816 1.960 682 62.67 1.678 362 4.390 282 61.77 2.097 041 5.646 489 62.86

1.960 682c 4.389 327c 5.646 211c

1.960 3d 4.389 5d 5.645 2d

210.0 0.207 350 0.948 810 78.14 0.816 355 2.886 918 71.72 1.120 501 3.960 122 71.70
0.948 810c 2.886 181c

0.947 1d 2.886 1d

215.0 0.064 944 0.565 957 88.52
217.0 0.030 274 0.436 440 93.06
219.0 0.008 277 0.320 819 97.42
220.0 0.001 736 0.268 351 99.35 0.260 874 1.678 541 84.46 0.450 726 2.558 334 99 82.38

0.268 355c 1.678 029c 2.558 159c

1.676 8d 2.556 9d

220.2 0.000 738 0.258 291 99.17
220.3 0.000 273 0.253 317 99.89
220.36 0.000 005 0.250 349 99.99
220.37 −0.000 039
223.0 0.133 212 0.150 990 1.373 618 89.00

0.133 223c

224.0 0.095 989 0.119 785 1.277 921 90.63
0.096 009c

225.0 0.063 015 0.091 167 1.185 209 92.31 0.227 221 1.963 501 88.43
0.063 032c

226.0 0.034 623 0.065 044 1.095 491 94.06
0.034 642c

227.0 0.011 481 0.058 442 1.008 779 94.20
0.011 503c

227.6 0.000 821
0.000 871c

227.65 0.000 093
227.66 −0.000 049
228.0 0.041 017 0.925 084 95.56
229.0 0.026 588 0.844 421 96.85
230.0 0.015 117 0.766 808 98.02 0.073 756 1.439 475 94.88

0.766 510c

231.0 0.006 487 0.692 261 99.06 1.343 207
232.0 0.000 422 0.620 805 99.93
232.08 0.000 035 0.615 223 99.99
232.09 −0.000 013
233.0 0.028 768 1.159 259 97.52
234.0 0.016 915 1.071 598 98.42
235.0 0.425 236 0.007 890 0.986 826 99.20

0.425 125c

236.0 0.001 462 0.904 956 99.84
236.2 0.000 453 0.888 931 99.95
236.29 0.000 026 0.881 759 99.99

3
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Table 1. Continued.

−E (au) −E (au) −E (au)
λ pµµ ppµ Rµ

p dµµ ddµ Rµ

d tµµ t tµ Rµ
t

236.3 −0.000 020
236.5 0.338 356

0.338 250c

238.0 0.258 924
0.258 842c

240.0 0.165 098 0.606 836
0.165 049c 0.606 762c

242.0 0.086 017 0.475 709
0.085 997c 0.475 647c

243.0 0.052 549
0.052 542c

244.0 0.023 686
0.023 704c

244.5 0.011 245
0.011 305c

244.8 0.004 596
0.004 663c

245.0 0.000 590 0.302 169
0.000 670c 0.302 164c

245.03 0.000 113c

245.04 −0.000 069c

248.0 0.157 711
0.157 936c

250.0 0.079 315
0.079 473c

252.0 0.017 483
0.017 562c

252.5 0.005 217
0.005 378c

252.7 0.000 837
0.001 049c

252.74 0.000 008
252.75 −0.000 196

a Bhattacharyya et al [48].
b Frolov et al [49].
c Pawlak et al [7].
d Sil et al [6].
e Kar et al [51].

subject to the normalization condition∫
92 dVr1,r2,r12 = 1, (4)

where the symbol used in equations (3) and (4) are the same
as in [43]. Here, m3 is the mass of the central particle whereas
m1 and m2 are the masses of the identical particles of the sym-
metric three-body systems under consideration. The masses
of µ, π , K , p, d and t are taken as mµ=206.768 262me,
mπ = 273.132 426me, mK = 966.101 694 9me, mp =

1 836.152 667 5me, md = 3 670.482 965 4me and m t =

5 496.921 526 9me respectively, where me is the mass of
the electron. We have taken me = 1 as the atomic unit used
throughout the calculations.

The correlated wave function considered for our
calculation is given by

9 (r1, r2, r12) =

×

9∑
i=1

ηi (1) ηi (2)

[ ∑
l>0

∑
m>0

∑
n>0

Clmnr l
1rm

2 rn
12 + exchange

]

+
9∑

i=1

9∑
j=1
i 6= j

[
ηi (1) η j (2)

∑
l>0

∑
m>0

∑
n>0

Clmnr l
1rm

2 rn
12 + exchange

]
,

(5)

where

η j (i) = e−σ j ri , (6)

where σ s are the nonlinear parameters. The effect of the
radial correlation is incorporated through different σ s in the
wave function, whereas the angular correlation effect is taken
care of through different powers of r12. In a multi-exponent
basis set, if there are x number of nonlinear parameters, the
number of terms in the radially correlated basis is x(x+1)

2
and therefore, the dimension of the full basis (M) including
angular correlation will be [ x(x+1)

2 × y], where y is the number
of terms involving r12. For a fixed number of bases, x and y
should be chosen in such a manner that the effect of the radial
as well as the angular correlation are properly taken care of. To
this end, to make the basis of a tractable size, we include nine
different values of σ in our method, which form a geometrical
sequence: σi = σi−1γ , γ being the geometrical ratio [44].
Thus, in this calculation, the number of terms in the radially
correlated basis is 45 and with 22 terms involving different
powers of r12, the dimension of the full basis (N) becomes 990.
A discussion on the choice of the specific number of nonlinear
parameters was given in our earlier article [45]. For each
screening parameter, the linear variational parameters used in

4
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Table 2. The ground state energy eigenvalues (in au) of exotic XY Y and Y X X systems {X : p, d, t ; Y : π} for the different screening
parameter (λ in au). Relative binding energies (Rπ

X ) (in au) between X XY and XY Y systems {X : p, d , t ; Y : π} are given for the different
screening parameter (λ in au).

λ −E (au) −E (au) −E (au)
(au) pππ ppπ Rp dππ ddπ Rd tππ t tπ Rt

0.0 124.690 674 129.718 073 3.87 133.653 701 141.524 534 5.56 136.951 552 146.472 365 6.50
124.690 674 07a

50.0 80.425 360 85.969 490 6.45 88.937 428 97.405 083 8.69 92.081 757 102.223 361 9.92
100.0 47.215 697 52.927 045 10.79 54.588 414 63.309 187 13.77 57.341 339 67.754 111 15.37
150.0 23.821 049 28.803 607 17.33 29.617 686 37.546 979 21.19 31.826 161 41.400 552 23.13
200.0 8.925 715 12.402 317 28.03 12.869 611 19.006 120 32.29 14.437 058 22.075 746 34.60
210.0 6.862 148 9.969 063 31.16
230.0 3.583 539 5.904 747 39.31 6.322 564 11.005 377 42.55
250.0 1.387 016 2.883 109 51.89 3.290 509 6.888 817 52.23 4.153 681 8.995 895 53.83
260.0 0.677 872 1.757 214 61.42 2.154 059 5.184 217 58.45 2.870 325 7.076 785 59.44
270.0 0.220 759 0.888 919 75.16 1.262 464 3.711 794 65.99 1.829 890 5.381 642 65.99
275.0 0.085 564 0.553 326 84.52
280.0 0.011 735 0.286 065 95.89 0.609 687 2.470 156 75.32 1.026 418 3.908 086 73.74
281.0 0.003 820 0.241 133 98.41
281.2 0.002 338 0.232 497 98.99
281.4 0.001 015 0.223 979 99.55
281.5 0.000 612 0.219 764 99.72
281.6 0.000 002 0.215 579 99.99
281.61 −0.000 058
283.0 0.160 262
285.0 0.091 848
287.0 0.037 260
288.0 0.015 642
289.0 0.000 179
289.02 0.000 007
289.03 −0.000 090
290.0 0.187 206 1.459 767 87.17 0.453 008 2.654 741 82.93
295.0 0.055 832 1.042 335 94.64
298.0 0.027 442 0.820 496 96.65
299.0 0.017 139 0.751 392 97.72
300.0 0.009 212 0.684 736 98.65 0.114 300 1.621 863 92.95
301.0 0.003 686 0.620 544 99.41
302.0 0.000 611 0.558 837 99.89
302.4 0.000 053 0.534 855 99.99
302.45 0.000 006 0.531 886 99.99
302.46 −0.000 002
305.0 0.388 858 0.028 253 1.188 937 97.62
306.0 0.017 897 1.109 122 98.39
307.0 0.009 856 1.031 583 99.04
308.0 0.004 158 0.956 329 99.56
309.0 0.000 847 0.883 372 99.90
309.5 0.000 081 0.847 758 99.99
309.58 0.000 006 0.842 114 99.99
309.59 −0.000 003
310.0 0.157 682 0.812 723
311.0 0.119 531
312.0 0.084 133
313.0 0.051 501
314.0 0.029 496
315.0 0.005 910 0.494 559
315.2 0.001 680
315.3 0.001 361
315.37 0.000 153
315.38 −0.000 014
320.0 0.236 205
321.0 0.191 857
322.0 0.149 967
323.0 0.116 501
324.0 0.082 026
325.0 0.050 882
326.0 0.023 476
327.0 0.000 776
327.04 0.000 012
327.05 −0.000 176

a Bhattacharyya et al [48].
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Table 3. The ground state energy eigenvalues (in au) of exotic XY Y and Y X X systems {X : p, d, t ; Y : K } for the different screening
parameter (λ in au). Relative binding energies (RK

X ) (in percentage) between X XY and XY Y systems {X : p, d, t ; Y : K } are given for the
different screening parameter (λ in au).

−E (au) −E (au) −E (au)

λ pK K ppK Rp d K K dd K Rd t K K tt K Rt

0.0 330.800 637 334.575 377 1.12 400.176 959 410.609 734 2.54 430.623 711 446.122 899 3.32
330.800 636 77a

100.0 239.838 364 244.007 205 1.71 307.459 282 318.599 460 3.49 337.295 789 353.626 696 4.62
200.0 166.075 945 170.608 044 2.66 229.055 514 241.066 693 4.98 257.247 701 274.688 669 6.35
300.0 107.891 316 112.326 102 3.95 164.095 730 176.332 809 6.94 189.854 114 207.722 505 8.60
400.0 63.670 079 67.522 047 5.70 111.501 363 123.127 272 9.44 134.225 608 151.556 582 11.43
500.0 31.977 129 34.866 702 8.29 70.209 125 80.428 582 12.71 89.439 333 105.257 705 15.02
600.0 11.579 834 13.284 046 12.83 39.237 733 47.399 557 17.22 54.615 579 68.060 983 19.75
700.0 1.450 568 1.951 378 25.66 17.708 389 23.354 972 24.17 28.946 063 39.334 553 26.41
710.0 0.970 778 1.362 893 28.77
720.0 0.585 947 0.874 168 32.97
730.0 0.296 183 0.486 795 39.16
740.0 0.101 628 0.203 732 50.12
745.0 0.040 922 0.102 705 60.15
750.0 0.005 884 0.031 387 81.25
752.0 0.000 367 0.011 356 96.77
752.2 0.000 190 0.010 504 98.19
752.4 0.000 068 0.008 791 99.22
752.6 0.000 006 0.007 123 99.92
752.66 0.000 001 0.006 631 99.99
752.67 −0.000 000 2
753.0 0.003 917
754.0 0.002 306
754.1 0.001 775
754.2 0.001 257
754.3 0.000 753
754.4 0.000 263
754.45 0.000 023
754.46 −0.000 025
800.0 4.852 758 7.762 306 37.483 11.705 996 18.566 747 36.95
850.0 1.472 341 3.032 857 51.45 6.045 429 11.044 957 45.26
870.0 0.668 722 1.715 585 61.02
880.0 0.383 635 1.183 266 67.58
890.0 0.176 330 0.737 658 76.09
900.0 0.047 548 0.381 782 87.54 2.263 549 5.393 579 58.03
905.0 0.013 001 0.238 701 94.55
906.0 0.008 420 0.212 937 96.04
907.0 0.004 550 0.188 131 97.58
908.0 0.001 333 0.164 286 99.19
908.4 0.000 214 0.155 018 99.86
908.48 0.000 001 0.153 183 99.99
908.49 −0.000 025
910.0 0.119 486
912.0 0.078 536
913.0 0.059 501
914.0 0.041 417
916.0 0.025 423
917.0 0.013 630
918.0 0.003 757
918.4 0.000 367
918.44 0.000 047
918.45 −0.000 032
920.0 1.262 584 3.657 489 65.48
930.0 0.869 294 2.903 244 70.06
940.0 0.545 767 2.225 926 75.48
950.0 0.289 334 1.626 773 82.21
960.0 0.095 004 1.107 561 91.42
970.0 0.025 565 0.670 780 96.19
975.0 0.002 600 0.484 293 99.45
975.9 0.000 172 0.453 034 99.96
975.97 0.000 002 0.450 633 99.99
975.98 −0.000 022
980.0 0.319 666
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Table 3. Continued.

−E (au) −E (au) −E (au)

λ pK K ppK Rp d K K dd K Rd t K K tt K Rt

985.0 0.177 313
990.0 0.057 524
993.0 0.022 217
994.0 0.008 063
994.6 0.000 920
994.68 0.000 033
994.69 −0.000 076

a Bhattacharyya et al [48].

Table 4. Ground state energy eigenvalues (in au) of H+
2 , D+

2 , T+
2 and Ps− for various screening parameters (λ in au).

−E(au)

λ Ps− H+
2 D+

2 T+
2

0.0 0.262 005 0.596 902 0.598 211 0.0.598 702
0.262 005 070 2a 0.597 136b

0.1 0.173 618 0.503 099 0.504 402 0.504 889
0.173 618 160 0a 0.503 330b

0.2 0.106 409
0.106 409 677 5a

0.3 0.057 553
0.4 0.024 698
0.5 0.005 965 0.226 676 0.227 817 0.228 241

0.005 965 664 3a

0.55 0.001 421
0.56 0.000 871
0.57 0.000 481
0.58 0.000 191
0.59 0.000 029
0.594 0.000 001
0.595 −0.000 002
0.7 0.135 199 0.136 214 0.136 579

0.135 561b

1.0 0.044 832 0.045 025 0.045 288
1.2 0.011 923 0.012 187 0.012 308

0.012 287b

1.25 0.006 808
0.007 201b

1.29 0.003 672
0.003 989b

1.3 0.003 222 0.003 296
1.33 0.001 339

0.001 597b

1.34 0.000 882
0.001 190b

1.35 0.000 476 0.000 609 0.000 657
0.000 750b

1.36 0.000 118 0.000 236 0.000 279
0.000 400b

1.363 0.000 019
1.364 −0.000 019
1.367 0.000 004
1.368 −0.000 027 0.000 011
1.369 −0.000 020

a Kar and Ho [50].
b Bertini et al [13].

equation (5) along with energy eigenvalues E are determined
by solving the generalized eigenvalues equation [46]

H C = E S C, (7)

where H is the Hamiltonian matrix, S is the overlap matrix,

C is the column matrix consisting of linear variational

parameters and E is the energy eigenvalue. In order to set

the highest and lowest σ value in the set of nine nonlinear

7
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Figure 1. The variation of the ground state energies of ppµ, ddµ and t tµ versus different screening parameter (λ) is given in (a) and those
of pµµ, dµµ and tµµ versus the different screening parameter (λ) are given in (b).
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Figure 2. The variation of the ground state energies of ppπ , ddπ and t tπ versus the different screening parameter (λ) is given in (a) and
that of pππ , dππ and tππ versus the different screening parameter (λ) is given in (b).

parameters, we optimize the ground state energy eigenvalues
using the Nelder–Mead procedure [47] with two nonlinear
parameters. The higher value of the optimized set is taken
as the highest value of the set of nine nonlinear parameters
and it is fixed for all the sets. All calculations are carried out
in quadruple precision to ensure better numerical stability for
the extended multi-exponent Hylleraas basis set.

3. Results and discussion

For different screening parameter (λ), the ground state energy
eigenvalues of exotic XY Y and Y X X systems {X : p, d , t}
taking Y as µ, π and K are given in tables 1–3 respectively.
Table 4 displays the ground state energy eigenvalues of H+

2 ,
D+

2 , T+
2 and Ps− for various screening parameters (λ). The

8
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Figure 3. The variation of the ground state energies of ppK , dd K and t t K versus the different screening parameter (λ) is given in (a) and
that of pK K , d K K and t K K versus different screening parameter (λ) is given in (b).
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Figure 4. The variation of the relative binding energy (RY
p ) (Y = µ, π, K ) with various screening parameters (λ).

screening parameter (λ) is primarily set at zero corresponding
to a free system and then gradually increased in a systematic
manner up to the limit of destabilization of the corresponding
three-body system. The results reflect that for both unscreened
and screened cases, our values are in good agreement with the
other available theoretical results [6, 7, 13, 48–51] included
in tables 1–4. For example, it is evident from table 1 that in
the low screening region, the ground state energy eigenvalues

of ppµ, ddµ and t tµ systems are more negative than those
reported by Pawlak et al [7] and Sil et al [6], whereas in
the higher screening region, this feature is not obtained. It
may be noted that this method may produce better results for
the energy eigenvalues for the entire range of screening by
adjusting the nonlinear parameters and size of the basis set.
Nevertheless, the accuracy obtained in this work is adequate
for the study of BW of the respective three-body exotic

9
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Figure 5. The variation of the relative binding energy (RY
d ) (Y = µ, π, K ) with various screening parameters (λ).
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Figure 6. The variation of the relative binding energy (RY
t ) (Y = µ, π, K ) with various screening parameters (λ).

systems. To the best of our knowledge, the results given
in table 1 for pµµ, dµµ and tµµ systems and the results
displayed in tables 2 and 3 are reported here for the first time
in the literature.

The ground state eigenenergies of X XY and XY Y (X =

p, d, t ; Y = µ) for different screening parameters (λ) are
plotted in figures 1(a) and (b) respectively. In both figures,
the dotted line represents the zero energy (i.e. the complete
fragmentation limit) and all the three body systems gradually

approach it with an increasing screening parameter (λ), due
to the weakening of the Coulomb potential. A similar feature
has been observed for X XY and XY Y (X = p, d, t) systems
taking Y = π and K given in figures 2(a), (b) and 3(a), (b)
respectively.

It is evident from tables 1–3 that the energy eigenvalues of
X XY systems are more negative compared to XY Y systems
for any arbitrary screening parameter (λ). In order to estimate
the amount of boundedness of X XY systems compared to

10
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Table 5. Critical screening parameters and BWs of exotic
three-body systems. Critical screening parameters (λc) of two-body
systems are taken from [52].

Two-body Three-body
sub-system λC system λC BW

pµ 221.26 ppµ 227.65 6.39
227.66a

pµµ 220.36 0
pπ 283.07 ppπ 289.02 5.95

pππ 281.6 0
pK 753.69 ppK 754.45 0.76

pK K 752.66 0
dµ 233.05 ddµ 245.03 11.98

245.03a

dµµ 232.08 0
dπ 302.67 ddπ 315.37 12.70

dππ 302.45 0
d K 910.58 dd K 918.44 7.86

d K K 908.48 0
tµ 237.26 t tµ 252.74 15.48

252.75a

tµµ 236.29 0
tπ 309.80 t tπ 327.04 17.24

tππ 309.58 0
t K 978.31 t t K 994.68 16.37

t K K 975.97 0
pe 1.1899 H+

2 1.363 0.1731
1.365b

1.3734c

de 1.1903 D+
2 1.367 0.1767

te 1.1904 T+
2 1.368 0.1776

ee 0.5953 Ps− 0.594 0

a Pawlak et al [7].
b Bertini et al [13].
c Ho [53].

XY Y systems, we introduce a dimensionless quantity, the
relative binding energy (RY

X ), which is defined as the ratio
between the difference of the ground state energies of X XY
and XY Y systems and the ground state energy of the X XY
system. In tables 1–3, the estimated relative binding energy
(RY

X ) (given in percentage) between X XY and XY Y systems
are presented for a range of screening parameter (λ) and it
is evident that, in each case, XY Y systems destabilize more
rapidly compared to X XY systems. We have depicted the
variation of the relative binding energy (RY

p ) (Y = µ, π, K )
with a screening parameter (λ) in figure 4. It is clear from
figure 4 that RY

p (Y = µ, π, K ) increases slowly up to a
certain value of the screening parameter (λ) and then increases
rapidly to 100% until the XY Y system becomes unbound.
The variation of RY

d (Y = µ, π, K ) and RY
t (Y = µ, π, K )

with screening parameter (λ) presented in figures 5 and 6
respectively show a similar kind of pattern.

The estimated critical screening parameters (λc) of
all three body systems along with the critical screening
parameters of the respective two-body subsystems [52] are
displayed in table 5. The radius of a muonic atom (pµ)
is 186 times smaller than that of the radius of a hydrogen
atom and the ionization potential (IP) of a muonic atom (pµ)
is 186 times larger than the IP of a hydrogen atom [46].
Thus, it is expected that the critical screening parameters
for exotic systems with heavier masses will be much larger
compared to the critical screening parameters of normal
atomic systems. The Debye length is likely to be very small

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0

2

4

6

8

10

12

14

16

R
ea

lti
ve

bo
rr

om
ea

n
 w

in
do

w
 (%

)

Mass relation parameter (q)

Figure 7. The variation of the relative BW (%) versus the mass
relation parameter (q).

in such circumstances, as obtained from our calculations.
Considering the screening by plasma environment, the
densities involved in such calculations may be found in the
interior of Zovian planets, where they may even exceed
the solid state density. It is also evident that the critical
screening parameter for the two-body system (XY ) lies
between the critical screening parameter of the X XY and
XY Y three-body systems i.e. λc

X XY > λc
XY > λc

XY Y . Thus, all
X XY systems show Borromean bindings, whereas all XY Y
systems destabilize before the corresponding two-body (XY )
destabilization limit. Hence the BW for all XY Y systems is
zero. The estimated BW for all X XY systems is also given in
the last column of table 5. The values of BW for X XY systems
keeping a fixed Y shows that as the mass of the nucleus
increases, the BW also increases. For example, BWt tµ >

BWddµ > BWppµ, which is in agreement with Pawlak et
al [7]. Here we introduce a dimensionless quantity ‘relative
BW’ which is defined as λc

X XY −λc
XY

λc
X XY

× 100% in order to make
a comparison among the BWs of the X XY systems. The
estimated relative BWs for different mass relation parameters
(q) are given in table 6 and the corresponding variation is
displayed in figure 7. It is evident from table 6 and figure 7
that the relative BW is zero for q > 1 and it increases as
q approaches zero. It is clear that the relative BW slowly
increases with q in the region 1–0.5 and then increases rapidly
as q tends towards zero. It is worthwhile mentioning that
for q = 0.52615 the relative BW is 0.08%, which is small
compared to the highest relative BW of 13.01% for q =

0.000 18 corresponding to T+
2 . Therefore, we have chosen

systems in between 0 < q < 0.5 to get a smooth variation of
relative BW with q .

We have shown for the first time that BW exists if we add
a positively charged particle X to the XY system (m X > mY ),
as q becomes less than 1 for the X XY system; whereas BW
does not exist when we add a negatively charged particle Y to
the XY system, as q becomes greater than 1 for XY Y systems.
For example, the relative BW is 2.86 (for q = 0.11261) if we
add a proton to the pµ system whereas the BW does not exist
if we add a muon to the pµ system, for which. q = 8.880 25
The reason behind the existence of BWs for systems with a
q > 1 configuration is given below.
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Table 6. Relative BWs for different exotic systems under screened
Coulomb interactions.

Mass relation
System parameter (q) Relative BW

tµµ 26.584 97 0
tππ 20.125 51 0
dµµ 17.751 69 0
dππ 13.438 49 0
pµµ 8.880 25 0
pππ 6.722 58 0
t K K 5.689 79 0
d K K 3.799 27 0
pK K 1.900 62 0
eee 1.000 00 0
ppK 0.526 15 0.08
dd K 0.263 21 0.86
t t K 0.175 75 1.71
ppπ 0.148 75 2.09
ppµ 0.112 61 2.86
ddπ 0.068 79 4.19
ddµ 0.056 33 5.10
t tπ 0.049 68 6.19
t tµ 0.037 62 6.50
H+

2 0.000 54 12.70
D+

2 0.000 27 12.95
T+

2 0.000 18 13.01

It is well known that the stability of negatively charged
ions is less than the stability of positive ions, e.g. H−, Ps−,
He− etc ions are less stable. We have also found that the
binding energies of the XY Y (total charge is negative; q > 1)
systems are less than that of the binding energies of X XY
(total charge is positive; q < 1) systems for free case. When
we switch on the screening parameter (λ), both the systems
destabilize as the binding energy reduces compared to the free
case due to a weakening of the Coulomb potential. With the
gradual increment of the screening parameter (λ), the faster
destabilization of XY Y systems compared to X XY systems
yields a lesser value of the critical screening parameter
of XY Y systems compared to X XY systems. Hence, it is
expected that a BW does not exist for XY Y systems (q > 1).
These extensive calculations confirm the above mentioned
fact for ten different q > 1 configurations.

4. Conclusion

It can be concluded that the BW opens for q < 1
configurations of three-body exotic systems and the
asymptotic value of the relative BW is 13.6 for T+

2 . The
novelty of our method lies in the choice of a flexible
multi-exponent Hylleraas basis for three-body systems where
all three particles are moving. We hope that the results
presented in this communication will be useful for future
studies in related disciplines.
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The analytic form of the electrostatic potential felt by a slowly moving test charge in quantum

plasma is developed. It has been shown that the electrostatic potential is composed of two parts:

the Debye-Huckel screening term and the near-field wake potential. The latter depends on the

velocity of the test charge as well as on the number density of the plasma electrons. Rayleigh-Ritz

variational calculation has been done to estimate precise energy eigenvalues of hydrogen-like

carbon ion under such plasma environment. A detailed analysis shows that the energy levels

gradually move to the continuum with increasing plasma electron density while the level crossing

phenomenon has been observed with the variation of ion velocity. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921739]

I. INTRODUCTION

The study of the changes in structural properties of

foreign atoms or ions in different external environments1–14

is a subject matter of immense interest for the last few deca-

des as it provides a deep insight into several interesting

phenomena in astrophysics and plasma physics. There exists

a bulk of studies discussed in detail by Sil et al.,15 on the

behavioral changes in the structural properties of few-body

systems embedded in an external plasma environment. These

are useful for laboratory and astrophysical plasma diagnos-

tics determination. The most important part of such studies is

to model the environment by an effective potential that the

foreign atom/ion or the test charge will feel inside or moving

through that medium. It is well-known according to the

Debye-Huckel theory16,17 of weak electrolytes that a static

atom/ion feels screened Coulomb type potential while placed

within a collision-less high temperature classical plasma. In

this case, the screening parameter is a function of electron

number density (ne) and temperature (T) of the plasma and

thus different plasma situations can be simulated by suitably

tuning the screening parameter.4 In contrast, when the tem-

perature (T) of the plasma electrons approaches the “Fermi
temperature” TF ¼ EF=kB [EF and kB are the “Fermi energy”

of the electrons and the Boltzmann constant, respectively],

the equilibrium plasma electron distribution function

changes from the Maxwell-Boltzmann to the Fermi-Dirac

distribution. Under such condition, the quantum degeneracy

effects start playing a significant role as the thermal de

Broglie wavelength for the plasma electrons becomes equal

or comparable to the average inter-electronic distance.18

Quantum plasmas are generally made of electrons and ions

or holes. The studies on quantum plasma have become im-

portant in several branches of applied physics, especially in

nano-science19–21 as well as in laboratory plasma experi-

ments22–25 and in astrophysical scenario.26–28

Pine29 has treated an arbitrary collision-less quantum

plasma environment as a dielectric medium and derived the

analytic form of dielectric function using the Random Phase

Approximation (RPA) method. Using such dielectric func-

tion, Shukla et al.30 showed that the effective potential felt

by a slowly moving test charge has two components: the

usual near field Debye-Huckel screening term and the far-

field wake potential. Far field wake potential decays as the

inverse cube of the distance between the origin of the test

charge and the location of the observer. It is interesting to

note that for far field, the effective potential of a moving

“test charge” in an isotropic collision-less classical plasma

also falls off as the inverse cube of the distance between the

observer and the test charge.31 The effect of far field wake

potential is very small on the binding energy of the atom.

Thus, it is very much important to investigate the effect of

near field wake potential on the binding energy of the atom/

ion. The only attempt in this context was made by Hu et al.32

They32 have found that the near field wake potential is pro-

portional to 1
r2 and cos h; r being the radial distance between

the moving ion and the observer, while h is the angle

between the radius vector and the velocity vector of the ion.

They32 have used Meijer’s G function in deriving the

analytic form of the near field wake potential, where this G

function violates the condition used in its definition.33 These

results in some anomalous findings in the binding energy

calculations, e.g., variationally over-bound energy levels

with respect to the energy levels of the free atom and the

removal of degeneracy of the energy levels with respect to

the magnetic quantum number “m.” Even if we assume that

their form of the potential to be correct, the energy levels

should undergo a Stark-like shift due to the “cos h” term in

the potential and due to obvious reason there is no possibility

of getting Zeeman-like splitting without any perturbation,

e.g., magnetic field which breaks the azimuthal symmetry of

the system.

To examine the influence of near field wake potential on

the structural properties of a moving atom/ion in quantum

plasma, the analytic form of the potential has been derived in

the present work using the correct form of Meijer’s G func-

tion33 and its identities. The present potential is proportional

1070-664X/2015/22(6)/062103/9/$30.00 VC 2015 AIP Publishing LLC22, 062103-1
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to rK0
r
kq

� �
[K0ðxÞ being the zeroth order Macdonald function

or Modified Bessel’s function of the second kind34 and kq is

the Debye parameter] and cos h. Subsequently, we have

applied Rayleigh-Ritz variation method to obtain the binding

energies of all states lying between 1s and 4f configurations

of hydrogen-like carbon ion moving through Electron-Hole-

Droplet (EHD) quantum plasma. In contrast to the findings

of Hu et al.,32 no overbound result has been observed.

Moreover, the splitting of energy levels with respect to jmj,
has been observed and it is purely Stark-like shifting due to

the presence of an oscillatory term in the potential. The

details of the present methodology are given in Sec. II,

followed by the results and discussion in Sec. III, and finally

the conclusion is given in Sec. IV.

II. METHOD

A. Near-field potential felt by a slowly moving “test
charge” in quantum plasma

The field (~D) of a charge q moving with a velocity~v in a

dielectric medium is given by the equation18

~r:~D ¼ 4pqdð~r �~vtÞ: (1)

Considering the quantum plasma environment as a linear

dielectric medium, we have the relation ~D ¼ �~E; where the

electric field ~E is derived from the scalar potential u by

using ~E ¼ �~ru. Equation (1), then, may be written as

�~r�:~ru� �r2u ¼ 4pqdð~r �~vtÞ: (2)

After a Fourier transformation, we obtain

u kð Þ ¼ 4pq

2pð Þ
3
2

e�i~k :~vt

k2� kð Þ
: (3)

The potential uðrÞ can be obtained by inverse Fourier trans-

form18 of Eq. (3) and may be expressed as

u ~rð Þ ¼ q

2p2

ð
ei~k :~r

k2� ~k;x
� � d3~k: (4)

The dielectric function �ðk;xÞ for low frequency perturba-

tion (x� kvts) was derived by Pines29 as

� ~k;x
� �

¼ 1þ
X
s¼e;h

K2
Fs

k2
1þ i

p
2

x
kvts

� �
; (5)

where vts ¼ �h
ms
ð3p2nsÞ

1
3 is the thermal velocity. The subscript

s used in the expression for thermal velocity (vts) corre-

sponds to the species of the plasma. For electron-hole droplet

plasma, the species corresponds to either electron (e) or hole

(h); ms and ns are the effective mass and density, respec-

tively, of the species s. In the present calculation, we have

taken mh ¼ 0:39Me and me ¼ 0:26Me;35,36 where Me is the

rest mass of an electron. The Fermi-Thomas screening wave

number KFs is defined as KFs ¼
ffiffi
3
p

xps

vts
, where the plasma

oscillation frequency (xps) is given by xps ¼ 4pnse
2

ms

� �1
2

. It

should be mentioned that the Debye length ks ¼ 1
KFs

.

Equation (5) can be rearranged as

� ~k;x
� �

¼
1þ k2k2

q

k2k2
q

1þ i
p
2

xk2
q

k 1þ k2k2
q

� �X 1

vtsk
2
s

2
4

3
5; (6)

where 1
k2

q

¼
P

s¼e;h
1
k2

s

. Pines29 obtained Eq. (5) after perform-

ing complex integration where the pole position was at

x ¼ �~k:~v.30,37 The velocity (v) of the ions is chosen in such

a way that the thermal Mach number37 remains less than

unity. For v < vts, we can get

1

� ~k;x
� � � k2k2

q

1þ k2k2
q

þ i
p
2

kk4
q

1þ k2k2
q

� �2
~k:~v

�
X
s¼e;h

1

vtsk
2
s

: (7)

Combining Eqs. (4) and (7), we obtain

u ¼ u1 þ u2; (8)

where

u1 ¼
q

2p2

ð k2
q

1þ k2k2
q

ei~k :~r d3~k: (9)

In the spherical polar coordinates (k, r, s), the volume ele-

ment is given as d3~k ¼ k2 sin rdrdsdk. After integrating

over r and s, Eq. (9) reduces to

u1 ¼
2qk2

q

pr

ð1
o

k

1þ k2k2
q

sin krdk ¼ q

r
e
� r

kq : (10)

u1 as expressed in Eq. (10) is the well-known Debye-Huckel

screening potential.4,16

The second term of Eq. (8) is given by

u2 ¼ i
p
2

q

2p2

ð k4
q

k 1þ k2k2
q

� �2
~k:~v
X
s¼e;h

1

vtsk
2
s

� ei~k :~r d3~k: (11)

Performing integration over the azimuthal angle (s), Eq. (11)

reduces to

u2 ¼
i

2
qvk4

q

X
s¼e;h

1

vtsk
2
s

ð1
o

k2

1þ k2k2
q

� �2

�
ðp

0

cos rþ hð Þeikr cos r sin rdr; (12)

where h is the angle between ~r and ~v, and (hþ r) is the

angle between ~k and ~v. The polar angle part of the integral

can be written as

062103-2 Dutta, Saha, and Mukherjee Phys. Plasmas 22, 062103 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

210.212.129.125 On: Mon, 08 Jun 2015 10:21:54



ðp

0

cos ðrþ hÞeikr cos r sin rdr ¼ cos h � I1 � sin h � I2; (13)

where

I1 ¼
ðp

0

cos reikr cos r sin rdr ¼ � 2

i
j1 krð Þ (14)

and

I2 ¼
ðp

0

sin reikr cos r sin rdr ¼ p
2

j0 krð Þ þ j2 krð Þ
	 


; (15)

where jlðxÞ is the spherical Bessel function of first kind.

Neglecting the imaginary part, Eq. (12) becomes

u2 ¼ �qvk4
q

X
s¼e;h

1

vtsk
2
s

cos h
ð1

0

k2j1 krð Þ

1þ k2k2
q

� �2
dk: (16)

Using the following two identities:33

j� zð Þzl ¼ 2lG1 0
0 2

�l
2
þ �

2
;
l
2
� �

2
j z

2

4

 !
(17)

and38

zb

1þ azbð Þa ¼
a�

b
b

C að ÞG
1 1
1 1

1� aþ b
b

b
b

jazb

0
BB@

1
CCA: (18)

Eq. (16) can be written as

u2 ¼ �
qvk3

q

2

X
s¼e;h

1

vtsk
2
s

cos h
ð1

0

G1 1
1 1

� 1

2
1

2

jk2
qk2

0
BB@

1
CCA

� G1 0
0 2

�
1

2
;� 1

2

j k
2r2

4

0
@

1
Ad k2ð Þ; (19)

where Gm n
p q ð

a1; :::; ap

b1; :::; bq
jxÞ is the Meijer’s G function33 defined

as

Gm n
p q

a1; :::; ap

b1; :::; bq

jx
 !

¼ 1

2pi

ð Qm
j¼1 C bj � sð Þ

Qn
j¼1 C 1� aj þ sð ÞQq

j¼mþ1 C 1� bj þ sð Þ
Qp

j¼nþ1 C aj � sð Þ
� xsds;

(20)

with the constraints 0 � m � q and 0 � n � p. CðnÞ is the

Euler Gamma function. Using the identities33 given below

ð1
0

Gst
uv

c1; :::;cu

d1; :::;dv
jnx

 !
Gmn

pq

a1; :::;ap

b1; :::;bq

jgx

 !
dx

¼ 1

n
Gtþmsþn

pþvqþu

a1; :::;an;�d1; :::;�dv;anþ1; :::;ap

b1; :::;bm;�c1; :::;�cu;bmþ1; :::;bq

jg
n

 !
;

(21)

xkGm n
p q

a1; :::; ap

b1; :::; bq
jx

� �
¼ Gm n

p q

a1 þ k; :::; ap þ k
b1 þ k; :::; bq þ k

jx
� �

; (22)

Gm n
p q

a1; :::; ap

b1; :::; bq�1; a1
jx

� �
¼ Gm n�1

p�1 q�1

a2; :::; ap

b1; :::; bq � 1
jx

� �
:

(23)

Eq. (19) gets modified to

u2 ¼ �
qvk2

q

r

X
s¼e;h

1

vtsk
2
s

G2 0
0 2

�
1; 1
j r2

4k2
q

 !
cos h: (24)

It is interesting to note that the Meijer’s G function,33

appearing in the above equation converges if and only if the

argument, i.e., r2

4k2
q

becomes less than unity, i.e., r < 2kq. To

obtain the final form of the potential u2, we have used the

following identity:33

2l�1G2 0
0 2

�l
2
þ �

2
;
l
2
� �

2
j x

2

4

 !
¼ xlK� xð Þ: (25)

The final form of near-field wake potential u2 is given by

u2 ¼ �
qv

2

X
s¼e;h

1

vtsk
2
s

rK0

r

kq

� �
cos h; (26)

where K�ðxÞ is the Macdonald function or modified Bessel

function of second kind. It is interesting to note that similar

kind of radial dependence of the potential was obtained by

Frolov39 in the case of short-range interaction between two

point electric charges.

B. Structure calculation of slowly moving
hydrogen-like ion in quantum plasma

The modified non-relativistic Hamiltonian of a slowly

moving hydrogen-like ion in the presence of an external

quantum plasma environment can be given by [a.u. is used

throughout]

H ¼ � 1

2
r2 þ Vef f r; hð Þ; (27)

where the near-field effective potential Vef f ðr; hÞ is com-

posed of two parts as

Vef f ðr; hÞ ¼ VdðrÞ þ Vwðr; hÞ: (28)

Here, VdðrÞ is the Debye-Huckel screening potential given

by

Vd rð Þ ¼ � Z

r
e�lr; (29)

where Z is the atomic number of the moving ion and l is the

Debye screening parameter related to the Debye length as

l ¼ 1
kq

.

The near-field wake potential Vw (r, h) is given by

Vw r; hð Þ ¼ frK0

r

kq

� �
cos h; (30)

where the wake field coefficient (f) is defined as
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f ¼ Zv

2

X
s¼e;h

1

vtsk
2
s

:

The variational equation for any arbitrary angular mo-

mentum state of one electron system is given by

d
ð

@W
@r

� �2

þ 1

r2

@W
@h

� �2
"

þ 1

r2 sin2h

@W
@/

� �2

þ 2 Vef f � Eð ÞW2

#
dvr;h;/ ¼ 0: (31)

The wavefunction W is subjected to the normalization

condition ð
W2dvr;h;/ ¼ 1: (32)

The trial wavefunction is taken as

Wðr; h;/Þ ¼ f ðrÞAl;mðh;/Þ; (33)

where the radial part f(r) is given by

f ðrÞ ¼
XN

i¼1

CiviðrÞ; (34)

TABLE I. Convergence of the energy eigenvalues (a:u:) of 1s0; 2p1; 3d2, and 4f3 states of C5þ moving in quantum plasma. The number density (ne) of elec-

trons is taken as 1019/c.c. while the speed of the ion (v) is 103 cm/s. N represents the total number of terms in the basis set.

N 1s0 N 2p1 N 3d2 N 4f3

1 16.996 989 379 2 3.516 726 519 3 1.101 328 256 4 0.328 549 543

3 16.996 997 305 5 3.544 757 189 7 1.114 962 499 9 0.329 492 549

6 16.996 997 518 9 3.544 757 475 12 1.114 962 616 15 0.329 493 091

15 16.996 997 543 20 3.544 757 476 25 1.114 962 632 22 0.329 493 108

28 16.996 997 543 35 3.544 757 476 42 1.114 962 632 39 0.329 493 108

45 16.996 997 543 54 3.544 757 476 52 1.114 962 632 49 0.329 493 108

TABLE III. The energy eigenvalues �E (a.u.) of 2s0; 2p0, and 2p1 states of

C5þ moving in quantum plasma having different set of electron number den-

sity (ne/c.c.) and ion velocity (v cm/s).

�E2s (a.u.) �E2p (a.u.)

ne (/c.c.) v (cm/s) jmj ¼ 0 jmj ¼ 0 jmj ¼ 1

0 0 4.50000000 4.50000000 4.50000000

8:0� 1017 0 3.86368690 3.85785292 3.85785292

103 3.86368689 3.85782543 3.85779533

104 3.86368685 3.85782487 3.85779514

3.54344882a 3.52966416a 3.52956493a

105 3.86368633 3.85781925 3.85779322

3.57641662a 3.53956809a 3.52966416a

5:0� 105 3.86368405 3.85779427 3.85778469

4.40032501a 3.77474159a 3.53214473a

1019 0 3.55780856 3.54476161 3.54476161

103 3.55780693 3.54472655 3.54475747

105 3.55780657 3.54472073 3.54475700

107 3.55777061 3.54418783 3.54449515

1020 0 3.16902746 3.14230776 3.14230777

103 3.16902456 3.14229037 3.14224439

105 3.16902418 3.14229621 3.14224287

107 3.16898702 3.14223675 3.14215211

1021 0 2.65209786 2.59865596 2.59865596

103 2.65208981 2.59862497 2.59858157

105 2.65208933 2.59862135 2.59858025

107 2.65204099 2.59825988 2.59844818

1022 0 1.99849293 1.89549274 1.89549274

103 1.99848876 1.89542088 1.89549069

105 1.99848850 1.89541666 1.89549053

107 1.99846268 1.89483600 1.89547373

1023 0 1.23890690 1.05303897 1.05303897

103 1.23890275 1.05281193 1.05303710

105 1.23890257 1.05280651 1.05303730

107 1.23888478 1.05229719 1.05302671

aReference 32.

TABLE II. The energy eigenvalues �E (a.u.) of 1s0 states of C5þ moving in

quantum plasma having different set of electron number density (ne/c.c.) and

ion velocity (v cm/s).

�E1s (a.u.)

ne (/c.c.) v (cm/s) jmj ¼ 0

0 0 18.00000000

8:0� 1017 0 17.33681121

103 17.33681120

104 17.33681118

16.98306649a

105 17.33681098

17.25328413a

5:0� 105 17.33681008

25.60522514a

1019 0 16.99701207

103 16.99699754

105 16.99699738

107 16.99698206

1020 0 16.54217234

103 16.54214839

105 16.54214822

107 16.54213093

1021 0 15.89053458

103 15.89046598

105 15.89046573

107 15.89044045

1022 0 14.96731440

103 14.96727643

105 14.96727627

107 14.96726037

1023 0 13.68055489

103 13.68051129

105 13.68051115

107 13.68049712

aReference 32.
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with viðrÞ ¼ rni e�air. The trial angular part is given by

Almðh;/Þ ¼ ðcþ b cos hÞYlmðh;/Þ; (35)

where Ylmðh;/Þ is the spherical harmonics.

In order to calculate the matrix elements of the

Hamiltonian, we have used the following integral:33

ð1
0

xl�1e�axK� bxð Þdx

¼
ffiffiffi
p
p

2bð Þ�

aþ bð Þlþ�
C lþ �ð ÞC l� �ð Þ

C l� 1

2

� �

� F lþ �; � þ 1

2
; lþ 1

2
;
a� b
aþ b

� �
; (36)

where F is the confluent Hypergeometric function and Re

l > j Re � j and Re ðaþ bÞ > 0.

Finally, we have solved the generalized eigenvalue

equation40 given as

H C ¼ ES C; (37)

where H is the Hamiltonian matrix, S is the overlap matrix,

E’s are the energy eigenroots, and C’s are the linear

variational coefficients. The non-linear parameters ai’s, b,

and c are optimized by using Nelder-Mead procedure.41 The

convergence behavior of the energy eigenvalues has been

checked by increasing the number of terms in the wave func-

tion to ensure the accuracy of the present method. All

calculations are carried out in quadruple precision.

III. RESULTS AND DISCUSSIONS

We have calculated the energy eigenvalues of ns0 [the

principal quantum number, n ¼ 1� 4 and the subscript

denotes the values of the azimuthal quantum number]; np0,

np1 [n ¼ 2� 4]; nd0, nd1, nd2 [n ¼ 3� 4]; and nf0, nf1, nf2,

nf3 [n¼ 4] states of C5þ ion. The plasma electron densities

(ne) are chosen within the range of 1019 � 1023/c.c., where

for each value of plasma density (ne), the ion velocities (v)

are within the range of 103 � 107 cm/s. Table I displays the

results for convergence of energy eigenvalues for

1s0; 2p1; 3d2, and 4f3 states corresponding to plasma density

(ne) 1019/c.c. and ion velocity (v) 103 cm/s. It is evident from

Table I that the energy eigenvalues converge up to 9th deci-

mal place in each case. Similar convergence of energy values

is obtained for all the calculations done in the present work.

TABLE IV. The energy eigenvalues �E (a.u.) of 3s0; 3p0; 3p1; 3d0; 3d1, and 3d2 states of C5þ moving in quantum plasmas having different set of electron

number density (ne/c.c.) and ion velocity (v cm/s).

�E3s (a.u.) �E3p (a.u.) �E3d (a.u.)

ne (/c.c.) v (cm/s) jmj ¼ 0 jmj ¼ 0 jmj ¼ 1 jmj ¼ 0 jmj ¼ 1 jmj ¼ 2

0 0 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000

8:0� 1017 0 1.40534572 1.40002099 1.40002099 1.38931372 1.38931372 1.38931372

103 1.40534571 1.40001296 1.40000432 1.38931361 1.38931359 1.38931354

104 1.40534564 1.40001207 1.40000402 1.38931351 1.38931351 1.38931351

1.13800837a 1.12586273a 1.12583700a 1.10181766a 1.10181766a 1.10181766a

105 1.40534488 1.40000307 1.40000094 1.38931254 1.38931272 1.38931325

1.14713322a 1.12861525a 1.12586273a 1.10203080a 1.06519697a 1.10193893a

5:0� 105 1.40534149 1.39996310 1.39998729 1.38930820 1.38930917 1.38931206

1.36260175a 1.19290816a 1.12655361a 1.10715733a 1.10223660a 1.10490827a

1019 0 1.14923194 1.13789722 1.13789723 1.11496287 1.11496287 1.11496287

103 1.14923145 1.13788733 1.13789606 1.11496273 1.11496270 1.11496263

105 1.14923096 1.13787887 1.13789537 1.11496174 1.11496190 1.11496236

107 1.14918232 1.13709896 1.13759242 1.11486312 1.11488121 1.11493546

1020 0 0.85275345 0.83113577 0.83113577 0.78686902 0.78686902 0.78686902

103 0.85275269 0.83113114 0.83111901 0.78686882 0.78686878 0.78686868

105 0.85275224 0.83113021 0.83111706 0.78686792 0.78686805 0.78686843

107 0.85270789 0.83104578 0.83097475 0.78677385 0.78679108 0.78684275

1021 0 0.51307024 0.47479205 0.47479205 0.39462864 0.39462864 0.39462864

103 0.51306840 0.47478483 0.47477478 0.39462843 0.39462840 0.39462828

105 0.51306792 0.47478106 0.47477341 0.39462775 0.39462784 0.39462810

107 0.51302066 0.47440449 0.47463583 0.39455982 0.39457226 0.39460957

1022 0 0.18762946 0.13082887 0.13082887 0.01136017 0.01136017

103 0.18762878 0.13081719 0.13082853 0.01136002 0.01135996

105 0.18762861 0.13081432 0.13082842 0.01135976 0.01135987

107 0.18761157 0.13044258 0.13081701 0.01133326 0.01135103

1023 0 0.00358750

103 0.00358738

105 0.00358736

107 0.00358535

aReference 32.
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TABLE V. The energy eigenvalues �E (a.u.) of 4s0; 4p0; 4p1; 4d0; 4d1; 4d2; 4f0; 4f1; 4f2, and 4f3 states of C5þ moving in quantum plasmas having different set of electron number density (ne/c.c.) and ion velocity (v
cm/s).

�E4s (a.u.) �E4p (a.u.) �E4d (a.u.) �E4f (a.u.)

ne (/c.c.) v (cm/s) jmj ¼ 0 jmj ¼ 0 jmj ¼ 1 jmj ¼ 0 jmj ¼ 1 jmj ¼ 2 jmj ¼ 0 jmj ¼ 1 jmj ¼ 2 jmj ¼ 3

0 0 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000 1.12500000

8:0� 1017 0 0.58332137 0.57865346 0.57865346 0.56923686 0.56923686 0.56923686 0.55490196 0.55490196 0.55490196 0.55490196

103 0.58332136 0.57865021 0.57864684 0.56923680 0.56923680 0.56923678 0.55490190 0.55490190 0.55490189 0.55490187

104 0.58332127 0.57864913 0.57864648 0.56923669 0.56923670 0.56923675 0.55490176 0.55490177 0.55490179 0.55490185

0.38038470a 0.36991115a 0.36990013a 0.34919409a 0.34919336a 0.34919373a 0.31860361a 0.31849924a 0.31860398a 0.31860361a

105 0.58332038 0.57863836 0.57864279 0.56923546 0.56923570 0.56923642 0.55490031 0.55490045 0.55490086 0.55490153

0.38363334a 0.37089236a 0.36991115a 0.34926980a 0.33600588a 0.34923783a 0.31861941a 0.31860545a 0.31866131a 0.31863742a

5:0� 105 0.58331642 0.57859047 0.57862644 0.56923001 0.56923124 0.56923493 0.55489389 0.55489459 0.55489667 0.55490014

0.45895839a 0.39373940a 0.37015737a 0.35111057a 0.34934404a 0.35030319a 0.31900087a 0.31865102a 0.32004822a 0.31860398a

1019 0 0.38627150 0.37710044 0.37710044 0.35842741 0.35842741 0.35842741 0.32949318 0.32949318 0.32949318 0.32949318

103 0.38627133 0.37709676 0.37710000 0.35842735 0.35842734 0.35842731 0.32949313 0.32949313 0.32949312 0.32949310

105 0.38627083 0.37708789 0.37709929 0.35842627 0.35842645 0.35842702 0.32949196 0.32949206 0.32949235 0.32949285

107 0.38622101 0.37626956 0.37679442 0.35831828 0.35833810 0.35839757 0.32936955 0.32938029 0.32941613 0.32946744

1020 0 0.19334518 0.17815971 0.17815971 0.14683884 0.14683884 0.14683884 0.09678684 0.09678684 0.09678684 0.09678684

103 0.19334495 0.17815827 0.17815457 0.14683878 0.14683877 0.14683874 0.09678681 0.09678681 0.09678680 0.09678679

105 0.19334458 0.17815633 0.17815294 0.14683800 0.14683813 0.14683852 0.09678618 0.09678623 0.09678639 0.09678666

107 0.19330816 0.17808454 0.17803027 0.14675666 0.14677158 0.14681633 0.09672344 0.09672894 0.09674547 0.09677302

1021 0 0.03820810 0.02020779 0.02020779

103 0.03820777 0.02020659 0.02020495

105 0.03820756 0.02020497 0.02020436

107 0.03818578 0.02004326 0.02014525

aReference 32.
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For different sets of plasma densities (ne) and ion veloc-

ities (v), Tables II–V display the energy eigenvalues of n¼ 1

to n¼ 4 states, respectively. The energy eigenvalues

obtained by Hu et al.32 are also included in Tables II–V for a

comparison with the present work. The energy eigenvalues

of free ions are given in the first row of each table. From the

numbers quoted in Tables II–V, it is evident that as the

plasma density (ne) increases for a given ion velocity (v), the

energy eigenvalues become more and more positive leading

towards destabilization of the ion and as the ion velocity

increases for a given plasma density (ne), the energy eigen-

values become more and more positive but with a much

slower rate compared to the preceding one. Thus, it can be

argued that the effect of static screening (which depends

only on ne) of the plasma environment on the energy eigen-

value is much more pronounced as compared to that of the

wake field, where the later arises due to the velocity (v) of

the ion and also depends on plasma electron density (ne). In

contrast, Hu et al.32 showed that the energy of each state

considered by them became over-bound (i.e., more negative

than the energy of the free ion) when the ion velocity (v)

reached a sufficiently high value. For example, Hu et al.32

reported that for ne ¼ 8:0� 1023 m�3 and ion velocity

v¼ 5000 m/s, the ground state (1s0) energy of C5þ becomes

�25.60522514 a.u. which is more negative than the ground

state energy �18.0 a.u. for the free C5þ ion. In this regard,

Hu et al.32 opined that such over-boundedness occurred

because of the choice of angular part of the wave function.

But the angular part of the wavefunction cannot be responsi-

ble for such over-boundedness as it violates the basic varia-

tional principle. No such over-boundedness is observed in

the present calculations. For example, we have obtained the

ground state (1s0) energy of �17.33681008 a.u. for C5þ ion,

where ne ¼ 8:0� 1023 m�3 and v¼ 5000 m/s.

It can also be noted from Tables III–V that the usual

breaking of accidental degeneracy (i.e., l degeneracy corre-

sponding to a given n) occurs with respect to the plasma

electron density (ne). This is a well-known phenomenon in

presence of Debye-Huckel potential and can be found in dif-

ferent studies.15 The degeneracy of energy eigenvalues with

respect to the absolute value of magnetic quantum number,

i.e., jmj is removed for each ion velocity (v) because of the

presence of cos h term in the near-field wake potential as

seen in Tables III–V. For example, Table III shows that for

ion velocity (v) 103 cm/s and plasma electron density (ne)

1019/c.c., the energy eigenvalues of 2p0 and 2p1 states are

�3.54472655 a.u. and �3.54475747 a.u., respectively. This

is purely Stark-like splitting. Such kind of splitting is

observed for different choice of plasma densities for p, d,

and f states as can be seen from Tables III–V. In contrast, Hu

et al.32 reported Zeeman-like splitting, i.e., the lifting of

degeneracy of the energy levels with respect to magnetic

quantum no. “m.”

The variation of energies of (2p0; 2p1) states for two dif-

ferent plasma densities (ne) is depicted in two sub-graphs of

Figure 1. It is evident from Figure 1 that corresponding to

plasma density ne ¼ 1019/c.c., 2p1 state lies energetically

below 2p0 state for the entire range of ion velocity (v), and

thus no crossing of energy levels is being observed. But, for

density higher than the previous one, it is to be noted that 2p0

state energetically lies below than that of 2p1 state when the

ion velocity is low and after a critical ion velocity 2p1 state

becomes more negative than that of 2p0 state. Hence, depend-

ing on the plasma electron density incidental degeneracy of

np0 and np1 states occurs at a particular critical ion velocity.

Such crossing of energy levels and subsequent appearance of

incidental degeneracy occur for all other angular momentum

states (i.e., d and f) as shown in Figures 2 and 3. It is clear

FIG. 1. Plot of energy values (in a.u.)

of 2p0 and 2p1 states of C5þ against

ion velocity (in cm/s) for plasma elec-

tron densities ne ¼ 1019 (/c.c.) and

ne ¼ 0:5� 1021 (/c.c.).
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from Figures 2 and 3 that contrary to np states, crossover of

energy eigenvalues appears at low plasma density

(ne ¼ 1019/c.c.). The plasma density, critical velocity, and

energy at which crossover of states occurs, are given in Table

VI. Such incidental degeneracy was reported earlier by Sen42

in case of shell confined hydrogen atom. Thus, Figures 1–3

give a good insight into the combined effect of static screen-

ing and near field wake potential on different angular mo-

mentum states of a slowly moving ion in quantum plasma.

IV. CONCLUSION

The electrostatic potential for a moving ion under quan-

tum plasma is derived where the thermal Mach number

remains less than unity. Subsequently, the effect of such

potential on the change of the energy eigenvalues of different

states of hydrogen-like carbon ion is studied under the

framework of Rayleigh-Ritz variational method. Level cross-

ing phenomenon and incidental degeneracy are observed for

the first time in case of an ion moving in the quantum plasma

environment. The present form of the potential will help

future workers to investigate the structural properties of dif-

ferent ions under quantum plasma environment.
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ABSTRACT: The analytic form of the electrostatic potential felt by a slowly moving test charge in Maxwellian dusty
plasma is developed. It has been shown that the electrostatic potential is composed of three parts: i) the Debye-Hückel
screening term, ii) the near-field wake potential and iii) the dust charge perturbation effect. The last two terms depend
on the velocity of the test charge, the number density of the plasma electrons and the dust grain parameters. Precise
energy eigenvalues of hydrogen-like carbon ion under such plasma environment has been estimated by employing
Rayleigh-Ritz variational calculation. The form of the potential facilitates the removal of l-degeneracy and |m|-degeneracy
in the energy levels. A detailed analysis shows that the energy levels gradually move to the continuum with increasing
plasma electron density and the variation of ion velocity. Incidental degeneracy of the energy levels and level crossing
phenomena have been observed with the variation of plasma electron density.

Keywords: Dusty plasma, variational method, one-electron atom

I. INTRODUCTION

In recent years, dusty plasmas are attracting considerable attention in the field of plasma physics research. In
addition to electrons, ions, neutrals as present in ordinary plasmas, dusty plasmas contain massive particles of
nanometer to micrometer size. The dust grains may be metallic, conducting, or made of ice particulates. Plasma
with dust particles or grains can be termed as either ‘dust in plasma’ or ‘dusty plasma’ depending on the relative
values of three characteristic lengths : i) the dust grain radius (r

 d
), ii) the average inter-grain distance (a) and iii) the

Debye radius (�
D
). For ar Dd �� � , charged dust particles are considered as a collection of isolated screened

grains, which corresponds to ‘dust in plasma’. For the condition Dd ar ���  dust particles participate in the collective
behavior and in that case the plasma is said to be ‘dusty plasma’. Dusty plasmas are most abundant in astrophysical
objects like in the planetary rings, in cometary tails or in interstellar clouds [1, 2]. Dusty plasmas are also formed in
laboratory based experiments like dc and rf- discharges, plasma processing reactors, fusion plasma devices, solid-
fuel combustion products etc. [3]. Dusty plasmas play important role in formation of plasma crystals as under some
plasma conditions dust grains can order themselves into crystal-like structure [4, 5].

There are a number of theoretical studies of plasma wave modulation, transport phenomena of the particles, ion
drag forces, phase transitions, crystallization of dust grains under dusty plasma environment [6-13]. But the effect
of dusty plasma on the structural properties of atoms is rather scanty [14]. The most important part of such studies
is to develop an appropriate model interatomic potential from a pure electrostatic view which can mimic the conditions
of such plasma environment. Unlike the plasma modeled by exponentially screened Coulomb potential, the model
potential for dusty plasma contains a complex character [14-18]. The closed form of the far-field potential felt by a
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slowly moving test charge through unmagnetized dusty plasma in the spherical polar co-ordinate was first derived
by Shukla [15]. It is shown that the effective potential consists of three parts: exponentially screened Coulomb part,
far-field wake potential part and dust charge fluctuation term. Shukla et al. [16] developed another form of the far-
field potential of a slowly moving test charge in a plasma that consisted of positive dust grains and electrons. The
dust grain charge fluctuations and collisions among neutral atoms, electrons and dust grains were taken into account.
In the work of Moslem et al. [17], the Debye–Hückel screening potential and oscillatory wake field potential
distribution around a test charge particle moving in the dusty plasma medium were derived by solving the linearized
Vlasov equation along with the Poisson equation. Ali et al. [18] also used Vlasov-Poisson equation to formulate the
electrostatic potential caused by a test charge in unmagnetized non-Maxwellian dusty plasma where the plasma
particles are : superthermal hot electrons, cold fluid electrons, neutralizing cold cations and charge fluctuating
isolated dust grains.

The aim of the present paper is to formulate the near field potential felt by an atom/ion moving slowly through
unmagnetized dusty plasma and apply the potential to find the binding energies of one-electron ion. The binding
energies of moving hydrogen-like carbon (C5+) ion under different conditions of the classical dusty plasma are
estimated by using variational method. It is observed that the l-degeneracy of the hydrogenic energy levels
corresponding to a principal quantum number is lifted under this potential. Moreover, a partial removal of the m-
degeneracy is also observed. In particular, we have calculated the energy values of C5+ ion in 1s

0
, 2s

0
, 2p

0
 and 2p

1

states by varying the velocity of the ion and the plasma electron density as well. The details of the formulation of the
inter-atomic potential for slowly moving test charge under dusty plasma is given in the Sec. II, the details of the
variational method used for the atomic structure calculation is given in Sec. III, computational results are given in
Sec. IV and final conclusion in Sec. V.

II. NEAR-FIELD POTENTIAL FELT BY A SLOWLY MOVING “TEST CHARGE” IN CLASSICAL
DUSTY PLASMA

The field ( D
�

) of a charge q moving with a velocity u
� in a dielectric medium is given by the Poisson’s equation

[20],

)(.
0

tur
q

D
����

��� �
� (1)

where ����
��

DD ,  D being the dielectric constant of the medium and � being the potential in the medium. Using

the relation and making a Fourier transform followed by an inverse Fourier transform, we obtain the expression for
the potential as [20]

� � kd
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eq
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rkj �
���
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Here 1�=j  and �
0
 is the permittivity of free space. The dielectric constant of the medium is given by,,

� � die χ+χ+χ+=uk,kD 1
���
�� (3)

where, di,e,=ss |χ  is the electric susceptibility for the plasma species ‘s’ (s=e,i,d corresponding to electron, ion and

dust, respectively).

Considering the Maxwell-Boltzmann distribution for the plasma particles, the electric susceptibility due to the
thermal motion of plasma electrons and ions is given by [20],
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22,
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The electric susceptibility due to dust grain charging and thermal motion is given as [15],
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Tmε
=λ  is the Debye screening length of the plasma species ‘s’. T

s
, m

s
, q

s
 and n

s
 are absolute temperature,

mass, charge and equilibrium number density respectively of species ‘s’. The thermal speed of the plasma species

‘s’ is given by, 
s

sB
ts

m

TK
=v where K

B
 is the Boltzmann constant.

If we consider that the dust grain contains negative charges only, then the quasi-charge neutrality condition

within the effective Debye-sphere of the plasma becomes, ddeeii qn+qn=qn . For � �ukνc

��
�>> , electric

susceptibility due to the dust grain becomes,
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Using (4) and (5), one can obtain the modified form of (3) as,
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where
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For very slowly moving atom/ion i.e. uvts >> , which means the thermal Mach number (defined as the ratio of

ion velocity and thermal velocity of plasma particles) remains below unity, the inverse of dielectric function becomes,
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where, �
�

�
dies sts

t
v

u
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2
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1

1

2 �
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�
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tedu
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Here, � is the angle between r
�  and u

�  and � �η+θ  is the angle between k
�

 and u
� . Using equation (8) one can

dissolve equation (2) into three parts that may be given as follows:
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where we define the first part as
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The method of solving the integral can be found in ref. [21]. Thus the potential �
1
 is of the form of Debye-

Hückel potential [22], where �
t
 signifies the effective or total Debye length of the plasma. The inverse of Debye

length is known as Debye parameter or simply screening parameter (µ) i.e. 
t�

� 1� . The second part of the

potential ��is

� �
� �� ηdηdτdkθ+η
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18 22
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Here we have used the volume element ηdηdτdkk=kd 2sin3
�

 in spherical polar coordinate � �τη,k, . One can

get the imaginary solution of the angular part of the integral (11) as,
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Now using (12), equation (11) reduces to
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Here j
1
(kr) is the spherical Bessel function of first order [19]. The solution of integral (13) can be done using the

standard Meijer’s G function [19] and the solution technique described in [21], where in the limit r < 2 �
t
 the above

integral becomes
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 , K

0
(x) being the Macdonald function or modified Bessel function of second

kind [19].

Using the above result and putting �
1
 from equation (9) one can get from equation (13) as,

θ
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This potential is called the near field wake potential and �
di,e,=s sts0

λvππε

qu
=C

2

1

24  is the wake-coefficient.

Let us now consider the third part of potential,

� � � �� ηdηdτdkθ+η
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ek

επ

qσ
j=

t

2

ηjkr

2 sincos
18 22

cos3

0
33� (15)

Here, the angular part of the integration is same as the angular part in wake potential. So, by using equation (12)
one can rearrange equation (15) in the following way,
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Let us now consider a standard integral [23],
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Using the integrals (17) and (18) and the value of �
2
 from equation (9), equation (16) takes the following form,

θDe= tλ
r

cos3

�
�� (19)

where, 2224 ci

ed

0 νλ

uν

πε

q
=D . This potential is due to dust perturbation part and will vanish if the moving test charge

is static i.e. u = 0 and/or the electron-dust collision is absent i.e. v
ed 

= 0.

III. CALCULATION OF ENERGY LEVELS OF HYDROGENLIKE ION

To estimate the modified non-relativistic energy eigenvalues of slowly moving hydrogen-like ion in the presence of
an external classical dusty plasma environment, Rayleigh-Ritz variation calculation has been done (a.u. is used
hereafter). The expectation value of kinetic energy is given by,

2 2 2
3

2 2 2

1 1

sin
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� �� � � � � �� � �� � � � � �� �� �
�

�Ψ Ψ Ψ
T = + + d r

r r θ r θ ω
(20)

Where 3 sin2d r = r θdθdωdr
� is the volume element in spherical polar � �ωθ,r,  co-ordinate ( ��� r0 ,

�� ��0 , �� 20 �� ). The effective potential energy of the atom can be written as,

� � θDe+θλrCrK+e
r

q
=V t

λr

t0
t

λr

eff coscos/
// ��� (21)

Thus the expectation value of potential energy is given by,
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2 3
effV = V Ψ d r�

�
(22)

The normalization term is given by,

� rdΨ=N
�32 (23)

The trial wavefunction is taken as, � � � � � �θAωθ,YαrR=Ψ lmnl , where � �αrRnl  is the radial part of hydrogenic

wavefunction [24] with ‘�’ as variation parameter, � �ωθ,Ylm  is the spherical harmonics [24] and � � � �θβ+γ=θA cos
is the orbital distortion part [21] with ‘�’ and ‘�’ as variation parameters. For the static ion (u = 0), wake and dusty
potentials will be absent and in this case we set � = 1 and ��= 0.

Let us now consider the one-electron auxiliary integral for radial part,

� �
1

0

1 +p

=r

ρrp

ρ
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�
�

(24)

and the integral necessary to evaluate the expectation value of wake potential,
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where, � �xcbaF ;;,12  is the confluent Hypergeometric function and � �)Re()Re( ν>p  and � � 0Re >ξ+ρ [23].

The expectation values using (20),(22) and (23) for the 1s
0
, 2s

0
, 2p

0
 and 2p

1
 states are given as follows.

1s0 – state

Using the trial wavefunction as � � � �θAe=ωθ,r,Ψ αr� , the expectation values can be derived as
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2s0 – state

Using the trial wavefunction as � � � � � �θAeαr=ωθ,r,Ψ αr��1 , the expectation values can be derived as
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2p0 – state

Using the trial wavefunction as, � � � �θθAre=ωθ,r,Ψ αr cos� , the expectation values can be derived as
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Using the trial wavefunction as, � � � �θAθere=ωθ,r,Ψ jωαrsin��  the expectation values can be derived as
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γ β
N = + W α

The variational energy eigenvalue is now given as,

( , , )nlm

T V
E E

N

�
� � � � � (26)

The parameters � �γβ,α,  have been optimized using Nelder-Mead algorithm [25].
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IV. RESULTS AND DISCUSSION

The energy values of 1s
0
, 2s

0
, 2p

0
 and 2p

1
 states of C5+ ion are given in the table 1 where, the electron densities (n

e
)

are taken in such a way that the dust radius (r
d
) remains smaller than the effective Debye length (�

t
) and different ion

velocities are considered for which the thermal Mach number remains below unity. We have chosen typical size of
dust radius as r

d 
= 0.5 nm, charge accumulated on dust grain q

d 
= 100q

e
 and mass of dust grains as m

d 
= 12000m

H
,

where m
H
 is the mass of hydrogen atom.

In the table 1, the first row corresponding to each state indicates the energy eigenvalue of the free static C5+ ion.
For a fixed value of ion velocity (u) the energy eigenvalues for all the states decreases as n

e 
increases. Similar

feature can be seen as the ion velocity (u) increases for a fixed electron density n
e
. But the amount of decrease of

energy in the former case is much greater than the later one. Thus the effect of static screening or Debye-Hückel
part i. e. first part of the effective potential (21), which is a function of plasma electron density (n

e
) and dust

parameters, is more pronounced than the effect of the second and the third part of the effective potential (21)
namely, wake-part and dusty-part, where the later two parts are dependent on ion velocity u and plasma electron
density (n

e
).

As shown in the table, for the static case (u = 0) due to the effect of Debye-Hückel part in the potential, the
l-degeneracy gets removed at each density and as a result the energies of 2s

0
, 2p

0
 and 2p

1
 states become different.

Table 1
The energy eigenvalues –E (a.u.) of 1s

0
, 2s

0
, 2p

0
 and 2p

1
 states of C5+ ion moving in dusty plasma estimated with

different sets of electron number density (n
e
 in m-3) and ion velocity (u in ms-1)

State n
e
 (m-3) u (ms-1) -E (a.u.) State n

e
 (m-3) u (ms-1) -E (a.u.)

- - 18.0 - - 4.5

0 17.98216023 0 4.482196542

100 17.98216023 100 4.482162312

500 17.98216022 1020 500 4.482161888

1020 1000 17.98216020 1000 4.482161358

5000 17.98216008 5000 4.482157116

I
s0

10000 17.98215992 2p
0

10000 4.482151815

0 17.44281241 0 3.957701449

100 17.44281012 100 3.957652599

1023 500 17.44280094 1023 500 3.957476414

1000 17.44278948 1000 3.957276511

5000 17.44271391 5000 3.955684605

10000 17.44263049 10000 3.953694721

- - 4.5 - - 4.5

0 4.482198883 0 4.482196542

100 4.482175960 100 4.482137215

1020 500 4.482175932 1020 500 4.482137073

1000 4.482175898 1000 4.482136897

5000 4.482175675 5000 4.482135483

2s
0

10000 4.482175602 2p
1

10000 4.482133716

0 3.961873870 0 3.957701449

100 3.961868049 100 3.957656795

500 3.961844765 500 3.957598066

1023 1000 3.961815660 1023 1000 3.957524654

5000 3.961664635 5000 3.956990871

10000 3.961452745 10000 3.956327567
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Because of the cos � term in the near field wake part and the dusty part in the effective potential, the degeneracy of
energy eigenvalues with respect to the absolute value of magnetic quantum number (|m|) is lifted (corresponding to
given n and l). For example, from the table 1, it can be seen that for ion velocity u = 1000 m/s and plasma electron
density n

e 
= 1023 m-3 the energy eigenvalues of 2p

0
 and 2p

1
 states are -3.95727651 a.u. and -3.95752465 a.u., which

indicates that both the states are no longer degenerate. It is also noteworthy that for n
e
=1020 m-3 the 2p

0 
state

energetically lies below 2p
1
, while for n

e
=1023 m-3, the 2p

0 
state energetically moves above to the 2p

1
 state, giving

rise to the level-crossing phenomenon. Thus one may opine that the relative positions of the states corresponding to
same n and l-values and different |m| values depend on the plasma density of the dusty plasma environment. Moreover,
it can also be argued that two different levels can be made degenerate i.e. incidental degeneracy [21] may occur by
tuning the plasma parameters.

If the dust charge perturbation term is removed from the effective potential (by setting v
ed

= 0), the energy of 1s
0

state for n
e
 = 1023 m-3 and u = 1000 ms-1, becomes -17.44377726 a.u., whereas with dust potential under the same

plasma conditions and ion velocity, the energy of 1s
0 
state becomes -17.44278948 a.u. (as shown in table 1). Thus

in the presence of dust potential part, the energy of 1s
0 
state becomes more positive by an amount of 9.8778 × 10-4

a.u.

V. CONCLUSION

The electrostatic potential for a moving ion under classical dusty plasma is derived where the thermal Mach number
remains less than unity and dust grain radius is smaller than the effective screening length of the plasma. Subsequently,
the effect of such potential on the change of the energy eigenvalues of different states of hydrogen-like carbon ion
is studied under the framework of Rayleigh-Ritz variational method. The removal of accidental (l) degeneracy and
absolute magnetic quantum number (|m|) degeneracy are reported in case of an ion moving in the dusty plasma
environment. Level-crossing phenomenon has been observed between 2p

0
 and 2p

1
 states with the variation of

plasma electron density. The present form of the potential may be useful for calculating spectral properties of other
ions within dusty plasma surrounding. The energy eigenvalues reported here may serve as benchmark for future
theoretical research and also for experimental measurements under such plasma environment.
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Abstract
Energy eigenvalues of nonautoionizing doubly excited 1;3Fe states originating from 2pnf (n54220)

configuration of two-electron atoms Z53218 have been calculated by expanding the basis set in

explicitly correlated Hylleraas coordinates under the framework of Ritz variational method. A

detailed discussion on the evaluation of correlated basis integrals is given. The energy eigenvalues

of a number of these doubly excited states are being reported for the first time especially for the

high lying states. The effective quantum numbers (n�) for the states mentioned above have been

calculated by using the theory of quantum defect.

K E YWORD S

doubly excited states, Hylleraas coordinates, two-electron atoms, variational method

1 | INTRODUCTION

In a two-electron atoms/ions, the states where both the electrons are promoted to excited orbitals are termed as doubly excited states (DESs).

These states are embedded in the one-electron continuum and thus are less bound compared to the singly excited states where one electron is in

the 1s orbital and the other one is in arbitrary excited orbital. The DESs of two-electron atoms have become a subject of immense interest immedi-

ate after the pioneering observation of two-electron-one-photon peak by Madden and Codling[1] while recording photo-absorption spectra of

helium atom placed in the field of synchrotron radiation. Bulk of theoretical studies[2–4] using different quantum chemical methods are employed

afterwards to investigate the structural features of such states. Accurate determination of the structural properties of the DESs of different two-

electron atoms are, therefore, necessary for astrophysical data analysis,[5] diagnosis of lines observed in solar corona,[6] high temperature dis-

charges[7] as well as in laboratory plasma diagnostics.[8]

Depending on the angular momentum coupling scheme and parity conservation rules, these DES can be classified into two general groups as

autoionizing and nonautoionizing.[9] There are two different channels of decay of those states namely radiative channel where the DES decays to a

lower excited state by emitting a photon, while in the autoionization channel the DES decays to an ion by ejecting the other electron. The radiative

channel is predominant for the nonautoionizing states. Electron-electron correlation plays an important role in forming these kinds of states and

thus Ritz variational method with the trial wave function expanded in explicitly correlated Hylleraas type basis is proven to be the best procedure

for theoretical estimation of energy levels and other structural properties of such states. Although, there exists a large number of investigations in

the literature related to structural and spectral features of DESs having low total angular momentum (upto L52),[10–23] but the same for other high

angular momentum states are rather scanty.[14,24–29] For a two-electron atom, the lowest lying doubly excited nonautoionizing F state (L53) of

even parity originates from 2p4f configuration. Another important aspect of this state is that it is an unnatural parity bound state, that is, it’s parity

is determined by p5ð21ÞL11 instead of using the formula p5ð21ÞL. The work done particularly on these states so far is very much countable. To be

specific, Lipsky and collaborators[24] adopted truncated diagonalization method with CI-type basis for few ð1;3FeÞ states of two-electron atoms

(Z5225). Callaway[25] estimated the first three states of helium having 2pnf ð1;3FeÞ configuration using CI-type wavefunction in the framework of

Stabilization method based on hard wall strategy. Kar and Ho[27] also used large number of configurations in their CI-type basis for first three states
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of 2pnf configuration of helium atom. The energy eigenvalues of 2pnf (n5429) 1;3Fe states of helium have been reported by Kar and Ho[28] using

exponentially correlated CI-type basis set. In a separate article, Kar et al.[29] used similar type of wavefunction and extended the calculations for the

energy levels of other iso-electronic ions (Z53212).

In this communication, we have made an attempt to estimate the energy eigenvalues of 2pnf 1;3Fe states (n54220) of two-electron systems

(Z53218) using trial wave function expanded in multiexponent Hylleraas type basis set. We have already used such type of wavefunction to deter-

mine the structural parameters of different S, P, and D states of free and confined two-electron systems.[2,30–41] It is worthwhile to mention that

using Hylleraas basis the energy values of 2pnf 1;3Fe states ½n58220� of two electron atoms with Z>10 are being reported for the first time. The

effective quantum number (n�) of the outer electron for each of these states has also been calculated using the theory of quantum defect.

2 | METHOD

2.1 | Wavefunction

The coupled angular wavefunction for 1;3Fe state having total angular momentum L53 and magnetic quantum number M50 in terms of the indi-

vidual angular wavefunctions for pf (having angular momentum quantum numbers l153 and l251) configuration can be written as,

Yl1 ;l2
L;M5Y3;1

3;05
1ffiffiffi
2

p y13ð1Þy21
1 ð2Þ2y21

3 ð1Þy11ð2Þ
� �

(1)

where, Y and y represents the spherical harmonics for the coupled and uncoupled states, respectively. Using the standard expressions for spherical

harmonics for the uncoupled states (y) in terms of individual angular coordinates (u1;/1) and (u2;/2), Equation 1 dissolves as,

Y3;1
3;05

3i
p

ffiffiffiffiffiffiffiffiffi
21
768

r
5cos 2u121
� �

sin u1sin u2sin /22/1ð Þ (2)

With the symmetric Euler-angle (u;/;w) decomposition technique,[42] following two transformation relations originate:

sin u1sin u2sin /22/1ð Þ5sin u12cos u (3)

cos u152sin ucos w2
1
2
u12

� �
(4)

Here, u12 is the angle between ~r1 and ~r2 . Using these two transformation relations (3) and (4) and discarding the multiplicative coefficient 3i
pffiffiffiffiffiffi

21
768

q
Equation 2 takes the form,

Y3;1
3;05sin u12

3cos u25cos 3u

2

� �
1
5
2
sin 2ucos ucos 2wsin u12cos u121

5
2
sin 2ucos usin 2wsin 2u12

52sin u12D0
31

ffiffiffiffiffiffi
15

p

6
sin 2u12D

21
3 1

ffiffiffiffiffiffi
15

p

6
12cos 2u12ð ÞD22

3

(5)

where D0
3; D

21
3 , and D22

3 are the real angular momentum Wigner functions which depend on the Eulerian angles (u;/;w) and assume the following

forms,[42]

D0
35

5cos 3u23cos u
2

D21
3 5

ffiffiffiffiffiffi
15

p

2
cos 2wsin 2ucos u

D22
3 5

ffiffiffiffiffiffi
15

p

2
sin 2wsin 2ucos u

The total wavefunction of the system of two electrons can be written as,

W5f r1; r2; r12ð ÞY3;1
3;0 u1;/1; u2;/2ð Þ6exchange (6)

where, f r1; r2; r12ð Þ is the radial part of the wavefunction which explicitly depends on the inter-electronic distance r12. Following the work of Bhatia

and Temkin,[42] one may take the 1;3Fe state wave function of even parity due to (pf) configuration of a two electron atom as,

W5f03D
0
31f213 D21

3 1f223 D22
3 (7)

Using the value of Y3;1
3;0 into the Equation 6 and then comparing with Equation 7 one can get,

f0352ðf7~f Þsin u12; f213 5
ffiffiffiffi
15

p
6 ðf7~f Þsin 2u12, and f223 5

ffiffiffiffi
15

p
6 ðf6~f Þð12cos 2u12Þ. The upper sign corresponds to the singlet state and the lower sign

to the triplet state. The symbols used here are the same as in Ref. 43. The singlet and triplet states are ensured by using following exchange proper-

ties on angular and radial wavefunctions,
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Ê12Dk6
L u;/;wð Þ56 21ð ÞL1kDk6

L u;/;wð Þ (8)

and

fk1L r2; r1; r12ð Þ56 21ð ÞL1kfk1L r1; r2; r12ð Þ
fk2L r2; r1; r12ð Þ56 21ð ÞL1k11fk2L r1; r2; r12ð Þ

(9)

where Ê12 is the two-electron permutation operator. The trial radial wave function f r1; r2; r12ð Þ can be written as,

f r1; r2; r12ð Þ5
Xp
i51

hið1Þhið2Þ1
Xp
i51

Xp
j51

hið1Þhjð2Þ
" #

gð1;2Þ (10)

In the second sum i< j and hiðjÞ5e2qi rj , q being the nonlinear parameter. p denotes the number of nonlinear parameters which are taken in a

geometrical sequence following qi5qi21g; g being the geometrical sequence. The function g(1, 2) containing correlation terms, is expanded into

Hylleraas basis set as follows,

gð1;2Þ5r31r2
X
l�0

X
m�0

X
n�0

Clmnr
l
1r

m
2 r

n
12 (11)

The effect of the radial correlation is incorporated through different q’s in the wave function whereas, the angular correlation effect is taken

care of through different powers of r12. The dimension of the full multiexponent basis (N) is pðp11Þ
2 3s

h i
, where s is the number of terms involving r12

and p is the number of exponents. For a fixed number of basis, p and s should be chosen in such a manner that the effect of radial as well as angular

correlation is properly incorporated in the wavefunction. In the present calculation, we have taken p59, that is, a 9-exponent basis set and consid-

ering s510, 15, 20, the expansion length of the wavefunction becomes N5450, 675, 900 terms, respectively. The aim of the choice of the basis

set is to span the entire radial space adequately so that the desirable accuracy of the energy levels can be achieved even for very high excited states.

Specifically, the higher q values are responsible for spanning the space near to the nucleus whereas the lower one spans the space far away from

the nucleus. Thus spatial range of the basis can be tuned in a flexible manner by changing the geometrical ratio g keeping q1 constant throughout.

To have a preliminary idea about the highest and lowest nonlinear parameters in the set of p number of nonlinear parameter, we optimize the

energy eigen value of the corresponding angular momentum state with two nonlinear parameters using Nelder–Mead procedure.[44]

2.2 | Variational equation

The reduced variational equation for the even parity F state is obtained from the general variational equation of arbitrary angular momentum of a

two electron system[43] as,

d

ð 
1
2

X2
i51

of03
ori
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1
of213
ori
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1
of223
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1
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� �2h i
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of223
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1

sin 2u12

1

r21
1

1

r22

 !
3 f03
� �2

12 f213
� �2

12 f223
� �2h i

1

ffiffiffiffiffiffi
15

p
cos u12

sin 2u12

1

r21
1

1

r22

 !
f03 f

21
3

1

ffiffiffiffiffiffi
15

p

sin u12

1

r22
2

1

r21

 !
f03 f

22
3 12 V2Eð Þ f03

� �2
1 f213
� �2

1 f223
� �2h i!

ds50

(12)

where, ds5r21 r22 sin u12 dr1 dr2 du12; 0 � r1 � 1; 0 � r2 � 1; and 0 � u12 � p. The potential energy function of two electron atom is expressed

as

V52
Z
r1
2

Z
r2
1

1
r12

(13)

where Z is the atomic number.

After choosing the proper trial radial wave function, the energy eigenvalues are obtained by solving the generalized eigenvalue equation involv-

ing the Hamiltonian and overlap matrices given by

H C5ES C (14)

where H and S are Hamiltonian and overlap matrices, respectively. Atomic units are used throughout. All calculations are carried out in quadruple

precision to have a better numerical accuracy.
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2.3 | Evaluation of basis integral

The following result[45] is used in our calculations in performing the integrals involving independent coordinates r1, r2 and r12.

Aðm; n; l; a1; a2Þ5
ð1
r150

ð1
r250

ðr11r2

jr12r2 j
rm1 r

n
2r

l
12e

2a1r12a2r2dr1dr2dr12

52ðm!n!l!Þ
Xm
i50

Xn
j50

Xl

k50

ði1jÞ!ðm2i1kÞ!ðn2j1l2kÞ!
i!j!k!ðm2iÞ!ðl2kÞ!ðn2jÞ!

3
1

ða11a2Þi1j11am112i1k
1 an1l112j2k

2

(15)

Here, m � 0; n � 0; l � 0, and a1; a2>0.

We have also used the following formula for r21
1 with even and odd powers of r12.

Að21; n; l; a1; a2Þ5
ð1
0
r21
1 e2a1r1dr1

ð1
0
rm2 e

2a2r2dr2

ðr11r2

jr12r2 j
rl12dr12

5

ð1
0
r21
1 e2a1r1dr1

ðr1
0
rm2 e

2a2r2dr2

ðr11r2

r12r2

rl12dr12

1

ð1
0
rm2 e

2a2r2dr2

ðr2
0
r1

21e2a1r1dr1

ðr11r2

r22r1

rl12dr12

5I11I2

(16)

where,

I25
ð1
0
rm2 e

2a2r2dr2

ðr2
0
r1

21e2a1r1dr1

ðr11r2

r22r1

rl12dr12

5
1

l11ð Þ
ð1
0
rm2 e

2a2r2dr2

ðr2
0
r1

21e2a1r1dr1 r11r2ð Þl112 r22r1ð Þl11
h i (17)

Considering l115n and using standard Binomial expansion one can get

r11r2ð Þn2 r22r1ð Þn52
Xn21

2

i50

n!
n22i21ð Þ! 2i11ð Þ!r

n22i21
2 r2i11

1 n5oddð Þ

52
Xn22

2

i50

n!
n22i21ð Þ! 2i11ð Þ!r

n22i21
2 r2i11

1 n5evenð Þ
(18)

When l is even, that is, n is odd, Equation 17 reduces to

I25
2
n

Xn21
2

i50

n!
n22i21ð Þ! 2i11ð Þ!

ð1
0
rm1n22i21
2 e2a2r2dr2

ðr2
0
r1

2ie2a1r1dr1 (19)

Let us now use the following standard integral[46]

ðR
0
rne2lrdr5

n!
ln11

2e2lR
Xn
k50

n!
k!

Rk

ln2k11

Equation 19 now dissolves as,

I25
2
n

Xn21
2

i50

n!ðm1n22i21Þ!
ð2i11Þðn22i21Þ!

1

a2i11
1 am1n22i

2

2
2
n

Xn21
2

i50

X2i
j50

n!ðm1n2j21Þ!
ð2i11Þðn22i21Þ!ð2i2jÞ!

1

aj11
1 ða11a2Þm1n2j

(20)

When l is odd, that is, n is even, the limits of the outer sum of Equation 20 will be i50 to n22
2 , otherwise the expression for integral I2 will be

the same as in Equation 20. In a similar fashion, I1 integral for even l reduces to

4 of 17 | DUTTA ET AL.



I15
2
n
ðm1nÞ!
am1n11
2

ln
a11a2
a1

� �

1
2
n

Xn21
2 21

i50;n>1

n!ðm12i11Þ!
ðn22i21Þð2i11Þ!

1

an22i21
1 am12i12

2

2
2
n

Xn21
2 21

i50

Xm12i11

j50

ðm12i11Þ!n!ðm1n2j21Þ!
ðm12i112jÞ!ð2i11Þ!ðn22i21Þ!

1

ða11a2Þm1n2jaj11
2

2
2
n

Xm1n21

j50

ðm1nÞ!
ðm1n2jÞ

1

ða11a2Þm1n2jaj11
2

(21)

and when l is odd,

I15
2
n

Xn22
2

i50

n!ðm12i11Þ!
ð2i11Þ!ðn22i21Þ

1

an22i21
1 am12i12

2

2
2
n

Xn22
2

i50

Xm12i11

j50

n!ðm12i11Þ!ðm1n2j21Þ!
ð2i11Þ!ðn22i21Þ!ðm12i112jÞ!

1

aj11
2 ða11a2Þm1n2j

(22)

3 | RESULTS AND DISCUSSIONS

The numerical values of the integral Aða; b; c;a;bÞ estimated using the formulae (16), (20), (21), and (22) corresponding to the different sets of

(21; b; c) with the conditions b � 0; c � 0 are displayed in Table 1. In the first three columns of Table 1, different powers of r1, r2, and r12, that is, a,

b, and c are given. For each set of (a,b,c), the nonlinear parameters (a, b) in the preceding column of Table 1 are varied from very low to high values.

It is to be noted that for each set, we have considered both the conditions a>b and b>a as well as b> c and c> b into account. The values of inte-

grals are given in the last column of Table 1. It is worthwhile to mention that the results match exactly with those obtained from the standard sym-

bolic computation software Maple, which ensure the numerical accuracy of the expression for Að21; b; c;a;bÞ over the complete range of nonlinear

parameters.

Table 2 shows the convergence behavior of the energy eigenvalues of 2pnf [n54220] 1;3Fe states of Li1 with respect to the total number

of terms N5450, 675, and 900 in the 9-exponent basis set. To determine the limiting values of the 9-exponents, that is, the highest and lowest

q of the geometrical sequence, we have used a double exponent basis and optimized the energy eigenvalues of 2pnf [n54220] 1;3Fe states

using Nelder–Mead algorithm[44] upto N � 57. For Li1 we have obtained three sets of limiting values of the nonlinear parameters as (0.25,1.5),

(0.1,1.5), and (0.05,1.5). The first set is optimized for 2p4f state and the third one is for 2p20f state. In the 9-exponent basis set, the intermedi-

ate q values are generated in a geometrical progression as described in the methodology. The lower boundness of the states 2pnf [n54220]

depends on the sets of nonlinear parameters. In Table 2, (0.25,1.5) set gives 2pnf [n5426], (0.1,1.5) set gives 2pnf [n57214], and (0.05,1.5) set

gives 2pnf [n515220] states as lower bounds. From Table 2 one can find that the energy eigenvalues of 2p4f to 2p7f are converged upto

eighth decimal place, 2p8f to 2p12f are converged upto 6th decimal place, 2p13f and 2p14f are converged upto fifth decimal place, and the

rest of the configurations are converged upto fourth or third decimal place. It is evident that if the number of terms N in the basis set is further

increased then the convergence behavior will be better. But the accuracy provided by the experiments in spectroscopic measurements, such as

measurement of transition energies, is maximum of the order of meV. For this reason we have limited our study of convergence upto N5900

terms to complete our whole study without so much time consumption but with reasonable accuracy. Similar features are seen for the other

ions (Z54218) also.

The energy eigenvalues of 2pnf [n54220] 1;3Fe state of Be21 to Ar161 ions for N5900 are given in the Table 3. We have compared

our results with those reported by Kar et al.[29] for 2pnf [n5427] 1;3Fe state of Li1 to Mg101 ions. The comparison shows that their[29]

results are more bound at the sixth decimal place for the singlet states and the fifth decimal place for the triplet states. In contrast, the pres-

ent energy values are lower bound than that of the values obtained by Lipsky et al.[24] for the ions Z5225. For example, Lipsky et al.[24]

obtained the energy value of 2p4f (1Fe) state as 21:252331a:u:, whereas the present energy value of that state is 21:252511 a:u:, which is

more negative at the forth decimal place of the former result. It is worthwhile to mention here that, the general wavefunction for Fe state is

of the form,

WF5wpf1udd (23)

where, wpf and udd are the wavefunctions corresponding to pf and dd configurations. The reason of our upper bound-ness of the energies in

comparison to that of obtained by Kar et al.,[29] lies in the fact that in our basis set expansion, we did not incorporated the terms containing

3d4d and it is higher orbital configuration for singlet state and 3d2 and it is higher orbital configuration for triplet state. Since 3d2
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configuration lies energetically below than that of 3d4d configuration, convergence behavior of the present energy eigenvalues for the singlet

states are better than the triplet states in comparison to the values obtained by Kar et al.[29] To the best of our knowledge, there are no

other results for the nonautoionizing 1;3Fe state energies of two-electron ions from Al111 to Ar161 in the literature for a comparison with our

results. Also for the first time, we have estimated the energies of the 2pnf [n58220] configurations of 1;3Fe state for Li1 to Ar161 ions. The

effective quantum numbers n� of 2pnf [n54220] 1;3Fe states for Z53218 have also been calculated by using the relation

E52
1
2

Z
N

� �2

1
Z21
n�

� �2
" #

(24)

where, E is the energy of the state below total ionization and N is the inner electron quantum number.

TABLE 1 Values of the integral Að21; b; c;a;bÞ with b � 0; c � 0

a B c a b Að21; b; c; a; bÞ

21 3 1 0.001 0.0007 0.28559528767775331707[121]

1.0 0.05 0.15360000000000000000[109]

20.0 5.5 0.47686757610943117397[–03]

3.5 17.0 0.96589203802113271165[–05]

100.0 350.0 0.91390492056881061462[–13]

21 5 4 0.001 0.0007 0.26402051936417828650[141]

1.0 0.05 0.74328146657279995997[119]

20.0 5.5 0.14386689860441544219[–02]

3.5 17.0 0.30459951447336372127[–06]

100.0 350.0 0.49414345416949721222[–21]

21 8 3 0.001 0.0007 0.58191730025066474307[149]

1.0 0.05 0.32701328916480000000[124]

20.0 5.5 0.52167519715284150325[–02]

3.5 17.0 0.55942949732896543776[–07]

100.0 350.0 0.28886756507090846543[–24]

21 6 10 0.001 0.0007 0.19197770405852866241[171]

1.0 0.05 0.54864986187432244132[136]

20.0 5.5 0.54776907438776790329[100]

3.5 17.0 0.36023828054357135428[–05]

100.0 350.0 0.57274425067467716692[–30]

21 7 7 0.001 0.0007 0.38172873195468099110[162]

1.0 0.05 0.57144154565308317696[131]

20.0 5.5 0.68786695213944311113[–01]

3.5 17.0 0.19282009528632468693[–06]

100.0 350.0 0.43369363418665017720[–28]

21 4 4 0.001 0.0007 0.20696368991201417656[137]

1.0 0.05 0.41295053537279907736[117]

20.0 5.5 0.88024390534495116558[–03]

3.5 17.0 0.72936362878251620218[–06]

100.0 350.0 0.22573006227254058873[–19]

The notation x½y� stands for x310y .
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TABLE 2 Energy eigenvalues (– E in a:u:) of 2pnf [n54220] 1;3Fe states of Li1 ion for different number of terms N in the basis set

Singlet Triplet
State N – E State N – E

2p4f 450 1.2525115270 2p4f 450 1.2524200395

675 1.2525115295 675 1.2524200469

900 1.2525115302 900 1.2524200510

1.252515231764a 1.252450638234a

2p5f 450 1.2062924486 2p5f 450 1.2062275184

675 1.2062924503 675 1.2062275237

900 1.2062924507 900 1.2062275269

1.20629449566a 1.206251595683a

2p6f 450 1.1813051756 2p6f 450 1.1812625589

675 1.1813051766 675 1.1812625626

900 1.1813051769 900 1.1812625648

1.181306379a 1.1812794195a

2p7f 450 1.1662888800 2p7f 450 1.1662602853

675 1.1662888817 675 1.1662602879

900 1.1662888819 900 1.1662602894

1.1662896a 1.1662720a

2p8f 450 1.1565611795 2p8f 450 1.1565468468

675 1.1565665106 675 1.1565468549

900 1.1565666592 900 1.1565468560

2p9f 450 1.1499036594 2p9f 450 1.1498995194

675 1.1499040107 675 1.1498995341

900 1.1499041490 900 1.1498995413

2p10f 450 1.1451513000 2p10f 450 1.1451515933

675 1.1451516717 675 1.1451516053

900 1.1451517819 900 1.1451516107

2p11f 450 1.1416507793 2p11f 450 1.1416427056

675 1.1416508072 675 1.1416427383

900 1.1416508095 900 1.1416427425

2p12f 450 1.1389823573 2p12f 450 1.1389760839

675 1.1389827634 675 1.1389764955

900 1.1389827676 900 1.1389765008

2p13f 450 1.1369050101 2p13f 450 1.1369000251

675 1.1369081272 675 1.1369031663

900 1.1369081476 900 1.1369031921

2p14f 450 1.1352498253 2p14f 450 1.1352456879

675 1.1352631325 675 1.1352591226

900 1.1352631857 900 1.1352591778

2p15f 450 1.1339035029 2p15f 450 1.1339000066

(Continues)
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TABLE 2 (Continued)

Singlet Triplet
State N – E State N – E

675 1.1339367518 675 1.1339334791

900 1.1339369311 900 1.1339336684

2p16f 450 1.1327738003 2p16f 450 1.1327707800

675 1.1328515228 675 1.1328488095

900 1.1328520996 900 1.1328493770

2p17f 450 1.1318011954 2p17f 450 1.1317984937

675 1.1319520646 675 1.1319498125

900 1.1319533127 900 1.1319511390

2p18f 450 1.1309511106 2p18f 450 1.1309484992

675 1.1311979116 675 1.1311959750

900 1.1312008804 900 1.1311990709

2p19f 450 1.1302005884 2p19f 450 1.1301974746

675 1.1305543930 675 1.1305527634

900 1.1305634926 900 1.1305584725

2p20f 450 1.1284727319 2p20f 450 1.1284716986

675 1.1299948987 675 1.1299933567

900 1.1305628999 900 1.1300384361

aReference [29]

TABLE 3 Nonrelativistic energy eigenvalues – E (a.u.) and effective quantum numbers (n�) for the 2pnf [n54220] 1;3Fe states of helium-like
(Z54218) ions

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

Be21 2p4f 2.285835 3.967789 2.285581 3.969553

2.285840435960a 3.967751130897a 2.285639440599a 3.969146875345a

2p5f 2.182357 4.967582 2.182182 4.969967

2.182359664331a 4.967545627247a 2.182228822190a 4.969328681292a

2p6f 2.126366 5.967482 2.126253 5.970152

2.1263673969a 5.96744929071a 2.126285925a 5.9693738957a

2p7f 2.092697 6.967443 2.092622 6.970263

2.0926982a 6.96739779a 2.0926454a 6.9693829a

2p8f 2.070889 7.967404 2.070837 7.970328

2p9f 2.055960 8.967418 2.055923 8.970384

2p10f 2.045295 9.967383 2.045268 9.970355

2p11f 2.037412 10.967327 2.037390 10.970553

2p12f 2.031421 11.967302 2.031404 11.970541

2p13f 2.026761 12.967465 2.026748 12.970616

2p14f 2.023067 13.967243 2.023056 13.970575

2p15f 2.020087 14.967481 2.020078 14.970835

2p16f 2.017650 15.967389 2.017643 15.970556

(Continues)
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TABLE 3 (Continued)

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

2p17f 2.015631 16.967305 2.015625 16.970563

2p18f 2.013939 17.967616 2.013934 17.970839

2p19f 2.012508 18.967597 2.012503 18.971390

2p20f 2.011286 19.968077 2.011282 19.971616

B31 2p4f 3.631775 3.973172 3.631307 3.975008

3.63178147087a 3.97314696448a 3.631390336345a 3.974681092280a

2p5f 3.448482 4.973017 3.448167 4.975440

3.44848492847a 4.97299437381a 3.44823320775a 4.97493037865a

2p6f 3.349239 5.972957 3.349037 5.975650

3.349240870a 5.972932525a 3.349084879a 5.975011116a

2p7f 3.289536 6.972917 3.289402 6.975759

3.2895368a 6.9729005a 3.2894359a 6.9750395a

2p8f 3.250851 7.972906 3.250759 7.975822

2p9f 3.224363 8.972896 3.224297 8.975878

2p10f 3.205425 9.973543 3.205376 9.976583

2p11f 3.189685 11.120984 3.189641 11.124768

2p12f 3.178997 12.171951 3.178965 12.175559

2p13f 3.170688 13.232561 3.170662 13.236328

2p14f 3.164094 14.305068 3.164070 14.309461

2p15f 3.158758 15.394183 3.158735 15.399430

2p16f 3.154394 16.497405 3.154373 16.503302

2p17f 3.150779 17.616189 3.150760 17.622684

2p18f 3.147739 18.756824 3.147734 18.758887

2p19f 3.145161 19.919983 3.145124 19.938287

2p20f 3.142965 21.102377 3.142716 21.250158

C41 2p4f 5.290270 3.977107 5.289558 3.978900

5.29027795753a 3.97708682340a 5.289661360120a 3.978639250204a

2p5f 5.004636 4.976980 5.004162 4.979319

5.00463919882a 4.97696418412a 5.00424519430a 4.97890824179a

2p6f 4.849907 5.976937 4.849606 5.979510

4.849908858a 5.976921310a 4.849665342a 5.979002189a

2p7f 4.756793 6.976915 4.756594 6.979620

4.75679392a 6.9769022a 4.75663661a 6.979040226a

2p8f 4.696445 7.976907 4.696308 7.979690

2p9f 4.655116 8.976907 4.655019 8.979715

2p10f 4.625579 9.976920 4.625508 9.979742

2p11f 4.603741 10.976902 4.603687 10.979760

2p12f 4.587141 11.976881 4.587099 11.979768

2p13f 4.574225 12.977167 4.574192 12.980053

(Continues)
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TABLE 3 (Continued)

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

2p14f 4.563980 13.977609 4.563954 13.980450

2p15f 4.555713 14.978790 4.555691 14.981748

2p16f 4.548938 15.982028 4.548919 15.985132

2p17f 4.543310 16.988730 4.543294 16.991869

2p18f 4.538579 18.000291 4.538565 18.003558

2p19f 4.534542 19.023099 4.534529 19.026680

2p20f 4.531002 20.079835 4.530991 20.083399

N51 2p4f 7.261297 3.980066 7.260319 3.981780

7.26130514460a 3.98005218186a 7.26043935330a 3.981569320540a

2p5f 6.850806 4.979961 6.850162 4.982172

6.85080960411a 4.97994902415a 6.85025899833a 4.981839016900a

2p6f 6.628362 5.979929 6.627954 5.982354

6.628363930a 5.979917697a 6.628024153a 5.9819369788a

2p7f 6.494464 6.979916 6.494196 6.982449

6.4944651a 6.9799055a 6.4942457a 6.98197886a

2p8f 6.407668 7.979909 6.407483 7.982521

2p9f 6.348211 8.980044 6.348079 8.982700

2p10f 6.305718 9.980115 6.305621 9.982795

2p11f 6.274294 10.980322 6.274221 10.983007

2p12f 6.250405 11.980607 6.250348 11.983331

2p13f 6.230878 13.038673 6.230827 13.041814

2p14f 6.216116 14.055261 6.216075 14.058425

2p15f 6.204192 15.076329 6.204159 15.079471

2p16f 6.194429 16.101480 6.194401 16.104728

2p17f 6.186279 17.138800 6.186257 17.141878

2p18f 6.179393 18.191342 6.179374 18.194520

2p19f 6.173492 19.266428 6.173476 19.269607

2p20f 6.168348 20.377538 6.168335 20.380595

O61 2p4f 9.544842 3.982365 9.543587 3.983983

9.54485107280a 3.98235280803a 9.54371957137a 3.983812014932a

2p5f 8.986986 4.982273 8.986164 4.984349

8.98698988676a 4.98226347983a 8.98627272866a 4.984074551558a

2p6f 8.684600 5.982251 8.684082 5.984515

8.684602473a 5.982239697a 8.684160333a 5.9841724017a

2p7f 8.502546 6.982246 8.502206 6.984609

8.50254794a 6.98223230a 8.5022626a 6.98421535a

2p8f 8.384518 7.982239 8.384284 7.984669

2p9f 8.303666 8.982246 8.303499 8.984717

2p10f 8.245861 9.982475 8.245738 9.984973

(Continues)
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TABLE 3 (Continued)

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

2p11f 8.203121 10.982612 8.203028 10.985127

2p12f 8.170624 11.982929 8.170552 11.985458

2p13f 8.145344 12.983282 8.145287 12.985829

2p14f 8.125210 13.988255 8.125164 13.990825

2p15f 8.107893 15.069069 8.107851 15.072002

2p16f 8.094587 16.094123 8.094553 16.097016

2p17f 8.083519 17.127359 8.083490 17.130333

2p18f 8.074224 18.168157 8.074199 18.171217

2p19f 8.066230 19.233382 8.066213 19.235851

2p20f 8.059229 20.338356 8.059188 20.345399

F71 2p4f 12.140900 3.984194 12.139356 3.985721

12.14090927076a 3.98418501875a 12.13950016801a 3.985578204205a

2p5f 11.413173 4.984113 11.412168 4.986059

11.41317664739a 4.98410609294a 11.41228577247a 4.985830437001a

2p6f 11.018620 5.984096 11.017988 5.986213

11.018622523a 5.984087511a 11.018073607a 5.9859262493a

2p7f 10.781034 6.984122 10.780619 6.986332

10.7810413a 6.9840831a 10.7806871a 6.985969246a

2p8f 10.626979 7.984215 10.626684 7.986562

2p9f 10.521423 8.984534 10.521219 8.986847

2p10f 10.445916 9.985718 10.445777 9.987881

2p11f 10.389938 10.990131 10.389834 10.992289

2p12f 10.347096 12.003409 10.347009 12.005761

2p13f 10.313940 13.014067 10.313879 13.016168

2p14f 10.287695 14.024516 10.287646 14.026629

2p15f 10.266389 15.044133 10.266342 15.046635

2p16f 10.248509 16.096286 10.248468 16.098959

2p17f 10.233047 17.209515 10.232999 17.213339

2p18f 10.211977 19.181068 10.211908 19.188680

2p19f 10.186256 22.856023 10.186170 22.872085

2p20f 10.177034 24.798841 10.176961 24.816255

Ne81 2p4f 15.049466 3.985684 15.047626 3.987123

15.04947593532a 3.98567656525a 15.04778041165a 3.987002559633a

2p5f 14.129364 4.985612 14.128172 4.987436

14.12936788309a 4.98560578775a 14.12829797405a 4.987243469809a

2p6f 13.630421 5.985596 13.629671 5.987583

13.630422927a 5.985590933a 13.629763942a 5.9873363597a

2p7f 13.329943 6.985595 13.329452 6.987662

13.32994444a 6.98558854a 13.3295192a 6.98737884a

(Continues)
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TABLE 3 (Continued)

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

2p8f 13.135092 7.985630 13.134756 7.987743

2p9f 13.001597 8.985661 13.001357 8.987812

2p10f 12.906154 9.985783 12.905978 9.987948

2p11f 12.835548 10.986268 12.835416 10.988429

2p12f 12.781773 11.988858 12.781669 11.991071

2p13f 12.739992 12.990598 12.739911 12.992790

2p14f 12.706857 13.992406 12.706793 13.994571

2p15f 12.680121 14.994961 12.680068 14.997167

2p16f 12.658004 16.010079 12.657957 16.012461

2p17f 12.639445 17.042215 12.639406 17.044599

2p18f 12.622479 18.184305 12.622428 18.188092

2p19f 12.604086 19.725651 12.604043 19.729727

2p20f 12.592190 20.959726 12.592141 20.965299

Na91 2p4f 18.270539 3.986919 18.268398 3.988277

18.27054868630a 3.98691334478a 18.26856003131a 3.988174230763a

2p5f 17.135558 4.986855 17.134175 4.988571

17.13556233814a 4.98684914338a 17.13430934555a 4.988403784836a

2p6f 16.520001 5.986841 16.519134 5.988703

16.520002960a 5.986837049a 16.519231389a 5.9884933851a

2p7f 16.149256 6.986839 16.148688 6.988777

16.14925691a 6.98683603a 16.14875893a 6.98853510a

2p8f 15.908826 7.986843 15.908437 7.988826

2p9f 15.744092 8.986848 15.743816 8.988852

2p10f 15.626317 9.986856 15.626114 9.988879

2p11f 15.539211 10.986875 15.539057 10.988918

2p12f 15.472528 11.994720 15.472856 11.989063

2p13f 15.420942 12.998155 15.421353 12.989138

2p14f 15.379978 14.003405 15.380494 13.989257

2p15f 15.346841 15.012883 15.347535 14.989455

2p16f 15.319621 16.028399 15.320534 15.990935

2p17f 15.296921 17.053775 15.297692 17.015664

2p18f 15.277685 18.096176 15.278779 18.031692

2p19f 15.261007 19.173631 15.260964 19.176663

2p20f 15.246294 20.303240 15.246355 20.298136

Mg101 2p4f 21.804116 3.987960 21.801669 3.989243

21.80412595849a 3.98795494500a 21.80183895368a 3.989154246319a

2p5f 20.431755 4.987900 20.430180 4.989517

20.43175918580a 4.98789617386a 20.43031995723a 4.989372864234a

2p6f 19.687360 5.987890 19.686374 5.989640

(Continues)
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TABLE 3 (Continued)

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

19.687362146a 5.987886177a 19.686476020a 5.9894590800a

2p7f 19.238977 6.987890 19.238332 6.989710

19.23897839a 6.98788616a 19.23840642a 6.989499690a

2p8f 18.948178 7.987902 18.947737 7.989761

2p9f 18.748924 8.987912 18.748610 8.989797

2p10f 18.606463 9.987931 18.606232 9.989834

2p11f 18.501095 10.987975 18.500921 10.989883

2p12f 18.420940 11.988576 18.420806 11.990484

2p13f 18.358596 12.988978 18.358489 12.990916

2p14f 18.308896 13.994956 18.308811 13.996882

2p15f 18.267538 15.037822 18.267466 15.039846

2p16f 18.232922 16.116563 18.232876 16.118155

2p17f 18.204634 17.194470 18.204563 17.197454

2p18f 18.181584 18.253195 18.181526 18.256111

2p19f 18.161895 19.331296 18.161838 19.334700

2p20f 18.144794 20.441013 18.144739 20.444896

Al111 2p4f 25.650197 3.988848 25.647442 3.990063

2p5f 24.017954 4.988793 24.016185 4.990319

2p6f 23.132498 5.988785 23.131391 5.990436

2p7f 22.599107 6.988786 22.598384 6.990501

2p8f 22.253153 7.988813 22.252658 7.990566

2p9f 22.016098 8.988837 22.015745 8.990618

2p10f 21.846601 9.988900 21.846342 9.990694

2p11f 21.721220 10.989122 21.721025 10.990919

2p12f 21.625579 11.993058 21.625427 11.994879

2p13f 21.551393 12.994549 21.551273 12.996378

2p14f 21.492519 13.996722 21.492424 13.998532

2p15f 21.445031 14.999273 21.444953 15.001102

2p16f 21.406172 16.002219 21.406106 16.004098

2p17f 21.373949 17.006348 21.373892 17.008295

2p18f 21.346587 18.025782 21.346539 18.027734

2p19f 21.323359 19.051988 21.323317 19.054005

2p20f 21.302666 20.130941 21.302629 20.133038

Si121 2p4f 29.808779 3.989615 29.805714 3.990768

2p5f 27.894154 4.989564 27.892189 4.991009

2p6f 26.855415 5.989556 26.854187 5.991118

2p7f 26.229645 6.989560 26.228843 6.991181

2p8f 25.823763 7.989567 25.823215 7.991221

2p9f 25.545631 8.989574 25.545241 8.991251

(Continues)
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TABLE 3 (Continued)

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

2p10f 25.346763 9.989584 25.346476 9.991278

2p11f 25.199667 10.989620 25.199451 10.991316

2p12f 25.087774 11.990110 25.087606 11.991824

2p13f 25.000743 12.990352 25.000611 12.992064

2p14f 24.931698 13.990664 24.931592 13.992382

2p15f 24.876004 14.991052 24.875918 14.992767

2p16f 24.830405 15.992084 24.830333 15.993826

2p17f 24.792037 17.010200 24.791975 17.012006

2p18f 24.759949 18.029525 24.759899 18.031259

2p19f 24.730700 19.138353 24.730647 19.140552

2p20f 24.706440 20.231656 24.706399 20.233665

P131 2p4f 34.279865 3.990284 34.276486 3.991379

2p5f 32.060355 4.990236 32.058194 4.991607

2p6f 30.856109 5.990230 30.854760 5.991710

2p7f 30.130594 6.990231 30.129713 6.991767

2p8f 29.659995 7.990235 29.659393 7.991802

2p9f 29.337504 8.990243 29.337076 8.991831

2p10f 29.106914 9.990249 29.106599 9.991852

2p11f 28.936353 10.990264 28.936115 10.991876

2p12f 28.806642 11.990433 28.806457 11.992060

2p13f 28.705727 12.990535 28.705581 12.992168

2p14f 28.625668 13.990657 28.625552 13.992278

2p15f 28.561089 14.990823 28.560995 14.992439

2p16f 28.508229 15.991303 28.508151 15.992931

2p17f 28.464302 16.994948 28.464236 16.996601

2p18f 28.426749 18.021466 28.426693 18.023139

2p19f 28.395128 19.047073 28.395079 19.048800

2p20f 28.366136 20.159605 28.366097 20.161235

S141 2p4f 39.063452 3.990872 39.059758 3.991916

2p5f 36.516557 4.990827 36.514199 4.992130

2p6f 35.134583 5.990821 35.133111 5.992229

2p7f 34.301950 6.990823 34.300989 6.992283

2p8f 33.761851 7.990826 33.761195 7.992314

2p9f 33.391724 8.990828 33.391257 8.992337

2p10f 33.127066 9.990830 33.126723 9.992351

2p11f 32.931304 10.990831 32.931044 10.992365

2p12f 32.782444 11.990841 32.782244 11.992373

2p13f 32.666619 12.990845 32.666462 12.992376

2p14f 32.574731 13.990845 32.574604 13.992391

(Continues)
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TABLE 3 (Continued)

Ion State –Esinglet (a.u.) n� –Etriplet (a.u.) n�

2p15f 32.500609 14.990873 32.500506 14.992416

2p16f 32.439946 15.991035 32.439860 15.992598

2p17f 32.389652 16.991738 32.389581 16.993286

2p18f 32.346881 18.008851 32.346819 18.010461

2p19f 32.310679 19.029190 32.310626 19.030814

2p20f 32.278212 20.108901 32.278167 20.110527

Cl151 2p4f 44.159541 3.991393 44.155530 3.992389

2p5f 41.262760 4.991351 41.260203 4.992593

2p6f 39.690835 5.991345 39.689240 5.992686

2p7f 38.743714 6.991348 38.742674 6.992737

2p8f 38.129331 7.991352 38.128620 7.992770

2p9f 37.708279 8.991378 37.707774 8.992812

2p10f 37.407184 9.991480 37.406812 9.992929

2p11f 37.184473 10.991578 37.184192 10.993036

2p12f 37.015107 11.991786 37.014891 11.993241

2p13f 36.883273 12.992484 36.883102 12.993949

2p14f 36.778449 13.995845 36.778312 13.997313

2p15f 36.694092 14.997323 36.693981 14.998786

2p16f 36.625059 15.999056 36.624966 16.000544

2p17f 36.567812 17.001815 36.567733 17.003332

2p18f 36.519640 18.009615 36.519572 18.011167

2p19f 36.478161 19.037881 36.478103 19.039445

2p20f 36.442081 20.091848 36.442022 20.093717

Ar161 2p4f 49.568131 3.991858 49.563803 3.992810

2p5f 46.298963 4.991818 46.296208 4.993004

2p6f 44.524864 5.991814 44.523147 5.993092

2p7f 43.455887 6.991816 43.454767 6.993141

2p8f 42.762436 7.991821 42.761671 7.993173

2p9f 42.287194 8.991830 42.286649 8.993201

2p10f 41.947327 9.991958 41.946927 9.993339

2p11f 41.695944 10.992045 41.695642 10.993433

2p12f 41.504770 11.992248 41.504538 11.993633

2p13f 41.356011 12.992546 41.355828 12.993935

2p14f 41.237637 13.996279 41.237489 13.997683

2p15f 41.142415 14.997749 41.142295 14.999150

2p16f 41.064482 15.999591 41.064383 16.000994

2p17f 40.999872 17.002176 40.999787 17.003622

2p18f 40.945690 18.006010 40.945617 18.007484

2p19f 40.898984 19.030762 40.898919 19.032313

2p20f 40.858603 20.073679 40.858545 20.075302

aReference 29
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4 | CONCLUSIONS

Explicitly correlated multiexponent Hylleraas type basis in the framework of Ritz variational principle can yield reasonably accurate energy eigenval-

ues for 1;3Fe metastable bound states due to (pf) configuration of two-electron atoms (Z53218). The form of the wavefunction written as a linear

combination of the product of correlated radial part and spherical top functions as an angular part is employed in the present work for the first time.

The variational equation and related basis integrals are thus relatively different than the previous works. Multiexponent nature of the radial wave-

function is also an important aspect of the present method which has the potential to apply for the resonant states of the same symmetry in the

purview of modified stabilization method.[32,33] The estimated data are in good agreement with the few available theoretical data. Although, the

accuracy of the present data is less than Kar and Wang,[29] but it can be increased by incorporating dd configurations explicitly as well as by increas-

ing the number of terms in the expansion of the radial wavefunction. We hope that the present treatment may be considered as an alternative

method for structural computations of such high-lying DES for the future researchers in the related disciplines. A meaningful comparison between

the theoretical and experimental energy values are not possible at present due to the unavailability of the experimental data. This situation thus war-

rants high resolution experimental measurement for 1;3Fe states of two electron atoms.
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Abstract

Evaluation of energy eigenvalues of first 19 metastable bound doubly excited states

(DESs) arising from even parity F states of He atom are done within the framework

of the Ritz variational principle. The wavefunction of the given state is constructed

from different combinations of pf and dd configurations. The radial parts of the

wavefunctions for both the configurations are expanded in Hylleraas type basis set.

The nonlinear parameters of the Slater-type orbitals representing both the electrons

are taken in geometrical sequence that span the radial space properly. The present

calculated energies for the metastable bound states are lowest yet obtained. The res-

onance parameters that is, energy position and width of a large number of resonance

states lying above He+(2p) threshold are evaluated by using stabilization method. The

resonance parameters calculated in this work are in good agreement with the avail-

able theoretical results for the resonance states lying below He+(3p) threshold. The

parameters for a large number of resonance states lying between He+(3p) and

He+(7p) thresholds are being reported for the first time. The effective quantum num-

bers of all the states considered in the present work are estimated by using quantum

defect theory. Different structural properties for example, the one- and two-particle

moments, virial factors, expectation values of interelectronic angles, two-particle

radial probability densities, and so forth are estimated for both metastable-bound as

well as resonance states. The present results can be used as a benchmark for future

references.

PACS: 31.15.ac, 31.15.V-, 31.15.xt, 32.80.Zb, 32.80.Ee

K E YWORD S

autoionization, doubly excited states, electron correlation, He atom, Hylleraas coordinate,

variational method

1 | INTRODUCTION

Structural properties of two-electron atoms have drawn attention to many theoreticians as well as experimentalists. In the beginning of this cen-

tury, Tanner et al[1] published a review article on the studies of two-electron atoms. Investigations on two-electron atoms are of immense interest

in recent years due to the nonseparability of the dynamical equation of motion.[2–26] It provides a fundamental testing ground for various quan-

tum chemical approximation methods for example, Feshbach projection operator formalism,[27–29] close-coupling approximation method,[30,31]

multiconfigurational Hatree-Fock method,[32,33] hyperspherical close-coupling method based on numerical basis set,[34,35] complex-coordinate-

rotation (CCR) method with a finite numerical basis set built on the solutions of discretized one particle Hamiltonian,[36] CCR method with minor
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operational modifications,[26,37] stabilization method,[6,10,38–40] and so forth. According to the conventional classification scheme,[41] DESs may be

classified on the basis of stability into two general groups as metastable bound states (nonautoionizing) and resonance states (autoionizing)

depending on the angular momentum coupling scheme and parity conservation rule. With spin-orbit induced LS-mixing the metastable bound

states will have opportunity to auto-ionize, although radiative decay will be much more probable.[41,42] Feldman and Novick[43] have provided the

selection rule for autoionization where the nonradiative transition of doubly excited state (DES) to a state of ionized configuration of He takes

place. The metastable bound states exhibit fluorescence decay where one electron of DES jumps to an energetically lower state giving rise to

emission of a photon. On the basis of the criteria as provided by Saha et al.[14] the DESs are now classified into three groups, namely metastable-

bound, pure resonance, and fluorescence-active resonance states.[14,44–47] The autoionization decay rate for the fluorescence active resonance

states are very small compared to that of pure resonance states of a particular symmetry.[4] Dominance of fluorescence decay over autoinization

for such states was established by previous studies.[14,44–47]

There exists numerous investigations in the literature related to structural and spectral features of DESs of two-electron atoms up to D state,

among which few references are given.[4,5,7,12,15,48–56] In contrast, the same studies for Fe states are rather scanty.[8,9,11,16,24,57–61] The estima-

tions of the energy eigenvalues of metastable bound 1, 3Fe states of the He atom were done by a group of theoreticians[8,9,11,58,59] by using differ-

ent quantum chemical approximation methods. Among these calculations, Kar and Ho[9] obtained the lowest energies values for first six

metastable bound states using purely exponentially correlated CI-type wavefunction with 2200 terms in their basis set. Eiglsperger et al[11]

reported energy eigenvalues of more number of metastable bound states of He by using almost 16 000 terms in their wavefunction expanded in

Coulomb-Strumenium basis. It is to be noted that energy values of first five metastable bound states are less accurate than those obtained by Kar

and Ho.[9] Eiglsperger et al[11] opined that their methodology leads to the increase of precision of the energy eigenvalues for the states

approaching toward the He+(2p) threshold. By analyzing the results of the above works, it appears that it is difficult to obtain precise energies for

both lower and higher lying metastable bound 1, 3Fe states by using one particular method, although several efforts were made in this direction

since the pioneering work of Lipsky et al.[58]

A group of authors[8,57–61] studied the properties of resonance 1, 3Fe states of the He atom. Lipsky et al[58] and Callaway[59] reported only res-

onance energy values, whereas Herrick and Sinanoglu,[57] Ho and Callaway[60] and Bachau et al[61] reported both resonance energies and width.

Maximum number of resonance states were reported by Kar and Ho[8] using correlated CI type basis set in the framework of stabilization method,

though widths of few states were not reported. The width of only one such state is available in the literature, due to the calculation of Bachau

et al.[61] All such studies are limited to the resonance 1, 3Fe states below He+(3p) threshold.

We have therefore, made an extensive study on the structural properties of 3Fe state of He atom where the Ritz variational principle is being

used for metastable bound states below He+(2p) threshold. We have adopted stabilization method with “soft wall” strategy[39,40] for the calcula-

tion of resonance parameters of resonance 3Fe states above He+(2p) threshold. The wavefunction used by Dutta et al[24] is being modified in the

present work by introducing dd configuration. Explicitly correlated multiexponent Hylleraas type basis set is being used in the present communica-

tion. We have obtained better energy values than that of the previous studies[8,9,11,58,59] for both lower and higher lying metastable bound 3Fe

states of He. Moreover, the parameters of a large number of resonance states up to He+(7p) threshold have also been estimated. In the present

work, the resonance parameters for the states with extremely narrow widths below He+(3p) threshold along with the states lying between He+(3p)

and He+(7p) thresholds, are being reported for the first time. The one- and two-particle moments, virial factors, expectation values of inter-

electronic angles, two-particle radial probability densities, and so forth are estimated to justify the classification scheme as given by previous stud-

ies.[8,61] The details of the methodology is given in Section 2 followed by the discussion on the results in Section 3 and finally concluded in

Section 4.

2 | METHOD

The variational equation for the even parity F state is obtained from the general variational equation of arbitrary angular momentum of a two-

electron system[62,63] where the translational and rotational symmetry of the Hamiltonian are being exploited to reduce the nine-dimensional vari-

ational equation to a three-dimensional one. The three coordinates of two-electron atom are the sides of the triangle (r1, r2, r12) formed by the

two electrons and the nucleus of two-electron atom where the rotation of the triangle in space can be defined by three Eulerian angles (θ, ϕ, ψ ).

Following the work of Bhatia and Temkin,[62] we can write the wave function of 1, 3Fe state of a two-electron atom as,

Ψ= f03D
0
3 + f

2+
3 D2+

3 + f2−3 D2−
3 ð1Þ

where Dk�
l θ,ϕ,ψð Þ are the real angular momentum Wigner functions.[24,62] Dk�

l are the eigenfunctions of the two-electronic angular momentum

operator L̂
2
, that is, L̂

2
Dk�
l = l l+1ð ÞDk�

l (in a.u.), l being the angular momentum quantum number. The symbols are same as used by Bhatia and

Temkin.[62] The radial parts of the wavefunction are given by
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f03 = −F1 sinθ12−

ffiffiffiffiffiffi
10
7

r
G1 sinθ12 cosθ12

f2+3 =

ffiffiffiffiffiffi
15

p

6
F1 sin2θ12 +

ffiffiffiffiffiffi
50
21

r
G1 sinθ12

f2−3 =

ffiffiffiffiffiffi
15

p

6
F2 1− cos2θ12ð Þ

ð2Þ

Here θ12 is the angle between r1
!

and r2
!
. Each of the terms in the wavefunction Ψ has its own physical significance. By transforming the real

angular momentum functions (D) in the individual polar coordinates of the two electrons, it can be shown that the terms associated with F1 and

F2 represent pf configuration. The radial parts for pf configuration are F1 = (f �~f) and F2 = (f ± ~f), with the condition ~f = f(r2, r1). The upper sign cor-

responds to the singlet state and the lower sign to the triplet state.

The trial radial wave function corresponding to pf configuration is expanded in Hylleraas basis set as

f =
XA1

i=1

rli +31 rmi +1
2 rni12

Xp
k1 = 1

Cik1k1ηk1 1ð Þηk1 2ð Þ+
Xp
k1 =1

Xp
k2 = 1

Cik1k2ηk1 1ð Þηk2 2ð Þ
" #

ð3Þ

with the following conditions:

1. The powers of r1, r2, and r12 satisfy (li, mi, ni) ≥ (0, 0, 0).

2. A1 is the number of elements in the set of the powers of r1, r2, and r12.

3. ηi jð Þ= e−ρi rj is the Slater-type orbital. ρ is the nonlinear parameter.

4. p denotes the number of nonlinear parameters.

5. In the double sum of Equation (3) k1 < k2.

6. Cik1k2 ’s are the linear variational parameter.

Similarly, it can be shown that the terms associated with G1 in Equation (2) represent dd configuration where G1 = (g � eg) and eg g(r2, r1). The

trial radial wave function corresponding to dd configuration is expanded in Hylleraas basis set as

g =
XA2

i=1

rli +21 rmi +2
2 rni12

Xp
k1 = 1

Dik1k1ζk1 1ð Þζk1 2ð Þ+
Xp
k1 = 1

Xp
k2 = 1

Dik1k2ζk1 1ð Þζk2 2ð Þ
" #

ð4Þ

The parameters A2 and Dik1k2 have the same meaning as of A1 and Cik1k2 of Equation (3). The Slater-type orbital ζi( j) is given by, ζi jð Þ= e−σi rj ,
where σ is the nonlinear parameter for the dd configuration.

In the present calculation both A1 = A2 (symmetric basis set) and A1 6¼ A2 (asymmetric basis set) are considered. The effect of the radial corre-

lation is incorporated through different ρ's and σ's in the wave function whereas, the angular correlation effect is taken care of through different

powers of r12. The number of terms in the basis set expansions for the trial radial wave functions f and g are N1 =
p p+1ð Þ

2 ×A1 and N2 =
p p+1ð Þ

2 ×A2,

respectively. The total dimension of the multiexponent basis is N = N1 +N2. Three different types of basis sets as considered in the present work

are given below:

1. Symmetric double-exponent basis: The expansion length of the wavefunction are taken as N = 750 and 900 with p = 2. In the first case

A1 = A2 = 125 while A1 = A2 = 150 is considered for the latter.

2. Symmetric nine-exponent basis: The expansion length of the wavefunction are taken as N = 900 and 1530 with p = 9. In the first case

A1 = A2 = 10 while A1 = A2 = 17 is considered for the latter.

3. Asymmetric nine-exponent basis: The expansion length of the wavefunction are taken as N = 1350 and 1530 with p = 9. In the first case

A1 = 28 and A2 = 2, while A1 = 32 and A2 = 2 is considered for the latter.

For the calculation of metastable bound state energies all the combinations of basis set (a, b, c) are used while for the resonance states, only

the choice (b) is considered. The reason behind such choice of the basis sets is to span the entire radial space in a flexible manner so that the

desirable accuracy of the energy levels can be achieved for bound as well as resonance states. The efficacy of each of the three basis sets are dis-

cussed in details in Section 3.

In case of nine-exponent basis sets the nonlinear parameters for pf and dd configurations are taken in a geometrical sequence following ρi =

ρi − 1γ1 and σi = σi − 1γ2, respectively. γ1 and γ2 are the geometrical ratio of the sequences. The higher ρ values are responsible for spanning the
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space near the nucleus whereas the lower one spans the space far away from the nucleus. Thus, wavefunction can be squeezed or diffused by

changing the geometrical ratios γ1 or γ2 by keeping ρ1 or σ1 constant throughout.
[10]

The energy eigenvalues are obtained by solving the generalized eigenvalue equation involving the Hamiltonian (H) and overlap (S) matrices

given by

HC = ESC ð5Þ

where C is the column vector consisting of the linear variational parameters. Atomic units are used throughout.

The linear variational parameters Cik1k2 and Dik1k2 , as obtained from Equation (5) are used to determine a number of expectation values for

example, repulsive potential hVri, attractive potential h−Vai, interelectronic angles hθ12i, and different one and two-particle moments such as

r1h i, r21
� �

, r12h i, r212
� �

of metastable bound as well as resonance 3Fe states of He atom.

3 | RESULTS AND DISCUSSIONS

Repeated diagonalization of the Hamiltonian matrix in the symmetric nine exponent Hylleraas basis set with N = 1530 is done in the present work

for different values of γ1 keeping γ2 constant. We have computed first 250 energy eigenroots for 1840 different values of γ1 ranging from 0.456

to 0.732. The highest value of the ρ sequence that is, ρ9 is fixed at 8.0 while ρ1 of any set differs from that of the previous one by 0.001. All calcu-

lations are carried out in quadruple precision. The plot of each energy eigenroot vs γ1 produces the stabilization diagram in Figure 1. The closer

look at Figure 1 reveals the fact that there exists two classes of states:

1. Roots which are lying below He+(2p) threshold, are insensitive to the variation in γ1. These
3Fe states are metastable bound that is, stable

against autoionization.

2. Roots lying above He + (2p) threshold are sensitive to the variation in γ1 and gives rise to flat plateaus in the vicinity of avoided crossings. It

therefore confirms the presence of 3Fe resonance states above He + (2p) threshold.

Detailed structural features of both metastable bound and resonance states are discussed in the following subsections.

F IGURE 1 Stabilization plot of first
100 diagonalized energy eigenroots using
N = 1530 terms in the symmetric nine
exponent basis set for 3Fe states of neutral
He atom in the energy range −0.54 a.u. to
−0.12 a.u. showing existence of both
metastable bound and resonance states
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3.1 | Metastable bound states

To estimate the upper-bound energies for metastable bound 3Fe states below He + (2p) threshold we have adopted three different types of basis

sets as discussed in Section 2. The energy eigenvalues using such basis sets along with their convergence behavior are given in Table 1. The

energy eigenvalues of 2pnf[n = 4−9] 3Fe states are obtained under the framework of the Ritz variational principle employing symmetric double

exponent basis. For each n, the nonlinear parameters (ρ1, ρ2) and (σ1, σ2) of pf and dd configurations respectively, are optimized using Nelder-Mead

algorithm.[64] A close look at the Table 1 shows that the energy values converge to 11th place after the decimal for the first three states (2pnf;

n = 4−6) and eighth decimal place for the later three metastable bound states (2pnf; n = 7−9).

As a second choice we have opted for one-shot diagonalization using symmetric and asymmetric nine-exponent basis set. In Table 1 the

fourth and fifth columns show the convergence behavior of the energy eigenvalues of 3Fe(2pnf, 4 ≤ n ≤ 18) states using symmetric nine-exponent

basis, whereas the last two columns show the same for 3Fe(2pnf, 4 ≤ n ≤ 22) states by using asymmetric nine-exponent basis set. It is evident from

Table 1 that the choice of asymmetric nine exponent basis set with N = 1530 is better than that of symmetric basis for obtaining the lowest

energy values for all the metastable bound states except 2p4f and 2p5f. The energy eigenvalues for assymetric basis set converge up to 9 or

10 decimal places for the low-lying metastable bound states and the nature of the convergence gradually degrades for the high-lying metastable

bound states.

The previous studies[9,11] reported the energy values in the range 10 to 13 decimal places. The lowest energy values obtained in the present

work are compared with other theoretical results[9,11,58,59] in Table 2. The effective quantum numbers n* as given in Table 2 for each of the states

calculated by using the following relation

E = −
1
2

Z
Ni

� �2

+
Z−1
n*

� �2
" #

ð6Þ

where E is the energy of the state, Z is the atomic number, and Ni is the inner electron quantum number. It is evident that, the quantum defect

that is, δn = n–n* remains nearly same (δn � 0.05) for the first 15 states and then increases gradually for the next 4 excited states. Kar and Ho[9]

TABLE 1 Energy eigenvalues (−E in a.u.) of metastable bound 3Fe (2pnf, n ≥ 4) states for different choice of basis sets using different number
of terms in the basis sets

Configuration

Nine exponent

Triple exponent Symmetric basis Asymmetric basis

N = 750 N = 900 N = 900 N = 1530 N = 1350 N = 1530

2p4f 0.5319913263468 0.5319913263485 0.5319913258284 0.5319913263513 0.5319913261595 0.53199132616450

2p5f 0.5203828592813 0.5203828592853 0.5203828589216 0.5203828613614 0.5203828591643 0.52038285929302

2p6f 0.5141114291154 0.5141114291191 0.5141114286873 0.5141114291166 0.5141114290354 0.51411142927528

2p7f 0.5103445646194 0.5103445656885 0.5103445628175 0.5103445646815 0.5103445646439 0.51034456470790

2p8f 0.5079067459561 0.5079067462723 0.5079066925246 0.5079067606712 0.5079067461492 0.50790674627610

2p9f 0.5062390860001 0.5062390884513 0.5062386665548 0.5062390870716 0.5062390885034 0.50623908868559

2p10f 0.5050451459782 0.5050483116213 0.5050483206789 0.50504832666688

2p11f 0.5041441160851 0.5041683759270 0.5041685601914 0.50416856783908

2p12f 0.5034118118494 0.5034990626971 0.5035001039946 0.50350020569843

2p13f 0.5028320754932 0.5029766752202 0.5029778169414 0.50298059371759

2p14f 0.5022960514768 0.5025584256797 0.5025686165973 0.50256887024567

2p15f 0.5012313201500 0.5022112271052 0.5022365435680 0.50223659253604

2p16f 0.5007079126835 0.5018827805313 0.5019648269563 0.50196521180896

2p17f 0.5004688559343 0.5014894480147 0.5017168163780 0.50174013288428

2p18f 0.5003084861460 0.5005964256713 0.5015196531527 0.50155210736964

2p19f 0.5013095900752 0.50139603567465

2p20f 0.5012392360422 0.50126368214833

2p21f 0.5010961347848 0.50115434103934

2p22f 0.5009902068174 0.50105114035136
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used 2200 terms in their wavefunction to obtain the lowest bound energy eigenvalues for 3Fe(2pnf, n = 4−9) states. The only calculation available

for 3Fe(2pnf, n = 10-19) states is due to Eiglsperger et al[11] where 16 000 terms in the wavefunction were used. A comparison with other theoret-

ical results as shown in Table 2 reveals that the present energy eigenvalues are lowest yet obtained. It is remarkable that the energy eigenvalues

using only 900 terms in the symmetric double exponent basis set (as shown in Table 1) are better than those available in the literature. Even

750 terms in the symmetric double exponent basis set yields better energy eigenvalues than that of Kar and Ho[9] for the 2p4f state. Thus, the

substantial reduction of the number of terms in the basis set is a clear advantage of the present method. The superiority of the present

wavefunction over the other studies lies in the explicit inclusion of the dd configuration, expanded in the Hylleraas basis set. For instance, the

energy position for the 2p4f state as calculated by using 900 terms in the 9 exponent wavefunction without dd configuration is −0.53198567 a.u.

while the energy position improves to −0.53199132 a.u. for the same state upon the inclusion of dd configuration. Thus, the inclusion of the dd

configuration contributes 0.001% to the energy value of the 2p4f state. This contribution decreases as we move toward the He + (2p) threshold,

for example, it decreases to 0.0002% for the 2p9f state.

TABLE 2 Comparison of energy
eigenvalues (−E in a.u.) and effective
quantum number (n*) of metastable
bound 2pnf 3Fe [n = 4−22] states of
helium

Present work Other works

n −E n* −E n*

4 0.5319913263513 3.9534 0.5319913263465a 3.953382897a

0.531968b 3.95483b

0.531985c

0.5319913251d

5 0.5203828613614 4.9528 0.5203828592839a 4.953382897a

0.520367b 4.95477b

0.520375c

0.5203828583d

6 0.5141114292752 5.9525 0.5141114291180a 5.952501354a

0.514101b 5.95476b

0.514105c

0.5141114284d

7 0.5103445647079 6.9523 0.510344564686a 6.95230621a

0.51034456422d

8 0.5079067462761 7.9522 0.5079067461a 7.9521782a

0.50790674595d

9 0.5062390886855 8.9521 0.506239088a 8.952090a

0.50623908834a

10 0.5050483266668 9.9520 0.50504832108d

11 0.5041685678390 10.9520 0.50416854777d

12 0.5035002056984 11.9519 0.50350020079d

13 0.5029805937175 12.9519 0.50298058847d

14 0.5025688702456 13.9513 0.50256864290d

15 0.5022365925360 14.9517 0.50223655040d

16 0.5019652118089 15.9507 0.50196493112d

17 0.5017401328842 16.9509 0.50173994653d

18 0.5015521073696 17.9483 0.5015515014d

19 0.5013960356746 18.9250 0.5013921d

20 0.5012636821483 19.8914

21 0.5011543410393 20.8122

22 0.5010511403513 21.8099

aKar and Ho[9]; 2200 parameter purely exponential correlated basis set.
bLipsky et al [58]; truncated diagonalization method with CI-type basis set.
cCallaway[59]; 240 parameter uncorrelated CI-type wavefunction.
dEigelsperger et al [11]; 16000 parameter Coulomb-Sturmenium basis set.
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The wavefunction with 9 exponent basis corresponding to the best energy values have been used to calculate the expectation values of

θ12h i, r1h i, r21
� �

, r12h i and r212
� �

as given in Table 3. It can be seen from Table 3 that the one- and two-particle moments for 2pnf (n = 4−22)

increase gradually while the interelectronic angle hθ12i decreases very slowly within 1�. In order to check the accuracy of the wavefunction the

virial-factor, defined as

TABLE 3 The virial-factor ξ,
expectation values of interelectronic
angles (in degree), different one and
two-particle moments of metastable
bound 2pnf 3Fe [n = 4−22] states of He
below He + (2p) threshold

n ξ hr1i r21
� � hr12i r212

� � hθ12i
4 1.28 [−11] 9.96 [+0] 1.73 [+2] 1.77 [+1] 3.47 [+2] 90.761

5 5.45 [−11] 1.66 [+1] 5.42 [+2] 3.09 [+1] 1.08 [+3] 90.388

6 6.87 [−11] 2.48 [+1] 1.26 [+3] 4.72 [+1] 2.53 [+3] 90.223

7 4.35 [−12] 3.45 [+1] 2.50 [+3] 6.66 [+1] 5.00 [+3] 90.140

8 3.56 [−10] 4.57 [+1] 4.45 [+3] 8.89 [+1] 8.89 [+3] 90.094

9 1.62 [−10] 5.84 [+1] 7.33 [+3] 1.14 [+2] 1.47 [+4] 90.065

10 1.12 [−09] 7.25 [+1] 1.14 [+4] 1.43 [+2] 2.28 [+4] 90.048

11 2.30 [−09] 8.82 [+1] 1.69 [+4] 1.74 [+2] 3.39 [+4] 90.036

12 4.59 [−08] 1.05 [+2] 2.43 [+4] 2.08 [+2] 4.85 [+4] 90.027

13 1.03 [−07] 1.24 [+2] 3.37 [+4] 2.46 [+2] 6.74 [+4] 90.021

14 2.43 [−07] 1.44 [+2] 4.57 [+4] 2.86 [+2] 9.13 [+4] 90.017

15 2.52 [−07] 1.66 [+2] 6.05 [+4] 3.29 [+2] 1.21 [+5] 90.014

16 3.76 [−06] 1.89 [+2] 7.88 [+4] 3.76 [+2] 1.58 [+5] 90.011

17 1.88 [−05] 2.14 [+2] 1.01 [+5] 4.25 [+2] 2.02 [+5] 90.009

18 1.43 [−05] 2.41 [+2] 1.28 [+5] 4.79 [+2] 2.56 [+5] 90.008

19 2.59 [−04] 2.66 [+2] 1.59 [+5] 5.30 [+2] 3.19 [+5] 90.008

20 1.51 [−03] 3.11 [+2] 2.32 [+5] 6.19 [+2] 4.65 [+5] 90.014

21 1.13 [−04] 3.55 [+2] 2.81 [+5] 7.07 [+2] 5.61 [+5] 90.006

22 9.03 [−04] 3.90 [+2] 3.65 [+5] 7.78 [+2] 7.30 [+5] 90.009

Note: The notation P[±Q] stands for P × 10±Q. All values are given in atomic units.

F IGURE 2 Stabilization plot for 3Fe

states of He in the energy range
−0.325 a.u. to −0.225 a.u. showing series
of resonances below He + (3p) threshold
using N = 1530 number of terms in the
symmetric nine exponent Hyllerass-type
wavefunction
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ξ=1−
Vh i

2 Th i ð7Þ

has been estimated; where hVi and hTi are the expectation values of potential and kinetic energies, respectively. It is evident from the value of ξ

that the accuracy of the metastable bound state quantum properties for 2p4f configuration is at least of the order of 10−11 a.u. and gradually

decreases for the higher excited states.

3.2 | Resonance states

A portion of the stabilization diagram in the energy range −0.325 a.u. to −0.225 a.u., that is, lying between He + (2p) and He + (3p) thresholds is

given in Figure 2 where a series of resonance states can be seen. The inverse of tangent at different points near the stabilization plateau for each

energy eigenroot gives rise to the density of states (DOS) as

ρn Eð Þ= γi+11 −γi−11

En γi+11

� �
−En γi−11

� �					
					 ð8Þ

Finally, the resonance parameters (Er, Γ) are obtained by Lorentzian fitting of the DOS as

ρn Eð Þ= y0 +
A
π

Γ=2
E−Erð Þ2 + Γ=2ð Þ2

ð9Þ

where y0 is the baseline background, A is the total area under the curve from the baseline, Er gives the position of the center of the peak of the

curve, and Γ represents the full width of the peak of the curve at half height. All plots and fitting procedure are carried out in Microcal Origin soft-

ware package and least χ2 fitting is being taken. As an example, the resonance parameters Er = −0.31075 a.u. and Γ = 0.00198 a.u. are obtained

from 13th root is shown in Figure 3 where the hollow black circles and the red line represent the estimated DOS and the best fit Lorentzian,

respectively.

In Table 4, the convergence behavior of first 12 3Fe resonance states below He+(3p) threshold are shown. The sensitivity of the resonance

parameters (Er, Γ) to the parameter N is as follows. From Table 4 it can be seen that the values of resonance parameters (Er, Γ) for N = 900 and

N = 1530, remain unchanged up to at least fourth decimal place. A comparison between the present calculated resonance parameters (Er, Γ) and

those of the other works[8,58–61] for the states lying below He+(3p) threshold is given in Table 5. It is evident from the comparison that the values

of the present resonance parameters below He+(3p) threshold are in excellent agreement with those available in the literature.

F IGURE 3 Calculated DOS (hollow circles) and
the fitted Lorentzian (red line) for the first 3Fe

resonance states of He atom below He+(3p)
threshold
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The individual angular momentum does not commute with the two-electron Hamiltonian. As a result, the assignment of the individual angular

momentum to the electrons is the indicator of the dominant configuration in the wavefunction of the two-electron atom. Previous studies[8,61]

classified the 3Fe resonance states below He+(3p) threshold according to dominant configurations 3dnd [n ≥ 3], 3pnf [n ≥ 4], and 3dng [n ≥ 5] that

are denoted as classes A, B, and C, respectively as shown in Table 5. It is relevant to mention that the effective quantum numbers (n*) are less than

the outer electron quantum number (n) for classes A and B, whereas n* is greater than n for class C states. A comparison between the widths of

the resonance states of classes A and B having the same outer electron quantum number (n) shows that the width of the states in class A is

greater than that of class B states. For example, the width of 3d4d (class A) is 0.00045 a.u. while that for 3p4f (class B) is 0.00017 a.u. as given in

Table 5. The energy distance from the threshold [ϵk = Eth − Ek] and the ratios Rϵ =
ϵk−1
ϵk

and RΓ =
Γk−1
Γk

[2,3] show a certain pattern for each of the clas-

ses with a few exceptions for states near the He+(3p) threshold. The reason behind these exceptions may be due to appreciable contributions

from more than one configuration.

It is interesting to note that the present method enables to compute extremely narrow widths for a series of states (class C) as shown in

Table 5. The only available estimation for the width of 3d5g state (class C) done by Bachau et al[61] shows that the autoionization lifetime is almost

106 times greater than that of other resonance states lying below He + (3p) threshold. The present reported width of the state is in good agree-

ment with that of Bachau et al.[61] The narrow widths of the resonance states (class C) indicate that the fluorescence decay may dominate over

autoionization. Detailed investigations are needed in this direction for arriving at a definite conclusion. In this context, it is to be mentioned that

presence of such fluorescence active resonance states for 1Po symmetry arising from pd configuration was reported earlier.[14,44–47]

The expectation values of repulsive potential hVri, attractive potential h−Vai, their ratio η= Vrh i
−Vah i

h i
, interelectronic angles hθ12i (in degree) and

different one and two-particle moments for example, r1h i, r21
� �

, r12h i, r212
� �

for different 3Fe resonances states below He+ (3p) threshold are listed

in Table 6. The expectation values of the aforementioned quantities are calculated by using the resonance wavefunction corresponding to the res-

onance position of the root having least χ2. Table 6 shows that for each class of states, η gradually decreases as the resonance states come closer

to the He+ (3p) threshold. Thus the repulsive part of the potential decreases in comparison to the attractive part. This explains the fact of gradual

decreasing width of resonance states as the repulsion between two electrons is responsible for autoionization. On the other hand the one- and

TABLE 4 Convergence behavior for
the position (−Er in a.u.) and width (Γ in a.
u.) of 3Fe resonance states below He+(3p)
threshold

State N −E r Γ

1 900 0.31077 1.98 [−3]

1530 0.31075 1.98 [−3]

2 900 0.26284 4.5 [−4]

1530 0.26284 4.5 [−4]

3 900 0.25827 1.7 [−4]

1530 0.25826 1.7 [−4]

4 900 0.24681 2.1 [−4]

1530 0.24680 2.4 [−4]

5 900 0.24439 1.1 [−4]

1530 0.24438 1.2 [−4]

6 900 0.24130 8.5 [−9]

1530 0.24130 6.9 [−11]

7 900 0.23871 1.2 [−4]

1530 0.23871 1.1 [−4]

8 900 0.23730 7.0 [−5]

1530 0.23730 7.0 [−5]

9 900 0.23559 5.3 [−11]

1530 0.23560 3.1 [−12]

10 900 0.23403 8.0 [−5]

1530 0.23404 6.0 [−5]

11 900 0.23315 4.0 [−5]

1530 0.23315 4.0 [−5]

12 900 0.23207 5.8 [−9]

1530 0.23210 5.6 [−10]

Note: The notation P[±Q] stands for P × 10±Q.
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TABLE 5 Positions (−Er in a.u.), widths (Γ in a.u.), effective quantum number (n*), the energy gap between the threshold and resonance energy
values (ϵk), relative energies (Rϵ) and relative widths (RΓ) of resonance states of (3Fe) below He + (3p) threshold

Class n −Er Γ n* 2k R2 RΓ

Other works

−Er Γ

A 3 0.31075 1.98 [−3] 2.37654 0.08853 0.31069a 1.98 [−3]a

0.3111b 2.131 [−3]b

0.310725c 1.95 [−3]c

0.309915d

0.310749e

4 0.26284 4.5 [−4] 3.50854 0.04062 2.18 4.40 0.262825a 4.5 [−4]a

0.2628b 4.77 [−4]b

0.26283c 4.4 [−4]c

0.26264d

0.262598e

5 0.24680 2.4 [−4] 4.51039 0.02458 1.65 1.87 0.246805a 2.1 [−4]a

0.2468b 2.27 [−4]b

0.246715e

0.246653d

6 0.23871 1.1 [−4] 5.50686 0.01649 1.49 2.18 0.238705a 1.1 [−4]a

0.238645d

0.238597e

7 0.23404 6.0 [−5] 6.50455 0.01182 1.39 1.83 0.234035a 6.6 [−5]a

0.233963e

8 0.23110 4.0 [−5] 7.50469 0.00878 1.34 1.50

9 0.22914 3.0 [−5] 8.50162 0.00692 1.26 1.33

10 0.22754 7.0 [−5] 9.69661 0.00532 1.30 0.42

B 4 0.25826 1.7 [−4] 3.72483 0.03604 0.25826a 1.68 [−4]a

0.2583b 1.83 [−4]b

0.258275c 1.5 [−4]c

0.258205d

0.258199e

5 0.24438 1.2 [−4] 4.75031 0.02216 1.62 1.42 0.244385a 1.1 [−4]a

0.2444b 1.14 [−4]b

0.244345d

0.244341e

6 0.23730 7.0 [−5] 5.75859 0.01508 1.47 1.71 0.237295a 6.6 [−5]a

0.237265d

0.237255e

7 0.23315 4.0 [−5] 6.76424 0.01093 1.38 1.75 0.233155a

0.233113e

8 0.23051 3.0 [−5] 7.76723 0.00829 1.32 1.34

9 0.22885 1.7 [−4] 8.68562 0.00663 1.25 0.18

C 5 0.24130 6.9 [−11] 5.11942 0.01908 0.2413a

0.2413b 1.61 [−11]b

0.24124d

0.241293e

(Continues)
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two-particle moments increase gradually for resonance states approaching He+ (3p) threshold. It appears that the electrons are moving apart from

each other as well as from the nucleus that establishes the diffused nature of the resonance states as they approach He+ (3p) threshold. The last

column of Table 6 shows that the expectation values of hθ12i increase for class A and decrease for classes B and C, as the resonance states come

closer to He+ (3p) threshold.

We have estimated the two particle probability density [ρ(r1, r2)] for a better understanding of the classification of states. The probability den-

sity ρ(r1, r2) is being calculated by using the formula as,

TABLE 5 (Continued)

Class n −Er Γ n* 2k R2 RΓ

Other works

−Er Γ

6 0.23560 3.1 [−12] 6.11354 0.01338 1.43 22.26 0.2356a

0.235535d

0.235563e

7 0.23211 5.6 [−10] 7.11468 0.00988 1.35 0.01 0.2321a

8 0.22982 4.3 [−9] 8.11226 0.00759 1.31 0.13

9 0.22824 1.9 [−8] 9.14566 0.00598 1.27 0.23

Note: Present results are compared with the available theoretical estimates. Classes A, B, and C represent the dominant configurations 3dnd [n ≥ 3], 3pnf

[n ≥ 4], and 3dng [n ≥ 5], respectively. The notation P[±Q] stands for P × 10±Q.
aKar and Ho[8]; stabilization method.
bBachau et al[61]; pseudo-potential Feshbach projection operator method.
cHo and Callway[60]; complex rotation method.
dCallway[59]; hard wall strategy of stabilization method.
eLipsky et al[58]; truncated diagonalization method.

TABLE 6 The expectation values of repulsive potential hVri, attractive potential h−Vai [their ratio η= Vrh i
−Vah i], interelectronic angles hθ12i

(in degree) and different one and two-particle moments for example, r1h i, r21
� �

, r12h i, r212
� �

for different 3Fe resonances states of He below He

+ (3p) threshold

Class n hVri h−Vai η hr1i r21
� � hr12i r212

� � hθ12i
A 3 1.10 [−1] 7.54 [−1] 1.46 [−1] 6.84 [+0] 6.56 [+1] 1.08 [+1] 1.46 [+2] 97.776

4 6.67 [−2] 5.98 [−1] 1.12 [−1] 1.07 [+1] 1.61 [+2] 1.83 [+1] 3.77 [+2] 103.335

5 4.34 [−2] 5.39 [−1] 8.03 [−2] 1.65 [+1] 4.39 [+2] 2.94 [+1] 9.73 [+2] 104.469

6 2.99 [−2] 5.09 [−1] 5.88 [−2] 2.39 [+1] 1.02 [+3] 4.42 [+1] 2.19 [+3] 105.469

7 2.18 [−2] 4.91 [−1] 4.44 [−2] 3.28 [+1] 2.05 [+3] 6.21 [+1] 4.32 [+3] 105.932

8 1.66 [−2] 4.79 [−1] 3.46 [−2] 4.33 [+1] 3.69 [+3] 8.30 [+1] 7.71 [+3] 106.243

9 1.30 [−2] 4.72 [−1] 2.76 [−2] 5.54 [+1] 6.19 [+3] 1.07 [+2] 1.28 [+4] 106.413

10 1.11 [−2] 4.68 [−1] 2.37 [−2] 6.97 [+1] 1.03 [+4] 1.34 [+2] 2.05 [+4] 89.384

B 4 6.50 [−2] 5.84 [−1] 1.11 [−1] 1.11 [+1] 1.71 [+2] 1.74 [+1] 3.34 [+2] 89.435

5 4.12 [−2] 5.31 [−1] 7.76 [−2] 1.75 [+1] 5.05 [+2] 2.97 [+1] 9.93 [+2] 88.397

6 2.85 [−2] 5.04 [−1] 5.66 [−2] 2.53 [+1] 1.17 [+3] 4.53 [+1] 2.31 [+3] 87.902

7 2.09 [−2] 4.88 [−1] 4.28 [−2] 3.48 [+1] 2.33 [+3] 6.41 [+1] 4.61 [+3] 87.667

8 1.59 [−2] 4.77 [−1] 3.34 [−2] 4.57 [+1] 4.16 [+3] 8.58 [+1] 8.27 [+3] 87.424

9 1.63 [−2] 4.78 [−1] 3.41 [−2] 5.34 [+1] 6.16 [+3] 1.02 [+2] 1.23 [+4] 90.249

C 5 4.07 [−2] 5.24 [−1] 7.77 [−2] 1.67 [+1] 4.45 [+2] 2.73 [+1] 8.17 [+2] 79.635

6 2.83 [−2] 4.99 [−1] 5.65 [−2] 2.51 [+1] 1.14 [+3] 4.37 [+1] 2.16 [+3] 78.277

7 2.06 [−2] 4.85 [−1] 4.26 [−2] 3.52 [+1] 2.41 [+3] 6.37 [+1] 4.62 [+3] 77.478

8 1.58 [−2] 4.75 [−1] 3.31 [−2] 4.68 [+1] 4.42 [+3] 8.68 [+1] 8.56 [+3] 77.139

9 1.26 [−2] 4.69 [−1] 2.68 [−2] 5.99 [+1] 7.46 [+3] 1.13 [+2] 1.46 [+4] 76.877

Note: Classes A, B, and C represent the dominant configurations 3dnd [n ≥ 3], 3pnf [n ≥ 4], and 3dng [n ≥ 5] respectively. The notation P[±Q] stands for

P × 10±Q. All values are given in atomic units.
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ρ r1, r2ð Þ=
ðπ
θ =0

ð2π
φ=0

ð2π
ψ =0

ðr1 + r2
r12 = jr1�r2 j

Ψj j2dτ ð10Þ

where, the volume element is dτ = sinθdθdϕdψr12dr12. Two particle radial probability density ρ(r1, r2) for the
3Fe resonance states of He having con-

figurations 3d2 (class A), 3p4f (class B), and 3d5g (class C) lying below He+(3p) threshold are plotted in Figure 4. The density plot for 3d2 configura-

tion exhibits similar behavior as that of the helium ground state, that is, the density plot shows a maximum along the symmetry line r1 = r2. In

contrast, the maximum probability density appears at two different regions on the either sides of the symmetry line for both 3p4f and 3d5g con-

figurations. The difference of the features of two particle radial probability density between the 3p4f and 3d5g configurations lies in the fact that

there is a small probability density along r1 = r2 for the former state, while vanishes for the latter in Figure 4.

Figure 5 shows the stabilization diagram in the energy range −0.325 a.u. to −0.225 a.u. by using 900 terms in the nine exponent wavefunction

where dd configuration is excluded. The necessity of the inclusion of the dd configuration in the wavefunction would be realized if we compare the

F IGURE 4 Two particle probability density ρ(r1, r2) for the three 3Fe resonance states of He atom [lying below He+(3p) threshold] having
dominant 3d2 (left), 3p4f (middle), and 3d5g (right) configurations

F IGURE 5 Stabilization plot
for 3Fe states of neutral He atom in
the energy range −0.325 a.u. to
−0.225 a.u. First 60 diagonalized
energy eigenroots are plotted for
N = 900 number of terms in the
Hyllerass-type wavefunction
comprises of only pf configuration
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stabilization diagrams for the same energy range as given in Figures 2 and 5. In Figure 2 the first appearance of the flat plateau above He+(2p)

threshold is at −0.31075 a.u. corresponding to the 3d2 configuration while the same appears at −0.26607 a.u. in Figure 5. Hence, it is clear that the

inclusion of the dd configuration in the wavefunction contributes 14% to the resonance energy value for the 3d2 configuration. We have found that

the above contribution decreases as we move toward the He+(3p) threshold for example, it decreases to 3% for the sixth resonance state below the

He+(3p) threshold. It is known that the higher configurations can be included in the wavefunction through the powers of r12. Bhatia
[52] opined that

for Do states arising from pd configuration, the inclusion of the df configuration will facilitate the convergence of the metastable bound energies.

TABLE 7 Positions (−Er in a.u.), widths (Γ in a.u.), effective quantum number (n*), the ratio between expectation values of repulsive potential

hVri, attractive potential h−Vai [η= Vrh i
−Vah i], interelectronic angles hθ12i (in degree) and different one and two-particle moments for example,

r1h i, r21
� �

, r12h i, r212
� �

for different 3Fe resonances states of He below He+ (4p) threshold

States −Er Γ n* η hr1i r21
� � hr12i r212

� � hθ12i
1 0.22207 1.8 [−4] 2.26956 3.28 [−2] 5.73 [+1] 7.72 [+3] 1.09 [+2] 1.54 [+4] 89.085

2 0.2187 2.1 [−4] 2.31001 4.02 [−2] 4.76 [+1] 5.47 [+3] 9.02 [+1] 1.09 [+4] 89.448

3 0.21389 3.1 [−4] 2.37169 4.76 [−2] 4.02 [+1] 3.98 [+3] 7.56 [+1] 7.96 [+3] 90.454

4 0.20705 3.7 [−4] 2.46857 5.50 [−2] 3.40 [+1] 2.91 [+3] 6.29 [+1] 5.79 [+3] 88.530

5 0.19788 5.3 [−4] 2.61927 6.33 [−2] 2.92 [+1] 2.19 [+3] 5.34 [+1] 4.38 [+3] 89.512

6 0.18903 5.4 [−4] 2.79443 1.04 [−1] 1.67 [+1] 7.45 [+2] 2.95 [+1] 1.58 [+3] 104.178

0.18822a 2.78 [−3]a

7 0.18404 2.4 [−4] 2.91012 8.64 [−2] 2.21 [+1] 1.33 [+3] 3.96 [+1] 2.68 [+3] 94.377

8 0.17834 1.2 [−3] 3.06167 1.27 [−1] 1.49 [+1] 5.32 [+2] 2.39 [+1] 1.07 [+3] 91.943

0.17892a 3.0 [−3]a

9 0.16668 9.2 [−4] 3.46354 9.77 [−2] 1.99 [+1] 1.06 [+3] 3.42 [+1] 2.11 [+3] 89.631

0.16633a 1.33 [−3]a

10 0.15878 6.0 [−5] 3.84729 1.10 [−1] 1.82 [+1] 6.79 [+2] 3.06 [+1] 1.45 [+3] 100.183

0.15879a 2.8 [−5]a

11 0.15778 2.6 [−4] 3.90553 1.07 [−1] 1.79 [+1] 5.09 [+2] 3.15 [+1] 1.23 [+3] 110.336

0.15788a 1.28 [−3]a

12 0.15224 5.9 [−4] 4.28431 1.08 [−1] 2.04 [+1] 8.34 [+2] 3.34 [+1] 1.67 [+3] 90.229

0.15224a 1.3 [−3]a

13 0.1476 3.0 [−4] 4.70360 1.24 [−1] 1.81 [+1] 4.57 [+2] 2.83 [+1] 9.18 [+2] 90.594

0.14759a 3.3 [−4]a

14 0.14685 1.2 [−4] 4.78364 1.02 [−1] 2.21 [+1] 9.99 [+2] 3.76 [+1] 2.05 [+3] 93.799

15 0.1455 4.0 [−5] 4.93864 9.21 [−2] 2.24 [+1] 7.48 [+2] 3.88 [+1] 1.70 [+3] 103.584

16 0.14514 9.0 [−5] 4.98259 1.19 [−1] 1.93 [+1] 5.33 [+2] 2.93 [+1] 1.01 [+3] 85.276

17 0.1434 5.0 [−4] 5.21286 9.03 [−1] 2.19 [+1] 1.01 [+3] 3.82 [+1] 2.11 [+3] 95.959

18 0.14075 4.4 [−4] 5.63436 9.13 [−2] 2.55 [+1] 1.08 [+3] 4.30 [+1] 2.21 [+3] 92.365

19 0.13998 2.4 [−4] 5.77735 9.49 [−2] 2.58 [+1] 1.06 [+3] 4.26 [+1] 2.08 [+3] 88.699

20 0.13925 1.7 [−4] 5.92348 7.72 [−2] 2.97 [+1] 1.47 [+3] 5.40 [+1] 3.35 [+3] 109.571

21 0.13877 3.6 [−4] 6.02584 8.38 [−2] 2.80 [+1] 1.31 [+3] 4.88 [+1] 2.79 [+3] 97.637

22 0.13747 9.0 [−5] 6.33215 7.27 [−2] 3.48 [+1] 2.48 [+3] 6.18 [+1] 4.91 [+3] 88.794

23 0.13564 5.0 [−5] 6.85510 5.97 [−2] 3.97 [+1] 2.75 [+3] 7.47 [+1] 6.24 [+3] 115.556

25 0.13314 8.0 [−5] 7.83741 6.02 [−2] 4.52 [+1] 3.91 [+3] 8.15 [+1] 7.88 [+3] 92.945

26 0.13154 1.0 [−4] 8.74371 5.39 [−2] 5.54 [+1] 6.14 [+3] 1.01 [+2] 1.23 [+4] 89.327

27 0.13032 2.0 [−4] 9.69458 5.54 [−2] 6.19 [+1] 8.14 [+3] 1.14 [+2] 1.63 [+4] 88.458

28 0.12878 2.9 [−4] 11.50109 4.97 [−2] 7.26 [+1] 1.16 [+4] 1.35 [+2] 2.32 [+4] 89.766

29 0.12766 2.1 [−4] 13.71021 4.86 [−2] 7.24 [+1] 1.18 [+4] 1.35 [+2] 2.35 [+4] 88.858

30 0.12588 1.8 [−4] 23.83656 5.90 [−2] 5.76 [+1] 8.03 [+3] 1.07 [+2] 1.62 [+4] 96.553

Note: The notation P[±Q] stands for P × 10±Q. All values are given in atomic units.
aUsing the products of Slater-orbital type wave functions with expansion lengths up to 319 terms by complex coordinate method.[65]
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Such improvement of convergence is also observed in the present work, where the dd configuration contributes 0.001% to the energy of the meta-

stable bound 2p4f state as mentioned in Section 3.1. The fact that the contribution of dd configuration rises to 14% while calculating resonance

parameters of 3d2 state indicates the absolute necessity of the inclusion of dd configuration in the wavefunction. We are of the opinion that it is

not possible to include dd configuration by just increasing the powers of r12 in the pf configuration, because the resonance position of 3d2 state is

lower than that of 3p4f state. This insight will be useful while calculating the resonance parameters of such higher symmetry states in future.

Resonance energy (Er) and width (Γ) of first 30 3Fe resonance states between He + (3p) and He + (4p) thresholds are summarized in Table 7. The 3Fe

resonances belowHe + (4p) threshold can arise from 4dnd [n ≥ 4], 4pnf [n ≥ 4], 4fnf [n ≥ 4], 4fnh [n ≥ 6], and 4dng [n ≥ 5] dominant configurations. Differ-

ent structural parameters, for example, n*, Vrh i, −Vah i, η= Vrh i
−Vah i , hθ12i, r1h i, r21

� �
, r12h i and r212

� �
of the respective resonance states are also given

in Table 7 with a view to classify them according to the dominant configurations. It is clear from Table 7 that in contrast to the resonances below

He+ (3p) threshold, any such systemic trend of the structural parameters can hardly be found for the classification of resonance states below He

F IGURE 6 Stabilization plot
for 3Fe states of neutral He atom
in the energy range −0.225 a.u.
to −0.125 a.u. Twenty-fifth to
125th diagonalized energy
eigenroots are plotted for
N = 1530 number of terms in the
symmetric nine exponent
Hylleraas-type basis set

F IGURE 7 Calculated DOS (hollow circles) of 67th root and
the fitted Lorentzian (red line) for the highest-lyng 3Fe

resonance state of He atom below He+(4p) threshold. The
resonance parameters Er = 0.12588 a.u. and Γ = 0.00018 a.u.
are obtained with χ2 = 2.8 × 10−2
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TABLE 8 Positions (−Er in a.u.), widths (Γ in a.u.), effective quantum number (n*) for different 3Fe resonances states of He below He + (5p), He
+ (6p), and He + (7p) threshold

Below He + (5p) Below He + (6p) Below He + (7p)

States −Er Γ n* −E r Γ n* −E r Γ n*

1 0.12385 6.2 [−5] 3.37676 0.07941 6.0 [−5] 4.57825 0.05346 2.5 [−4] 6.28851

0.12408a 2.52 [−3]a

2 0.12187 1.5 [−5] 3.45568 0.07723 4.3 [−4] 4.80298 0.05297 2.6 [−4] 6.41403

3 0.12058 2.3 [−4] 3.51017 0.07604 3.8 [−4] 4.94052 0.05104 3.3 [−4] 6.99328

4 0.11920 3.8 [−4] 3.57142 0.07557 1.3 [−4] 4.99819 0.05082 3.8 [−4] 7.06976

0.11944a 3.44 [−3]a

5 0.11898 2.5 [−4] 3.58149 0.07445 3.0 [−4] 5.14420 0.05024 1.0 [−4] 7.28408

6 0.11760 5.1 [−4] 3.64662 0.07292 2.8 [−4] 5.36604 0.05005 1.4 [−4] 7.35864

7 0.11656 6.5 [−4] 3.69812 0.07175 7.1 [−4] 5.55650 0.04859 1.2 [−4] 8.01995

0.11537a 2.61 [−3]a

8 0.11427 6.7 [−5] 3.81968 0.06709 7.4 [−4] 6.58395 0.04686 1.5 [−4] 9.09566

9 0.11312 6.7 [−4] 3.88543 0.06686 3.0 [−4] 6.65059 0.04516 1.6 [−4] 10.72893

10 0.11224 3.5 [−4] 3.93810 0.06494 2.1 [−4] 7.29929 0.04290 1.7 [−4] 15.49066

11 0.11085 5.5 [−4] 4.02584 0.06438 2.9 [−4] 7.52733

12 0.10926 7.0 [−4] 4.13378 0.06263 1.3 [−4] 8.40695

0.1094a 2.99 [−3]a

13 0.10822 1.3 [−4] 4.20926 0.06228 2.6 [−4] 8.62296

14 0.10638 1.2 [−4] 4.35359 0.06139 8.0 [−5] 9.25731

0.10676a 0.92 [−4]a

15 0.10539 2.6 [−4] 4.43765 0.06007 5.2 [−4] 10.52404

0.10577a 1.48 [−3]a

16 0.10394 2.6 [−4] 4.57007 0.05819 7.0 [−4] 13.77655

17 0.10227 2.0 [−4] 4.73832 0.05717 3.6 [−4] 17.59841

0.10252a 0.89 [−3]a

18 0.10191 2.2 [−4] 4.77709 0.05564 1.2 [−4] 76.94837

19 0.10008 8.4 [−5] 4.99002

20 0.09803 2.1 [−4] 5.26651

21 0.09753 8.8 [−5] 5.34064

22 0.09572 2.5 [−4] 5.63901

23 0.09285 2.0 [−4] 6.23831

24 0.09044 3.3 [−4] 6.91880

25 0.08871 1.4 [−4] 7.57706

26 0.08775 8.7 [−5] 8.03167

27 0.08691 1.1 [−4] 8.50578

28 0.085845 6.8 [−5] 9.24895

29 0.085052 1.2 [−4] 9.94840

30 0.084614 1.9 [−4] 10.40989

31 0.083472 7.6 [−5] 12.00038

32 0.082917 1.4 [−4] 13.09232

33 0.08171 2.1 [−4] 17.09963

Note: The notation P[±Q] stands for P × 10±Q. All values are given in atomic units.
aUsing the products of Slater-orbital type wave functions with expansion lengths up to 319 terms by complex coordinate method.[65]
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+ (4p) threshold. Hence, it can be concluded that as we move toward the continuum above He+(3p) threshold the contributions of different config-

urations become appreciable to an extent such that it is impossible to assign a dominant configuration to the resonance state. Figure 6 shows the

stabilization diagram between He+(3p - 4p) threshold. The resonance parameters Er = −0.12588 a.u. and Γ = 0.00018 a.u. obtained from 67th root

is shown in Figure 7. Finally, the resonance parameters for resonance states lying between He+(4p-7p) threshold are given in the Table 8.

4 | CONCLUSIONS

In the present work, we have investigated the doubly excited 3Fe metastable bound and resonance states of neutral helium atom using explicitly

correlated Hylleraas type wavefunctions in the framework of the Ritz variational principle and stabilization method, respectively. The explicit

inclusion of dd configuration results in better convergence of the energy values of metastable bound states. The effect of such inclusion in the

wavefunction is remarkable in determining the parameters of the resonance states. A justification of the classification of the resonance states is

given by estimating several structural properties. It can be concluded that the use of “soft wall” strategy of the stabilization method with a suffi-

cient number of terms in the Hylleraas basis set may yield accurate resonance parameters as well as provide useful structural information for a

wide range of resonance states of helium. The present method may be extended for other resonances of different symmetries where such kind of

explicit configuration mixing is extremely necessary.
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Abstract Precise energy eigenvalues of metastable bound doubly excited 1,3Fe states originating from 2pnf (n = 4–
6) configuration of helium-like ions (Z = 2–4) under weakly coupled plasma (WCP) environment have been estimated
within the framework of Ritz variational method. The wavefunction is expanded in explicitly correlated Hylleraas type
basis set. The screened Coulomb potential is consideredas mimic the WCP environment. The atomic systems tend
towards gradual instability and the number of excited metastable bound states reduces with increasing plasma strength.
The wavelengths corresponding to 2pnf (1,3Fe) → 2pn′d (1,3Do) (n = 4–6; n′ = 3–6) transitions occurring between
doubly excited states of plasma embedded two-electron ions are also reported.

DOI: 10.1088/0253-6102/71/7/853
Key words: two-electron atom, doubly excited states, variational method, weakly coupled plasma, Hylleraas

co-ordinate

1 Introduction

Doubly excited states (DESs) of two-electron atom is

a topic of active interest in recent times, both from the-

oretical and experimental aspects.[1−9] The abundance of

such DESs is noted in various astrophysical observations

as well as in high temperature laboratory plasma.[10−19]

The DESs of two-electron atom having unnatural parity

(π = (−1)L+1, L is the total angular momentum quantum

number) and lying below the second ionization threshold,

are metastable bound. These states favorably can decay

to a lower state via radiative process rather than decaying

through non-radiative autoionization channel. Examples

of such DESs of unnatural parity are 1,3Pe, 1,3Do, 1,3Fe

states arising out of dominant pp, pd, pf configurations

respectively.
Atomic systems under external environments have

been studied by various researchers during the past sev-

eral decades, as they provide useful information about

the environment. A large number of investigations[20−30]

are there in the literature on the modified properties

of plasma embedded atomic systems. Extensive review

articles[31−32] are available on this topic. Plasma cou-

pling strength (Γ) is defined as the ratio between aver-

age inter-particle electrostatic energy to the average ther-

mal kinetic energy. The high temperature and low den-

sity classical plasma are categorized as weakly coupled

(Γ < 1). According to the Debye-Hückel theory[33] a

short range Yukawa-type or screened Coulomb model po-

tential is considered to mimic the modified inter-particle

interaction under WCP environment. Due to its sim-

plicity and effectiveness, such screened Coulomb poten-

tial has been used widely by researchers for the inves-

tigation of spectral and structural properties of atomic

systems under WCP environment. In this model, plasma

electron density (ne) and temperature (T ) are combinedly

expressed through the plasma screening length (D).[33] As

the screened Coulomb potential is more positive in nature

than the “pure” Coulomb potential, in general, with the

decrease of plasma screening length (D), the energy levels

are pushed up and the gap between two successive en-

ergy level decreases.[20] This causes the transition energy

to decrease and a red shift[21] may be observed. However,

it is remarkable that for some specific transitions between

two doubly excited energy levels, the wavelengths get blue

shifted or show a pattern with both red and blue shift

w.r.t. the plasma screening length (D).[21]

In the present work, we have estimated the non-rel-

ativistic energy eigenvalues of doubly excited metastable

bound 2pnf (n = 4–6) (1,3Fe) states of two-electron ions

(Z = 2–4) as well as the 2s and 2p states of the respective

one-electron ions under WCP environment. According to

the Debye-Hückel theory,[33] in a two-electron Hamilto-
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nian, the effect of plasma screening should be reflected

in both the one-particle electron-nucleus attraction terms

and the electron-electron repulsion term of the total po-

tential. Although the effect of screening on the electron-

nucleus attraction term predominates overthe electron-

electron repulsion term in determining the properties of

plasma embedded two electron atom, we have considered

the effect of screening on both attractive electron-nucleus

part and repulsive electron-electron part in the poten-

tial. Computationally, it is difficult to include the effect

of screening in repulsive electron-electron part even for a

partially correlated CI type basis constructed with Slater-

type orbitals as the analytic solution of the correspond-

ing basis integrals becomes extremely cumbersome.[34−35]

However, we have been able to develop the methodology

to estimate the basis integral for the trial wavefunction

is expanded in multi-exponent Hylleraas type basis set in

a way that the effect of screening in repulsive electron-

electron part has been considered fully without any per-

turbative approximation. Ritz variational method is used

to determine the energy eigenroots. The wavelengths

for the dipole allowed transitions between doubly excited

metastable bound states 2pnf [n = 4–6] (1,3Fe) and 2pn′d

(n′ = 3–6) (1,3Do) are determined for different values of

plasma screening length (D). The non-relativistic energy-

eigenvalues of 2pnd (n = 3–6) (1,3Do) states are taken

from an earlier work of Saha et al.[21] The details of the

methodology are given in Sec. 2 followed by the discussion

on the results in Sec. 3 and finally concluded in Sec. 4.

2 Method

The non-relativistic Hamiltonian (in a.u.) of a two-

electron atom immersed in WCP environment may be

written as

H =
2∑

i=1

(
− 1

2
∇2

i − Z
e−ri/D

ri

)
+

e−r12/D

r12
, (1)

where, in case of screening by both ions and electrons, the

Debye screening length (D) reads as[33]

D =
( kT

4π(1 + Ze)ne

)1/2

. (2)

For a fully ionized plasma comprising of a single nuclear

species, the effective nuclear charge is Ze = Z whereas in

case of screening by electrons only, Ze = 0. After sepera-

tion of the centre of mass coordinates, the wave function

of 1,3Fe states due to dominant pf configuration of a two-

electron atom can be written in terms of six co-ordinates

(r1, r2, θ12; θ, φ, ψ) as,
[36−37]

Ψ = f03D
0
3 + f2+3 D2+

3 + f2−3 D2−
3 , (3)

where, Dκ±
L are the rotational harmonics and functions of

three Eulerian angles (θ, φ, ψ) that define the orientation

of the triangle formed by the two electrons and the nucleus

in space; κ is the angular momentum quantum number

about the body fixed axis of rotation.[36] The radial parts

of the wavefunction are given by f03 = −F1 sin θ12, f
2+
3 =

(
√
15/6)F1 sin 2θ12 and f2−3 = (

√
15/6)F2(1 − cos 2θ12);

where, F1 = (f ∓ f̃), F2 = (f ± f̃) with the condition

f̃ = f(r2, r1) and θ12 is the angle between r⃗1 and r⃗2. The

upper sign corresponds to the singlet state and the lower

sign to the triplet state. The trial radial wave function

corresponding to pf configurations is expanded in Hyller-

aas basis set as

f(r1, r2, r12) =
A∑
i=1

rli+3
1 rmi+1

2 rni
12

×
[ p∑
k1=1

Cik1k1ηk1(1)ηk1(2)

+

p∑
k1=1

p∑
k2=1

Cik1k2ηk1(1)ηk2(2)
]
, (4)

with the features: (a) The powers of r1, r2 and r12
satisfies (li,mi, ni) ≥ (0, 0, 0); (b) A is the total num-

ber of (li,mi, ni) set considered in the calculation; (c)

ηi(j) = e−ρirj are the Slater-type orbitals where ρ’s are

the non-linear parameters; (d) p denotes the total num-

ber of non-linear parameters; (e) In the double sum of

Eq. (4), k1 < k2; (f) Cik1k2 are the linear variational pa-

rameters. The effect of the radial correlation is incorpo-

rated through different ρ’s in the wave function whereas,

the angular correlation effect is taken care of through dif-

ferent powers of r12. The number of terms in the ba-

sis set expansions for the trial radial wave function f is

therefore N = [p(p+ 1)/2] × A. In the present case, we

have considered a nine-exponent (p = 9) basis set where

the non-linear parameters are taken in a geometrical se-

quence following ρi = ρi−1γ, γ is the geometrical ratio.

After choosing the proper trial radial wave function, the

energy eigenvalues are obtained by solving the generalized

eigenvalue equation.[38] The details regarding the analytic

evaluation of the correlated basis integrals are discussed

in Dutta et al.[38]

The variational equation for the nl-state of the respec-

tive one-electron atoms under WCP environment can be

written as

δ

∫ [(∂f
∂r

)2

+
l(l + 1)

r2
− E + Z

e−r/D

r

]
dr = 0 . (5)

The radial function f(r) is expanded in terms of a pure

exponential basis set as

f(r) =
∑
i

Ci e
−σir . (6)

We have used 101 number of terms in the basis set and the

exponents are taken in a geometrical sequence σi = σi−1β,

β is the geometrical ratio. The energy eigenvalues E’s and

linear variational coefficients Ci’s are determined by ma-

trix diagonalization procedure. All calculations are car-

ried out in quadruple precision. Such procedure is re-

peated for different plasma screening length (D) consid-

ered in the present case.
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3 Results and Discussion
Table 1 shows the convergence behavior of the en-

ergy eigenvalues of 2pnf (n = 4–6) (1,3Fe) states of He
with respect to the total number of terms N = 540 and
N = 675 in the 9-exponent basis set for three different De-
bye screening lengths D = 100, 50, and 20 (in a.u.). It can
be seen from Table 1 that, all the energy eigenvalues con-
verge at least up to sixth decimal place for D = 100 a.u.
and D = 50 a.u. whereas, energies of 2p5f and 2p6f con-
verge up to fourth and third decimal places respectively
for D = 20 a.u. The energy values of 2pnf (n = 4–6)
(1,3Fe) states of two-electron ions (Z = 2–4) in the pres-
ence of WCP environment are given in Tables 2–4 respec-
tively. Only the values obtained from the wave function
of maximum basis size (N = 675;A = 15) are reported in
Tables 2–4. It is observed that as the plasma screening
length (D) decreases, the two-electron energy levels are

pushed towards the continuum. Such behaviour is quite

consistent with the fact that the screened Coulomb po-

tential becomes more and more positive with respect to

the decrease in plasma screening length (D). Moreover,

Tables 2–4 show that for all the ions the singlet states are

more bound than the triplet states from low to moder-

ate plasma screening. At high screening (i.e. at low val-

ues of screening length D), we see that the singlet and

triplet states become exactly or nearly degenerate. As the

plasma screening increases, the two-electron energy lev-

els become largely affected by the continuum embedded

states through configuration interactions. At very high

screening region, the energy values of two-electron states

come very close to the one-electron continuum and tend to

merge into the 2p threshold of the respective one-electron

system.

Table 1 Energy eigenvalues (−E) for the 2pnf (n = 4–6) 1,3Fe states of He for different number of terms N in
the basis set with respect to different Debye screening length (D). All quantities are given in a.u.

−E
1Fe 3Fe

D N 2p4f 2p5f 2p6f 2p4f 2p5f 2p6f

100 540 0.503 055 0.492 022 0.486 401 0.503 047 0.492 017 0.486 397

675 0.503 055 0.492 022 0.486 401 0.503 047 0.492 017 0.486 397

50 540 0.476 090 0.466 543 0.462 494 0.476 083 0.466 539 0.462 493

675 0.476 090 0.466 543 0.462 494 0.476 083 0.466 539 0.462 493

20 540 0.406 087 0.405 792 0.405 550 0.406 086 0.405 792 0.405 550

675 0.406 087 0.405 856 0.405 709 0.406 086 0.405 856 0.405 709

Table 2 Variation of energy eigenvalues (−E) for the 2pnf (n = 4–6) 1,3Fe states of He and 2s, 2p states of He+ w.r.t. the
Debye screening length (D). All quantities are given in a.u.

1Fe 3Fe

D 2p4f 2p5f 2p6f 2p4f 2p5f 2p6f He+(2s) He+(2p)

100 0.503 055 0.492 022 0.486 401 0.503 047 0.492 017 0.486 397 0.480 296 0.480 247

0.502 956a 0.491 928a 0.486 314 5a 0.502 952a 0.491 925 5a 0.486 313a

0.503 060 68b 0.503 052 113b

90 0.499 965 0.489 058 0.483 572 0.499 957 0.489 052 0.483 569 0.478 143 0.478 083

80 0.496 136 0.485 400 0.480 100 0.496 128 0.485 394 0.480 097 0.475 462 0.475 386

70 0.491 267 0.480 775 0.475 736 0.491 259 0.480 770 0.475 733 0.472 031 0.471 932

0.491 074a 0.480 599 5a 0.475 583 5a 0.491 070 5a 0.480 597a 0.475 580 5a

60 0.484 869 0.474 742 0.470 087 0.484 862 0.474 737 0.470 085 0.467 484 0.467 350

50 0.476 090 0.466 543 0.462 494 0.476 083 0.466 539 0.462 493 0.461 173 0.460 981

0.475 737 5a 0.466 241 5a 0.462 223 5a 0.475 733 5a 0.466 237a 0.462 197a

0.476 090 624b 0.476 087 092b

40 0.463 300 0.454 773 0.451 782 0.463 293 0.454 770 0.451 781 0.451 823 0.451 525

0.462 784a 0.454 351a 0.462 78a 0.454 334a

30 0.442 973 0.436 545 0.435 913 0.442 968 0.436 543 0.435 913 0.436 545 0.436 025

0.442 158 5a 0.442 148 5a

20 0.406 087 0.405 856 0.405 709 0.406 086 0.405 856 0.405 709 0.407 104 0.405 970

0.406 087 6b 0.406 087 1b

10 0.322 848 0.322 699 0.321 485 0.322 848 0.322 699 0.321 485 0.327 085 0.322 761
aRef. [34], bRef. [35].
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Table 3 Variation of energy eigenvalues (−E) for the 2pnf (n = 4–16) 1,3Fe states of Li+ and 2s, 2p states of Li2+ w.r.t.
the Debye length (D). All quantities are given in a.u.

1Fe 3Fe

D 2p4f 2p5f 2p6f 2p4f 2p5f 2p6f Li2+(2s) Li2+(2p)

100 1.203 600 1.158 000 1.133 734 1.203 510 1.157 937 1.133 693 1.095 298 1.095 248

90 1.198 297 1.152 835 1.128 727 1.198 207 1.152 772 1.128 687 1.092 033 1.091 973

80 1.191 703 1.146 433 1.122 542 1.191 614 1.146 371 1.122 503 1.087 964 1.087 887

70 1.183 284 1.138 288 1.114 706 1.183 195 1.138 227 1.114 668 1.082 748 1.082 648

60 1.172 159 1.127 578 1.104 457 1.172 071 1.127 517 1.104 420 1.075 823 1.075 687

50 1.156 775 1.112 862 1.090 478 1.156 688 1.112 803 1.090 442 1.066 182 1.065 987

40 1.134 107 1.091 381 1.070 283 1.134 022 1.091 326 1.070 251 1.051 840 1051 537

30 1.097 393 1.057 098 1.038 579 1.097 312 1.057 048 1.038 553 1.028 251 1.027 719

20 1.027 813 0.993 914 0.982 019 1.027 745 0.993 879 0.982 008 0.982 227 0.981 057

10 0.848 931 0.846 906 0.844 900 0.848 912 0.845 428 0.841 774 0.852 947 0.848 554

Table 4 Variation of energy eigenvalues (−E) for the 2pnf (n = 4–6) 1,3Fe states of Be2+ and 2s, 2p states of Be3+ w.r.t.
the Debye screening length (D). All quantities are given in a.u.

1Fe 3Fe

D 2p4f 2p5f 2p6f 2p4f 2p5f 2p6f Be3+(2s) Be3+(2p)

100 2.216 939 2.114 095 2.058 854 2.216 686 2.113 923 2.058 745 1.960 298 1.960 249

90 2.216 938 2.114 095 2.051 646 2.209 165 2.106 546 2.051 536 1.955 923 1.955 862

80 2.200 052 2.097 554 2.042 712 2.199 800 2.097 382 2.042 603 1.950 465 1.950 388

70 2.188 072 2.085 861 2.031 351 2.187 821 2.085 691 2.031 243 1.943 464 1.943 364

60 2.172 202 2.070 428 2.016 417 2.171 952 2.070 259 2.016 311 1.934 159 1.934 022

50 2.150 179 2.049 114 1.995 905 2.150 086 2.048 951 1.995 806 1.921 186 1.920 990

40 2.117 577 2.017 784 1.965 994 2.117 332 2.017 621 1.965 895 1.901 848 1.901 543

30 2.064 350 1.967 188 1.918 278 2.064 110 1.967 033 1.918 192 1.869 937 1.869 400

20 1.961 936 1.871 780 1.830 341 1.961 713 1.871 646 1.830 273 1.807 292 1.806 102

10 1.685 196 1.628 246 1.623 064 1.685 048 1.628 199 1.619 216 1.628 414 1.623 879

Fig. 1 Relative positions of 2p4f (3Fe), 2p4d (3Do) and
2p4p (3Pe) energy levels of He and 2s, 2p levels of He+

in different plasma conditions.

The 2s and 2p threshold energies of respective one-
electron atoms are also included in Tables 2–4 for a com-
prehensive analysis of the position of two-electron energy
levels. The departure from Coulomb potential facilitates
the removal of l-degeneracy in the one-electron atoms
and it is evident that the 2s level remains more bound

compared to the 2p level as D decreases. Figure 1 illus-

trates the comparative behavior of different doubly excited

triplet 2p4p (Pe), 2p4d (Do) and 2p4f (Fe) states below

He+(2p) threshold. The energy values of 2p4p (3Pe) and

2p4d (3Do) states of helium, immersed in WCP environ-

ment have been taken from Refs. [20] and [21] respectively.

In Fig. 1, we have shown the position of triplet 2p4p, 2p4d,

2p4f energy levels of helium along with the 2s and 2p

thresholds of He+ at different plasma screening strength.

We note that at low screening regions when the system

is almost equivalent to a free system, the one-electron

2s and 2p levels are merged on each other due to their

l-degeneracy. These levels are split when l-degeneracy

is sufficiently lifted at a higher screening in presence of

plasma environment which is evident from the diagram.

It is seen from Fig. 1 that the 2p4p (3Pe) and 2p4d (3Do)

states always lie below both the 2s and 2p thresholds of

He+, but the 2p4f (3Fe) level crosses the 2s threshold of

He+ when the plasma screening length (D) is sufficiently

small. Hence, at a low value of D, the 2p4f (3Fe) level of

helium merges to the one-electron continuum.
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Table 5 Absolute values of the 2pnf(1,3Fe) → 2pn′d(1,3Do) (n = 4–6; n′ = 3–6) transition energies (in meV) of plasma
embedded He below the He+(2p) threshold under Debye screening.

Debye screening length (D) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1Fe → 1Do

2p4f → 2p3d 854.25 851.72 848.21 843.20 835.57 823.21 801.09 754.79 623.78

→ 2p4d 71.70 72.01 72.44 73.01 73.81 75.06 76.97 79.81 77.62

→ 2p5d∗ 264.68 360.44 381.82 413.23

→ 2p6d∗ 433.29

2p5f → 2p3d 1154.46 1148.52 1140.35 1128.69 1111.15 1082.97 1033.10 929.71 630.08

→ 2p4d 371.91 368.81 364.58 358.50 349.40 334.82 308.98 254.73 83.92

→ 2p5d∗ 35.53 63.63 89.69 127.74

→ 2p6d∗ 133.06

2p6f → 2p3d 1307.43 1297.78 1284.57 1265.82 1237.82 1193.17 1114.51 946.91 634.08

→ 2p4d 524.89 518.07 508.80 495.63 476.06 445.02 390.38 271.94 87.92

→ 2p5d 188.50 85.62 54.53 9.39

→ 2p6d 19.89
3Fe → 3Do

2p4f → 2p3d 734.25 732.05 729.02 724.65 718.03 707.29 688.04 647.69 532.15

→ 2p4d 21.93 22.59 23.48 24.75 26.60 29.49 34.28 42.84 55.08

→ 2p5d∗ 288.62 284.67 279.28 271.66

→ 2p6d∗ 445.89

2p5f → 2p3d 1034.40 1028.79 1021.08 1010.07 993.54 966.98 919.97 822.52 538.40

→ 2p4d 322.07 319.32 315.55 310.17 302.12 289.18 266.21 217.67 61.33

→ 2p5d 11.53 12.07 12.79 13.77

→ 2p6d∗ 145.74

2p6f → 2p3d 1187.31 1177.99 1165.24 1147.14 1120.14 1077.10 1001.31 839.68 542.41

→ 2p4d 474.99 468.52 459.71 447.24 428.72 399.29 347.55 234.83 65.34

→ 2p5d 164.44 161.26 156.95 150.84

→ 2p6d 7.17
∗pf level lines energetically lower than the pd level.

Fig. 2 Variation of transition energies (meV) for 2p4f (1,3Fe) → 2pnd(1,3Do) transitions (n = 3–6) of Be2+ in
presence of weakly coupled plasma.
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Table 6 Absolute values of the 2pnf(1,3Fe) → 2pn′d(1,3Do) (n = 4–6; n′ = 3–6) transition energies (in meV) of plasma
embedded Li+ below the Li2+(2p) threshold under Debye screening.

Debye screening length (D) in a.u.

Transition 100 90 80 70 60 50 40 30 20

1Fe → 1Do

2p4f → 2p3d 3229.53 3226.99 3223.50 3218.43 3210.71 3198.09 3175.37 3127.69 2997.69

→ 2p4d 190.39 190.91 191.65 192.69 194.25 196.75 201.14 209.82 230.55

→ 2p5d∗ 1148.05 1143.86 1138.06 1129.78 1117.30 1097.24

→ 2p6d∗ 1848.71 1840.33 1828.78 1812.33 1787.67

2p5f → 2p3d 4470.37 4464.07 4455.36 4442.83 4423.82 4393.02 4338.01 4224.17 3920.13

→ 2p4d 1431.23 1427.99 1423.51 1417.09 1407.36 1391.68 1363.78 1306.30 1152.99

→ 2p5d 92.79 93.22 93.80 94.62 95.81 97.69

→ 2p6d∗ 607.87 603.24 596.92 587.93 574.56

2p6f → 2p3d 5130.68 5120.08 5105.47 5084.53 5052.98 5002.12 4912.11 4728.10 4243.81

→ 2p4d 2091.54 2084.00 2073.62 2058.79 2036.52 2000.78 1937.88 1810.23 1476.67

→ 2p5d 753.10 749.23 743.90 736.32 724.96 706.79

→ 2p6d 52.44 52.77 53.18 53.77 54.59

3Fe → 3Do

2p4f → 2p3d 2839.04 2836.78 2833.64 2829.13 2822.23 2810.97 2790.70 2748.17 2632.07

→ 2p4d 44.19 44.97 46.07 47.64 49.99 53.78 60.47 73.87 107.00

→ 2p5d∗ 1216.58 1212.10 1205.91 1197.05 1183.72 1162.29

→ 2p6d∗ 1885.17 1876.47 1864.50 1847.42 1821.85

2p5f → 2p3d 4079.14 4073.13 4064.77 4052.77 4034.61 4005.14 3952.52 3843.81 3553.62

→ 2p4d 1284.29 1281.32 1277.19 1271.28 1262.37 1247.95 1222.29 1169.51 1028.54

→ 2p5d 23.52 24.25 25.21 26.59 28.65 31.88

→ 2p6d∗ 645.07 640.12 633.38 623.78 609.48

2p6f → 2p3d 4738.85 4728.51 4714.25 4693.84 4663.11 4613.62 4526.00 4347.08 3876.64

→ 2p4d 1944.00 1936.71 1926.67 1912.35 1890.87 1856.42 1795.77 1672.79 1351.57

→ 2p5d 683.23 679.64 674.69 667.67 657.15 640.35

→ 2p6d∗ 14.64 15.27 16.10 17.29 19.02

∗pf level lines energetically lower than the pd level.

We have also estimated the energy (in meV) corre-

sponding to the

2pnf (1,3Fe) → 2pn′d (1,3Do)

transitions (n = 4–6; n′ = 3–6) for different two-electron

atoms (Z = 2–4) embedded in WCP environment. The

2pn′d (1,3Do) energy values are taken from Saha et al.[21]

and the results are exhibited in Tables 5–7 for Z = 2–

4 respectively. We mention that the absolute values of

the difference between the position of the energy levels

are given. The sequence for transition we maintain in the

table is 2pnf → 2pnd whereas in all the cases the 2pnf

states are not high lying. For instance, in the case of

triplet states of Li+, 2p4f state lies energetically higher

than 2p3d and 2p4d states but lower than the 2p5d and

2p6d states. We have used the conversion relation 1 a.u.

of energy = 27.21138 eV.[39] It is worthwhile to mention

that for 2pn′d (3Do) → 2p3p (3Pe) transitions in WCP

environment, an initial blue shift followed by a red shift

with respect to decreasing plasma screening length was

reported in Ref. [21] whereas in the present case no such

behavior is seen for

2pnf (3Fe) → 2pn′d (3Do)

transitions. The transition energies, in a systematic man-

ner, follow either a blue shift or a red shift for a partic-

ular transition scheme. For example, the 2p4f (3Fe) →
2p3d (3Do) line for Z = 4 gets a gradual red shift with

respect to decreasing plasma screening length (D) and a

blue shift is observed for the 2p4f (3Fe) → 2p4d (3Do) of

the same ion under similar conditions. Such features are

evident from Fig. 2 where the 2p4f(1,3Fe) → 2pnd(1,3Do)

transition energies (n = 3–6) of Z = 4 are plotted as a

function of Debye screening length (D).



No. 7 Communications in Theoretical Physics 859

Table 7 Absolute values of the 2pnf(1,3Fe) → 2pn′d(1,3 Do) (n = 4–6; n′ = 3–6) transition energies (in meV) of plasma
embedded Be2+ below the Be3+(2p) threshold under Debye screening.

Debye screening length (D) in a.u.

Transition 100 90 80 70 60 50 40 30 20
1Fe → 1Do

2p4f → 2p3d 6948.14 6945.64 6942.18 6937.13 6929.45 6916.18 6894.02 6845.82 6713.53

→ 2p4d 309.27 309.91 310.81 312.08 314.03 317.18 322.84 334.38 364.21

→ 2p5d∗ 2649.02 2644.54 2638.32 2629.38 2615.82 2593.85

→ 2p6d∗ 4217.37 4208.40 4196.01 4178.25 4151.41

2p5f → 2p3d 9746.64 9740.19 9731.29 9718.44 9698.86 9666.27 9609.52 9489.74 9166.80

→ 2p4d 3107.77 3104.46 3099.92 3093.38 3083.44 3067.28 3038.34 2978.29 2817.48

→ 2p5d 149.48 150.02 150.80 151.92 153.59 156.24

→ 2p6d∗ 1418.87 1413.85 1406.90 1396.94 1382.00

2p6f → 2p3d 11249.80 11238.81 11223.59 11201.73 11168.58 11114.14 11018.80 10820.54 10294.42

→ 2p4d 4610.93 4603.07 4592.22 4576.68 4553.16 4515.14 4447.62 4309.09 3945.09

→ 2p5d 1652.63 1648.63 1643.10 1635.21 1623.30 1604.11

→ 2p6d 84.29 84.76 85.40 86.35 87.71
3Fe → 3Do

2p4f → 2p3d 6267.78 6265.49 6262.34 6257.71 6250.67 6509.08 6218.23 6174.16 6053.13

→ 2p4d 68.33 69.63 70.35 72.00 74.54 77.13 86.03 101.20 140.68

→ 2p5d∗ 2758.91 2754.21 2747.67 2738.34 2724.12 2705.26

→ 2p6d∗ 4274.57 4265.36 4252.62 4234.40 4206.86

2p5f → 2p3d 9064.10 9057.90 9049.27 9036.81 9017.88 8987.00 8931.50 8815.76 8503.97

→ 2p4d 2864.65 2862.04 2857.28 2851.10 2841.75 2829.15 2799.30 2742.80 2591.53

→ 2p5d 37.41 38.20 39.26 40.76 43.08 46.77

→ 2p6d∗ 1478.25 1472.95 1465.69 1455.30 1439.65

2p6f → 2p3d 10565.57 10554.80 10539.88 10518.41 10485.88 10433.15 10339.04 10144.79 9629.79

→ 2p4d 4366.12 4358.94 4347.90 4332.71 4309.75 4275.30 4206.84 4071.83 3717.34

→ 2p5d 1538.88 1535.10 1529.87 1522.37 1511.08 1492.91

→ 2p6d 23.22 23.95 24.93 26.31 28.35
∗pf level lines energetically lower than the pd level.

4 Conclusion

We report the behaviour of doubly excited energy levels of helium-like ions in WCP environment considering

screened Coulomb potential. The two-electron energy levels as well as the respective one-electron thresholds become

more positive as the plasma screening length decreases. The position of different doubly excited states has been

compared extensively. The transition wavelengths between doubly excited states are found to undergo a gradual

blue shift or a red shift with respect to the variation in plasma screening length. Such features have implications in

interpreting complex atomic spectra like those of laboratory plasma experiments or astrophysical observations.
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1. Introduction
The non-separability of the dynamical equation of motion of three body systems in both
classical and quantum mechanics, draws a considerable attention by the researchers around the
globe [9,35]. From the very beginning of quantum mechanics various approximation methods
had been used to study the structural properties of such systems. Being a quintessential
quantum mechanical three body system, the non-relativistic upper bound energy eigenvalue
of helium atom was estimated by Hylleraas [17] in the year 1929, using variational approach.

http://doi.org/10.26713/jamcnp.v7i1.1389
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In this work [17] Hylleraas used a new coordinate system to expand the wavefunction in
terms of inter-particle (electron-nucleus and electron-electron) distances. After this pioneering
work of Hylleraas [17], different variants of this correlated variational framework has been
evolved [12,13,16,17,20,21,27,29,32,33] which adequately account for the effect of inter-particle
correlation in the basis set.

Quantum mechanical three body system with arbitrary comparable masses bounded via
Coulomb interaction also drags considerable attention in recent years. In general, there are
two class of energy levels for these systems: the bound states lying below the first ionization
threshold (N = 1) and the resonant states embedded in the continuum. Thus the bound states
are stable against autoionization, while the resonant states decays to an neutral atomic
configuration by ejecting particle due to the autoionizing process and thus posses a finite lifetime.
It has been observed that when massive negatively charged particles, such as antiprotons (p̄),
kaons (K), pions (π), and muons (µ), enters into matter, they slow down as they excite and
ionize the atoms or molecules of the matter and at the end the particles being captured by
the positive ions present in the medium, form the bound or resonance states of exotic atoms
[2, 11, 30, 36]. Thus during the decay of these three-body ions, X-rays are emmited during
bound-bound transition or one of the particle is ejected from it via Augey process [30]. Such
investigations are going into full swing in case of muonic-, pionic- and kaonic-hydrogen atoms
[1,3,15,25,26,31].

Although the structural properties of bound states of these systems have extensively been
studied by adopting various quantum chemical methods [5,7,8,10,14,18,22,24], but the same
for the resonance states are rather considerably less in number [18,19]. In the present work, we
have made an attempt to estimate the energy eigenvalues of ground states and the parameters
(position and width) of first three resonant states of ppX positive molecular ions and first
two resonant states of pX X negative atomic ions (X = µ−,π−,K−), below the 2s threshold
of pX atom. For this purpose, we have expanded the basis set in the explicitly correlated
multi-exponent Hylleraas type basis set and carried out calculations under the framework of
Stabilization method [28,34]. In order to check the consistency of the present methodology, we
have compared the resonance parameters (position and width) with few existing theoretical
data [18,19].

2. Method
Here we use the designation of two identical particles (pp or X X ) as particle 3 and the
non-identical one (p or X ) as particle 3. Due to translation symmetry of the Hamiltonian of
three-body system, it is possible to describe the motion of the system with respect to their center
of mass in six co-ordinates. If the distances of the particles 1 and 2 with respect to the 3rd
particle are r1 and r2 and the distance between particles 1 and 2 is r12, then r1, r2 and r12 form
the sides of a triangle. Besides these three coordinates (r1, r2 and r12), the remaining three
coordinates are the Eulerian angles [4] defining the orientation of the triangle in space. For
the spherically symmetric ground state (1Se), the three-body general variational equation [23]
reduces to

δ
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+ 1
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+ 1
m
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∂r2
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∂r12

+cos(r1, r12)
∂Ψ

∂r1
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}
+ (V −E)Ψ2

]
dτ= 0 (2.1)

where the volume element is dτ= r1r2r12dr1dr2dr12 and the potential is given by

V =− 1
r1

− 1
r2

+ 1
r12

(2.2)

and we have defined

cos(r i, r j)=
r2

i + r2
j − r2

k

2 r i r j
(2.3)

where, the indices (i, j,k) ≡ (1,2,12) and the m and M are the masses of the identical and
non-identical particles respectively. The masses (in a.u.) of p and X (X =µ−,π−,K−) particles
are taken as mp = 1836.152 6675, mµ = 206.768 262, mπ = 273.132 426 and mK = 966.101 6949
respectively. The trial radial wave function Ψ(r1, r2, r12) can be written as,

Ψ(r1, r2, r12)=
s∑

k=1
rlk

1 rmk
2 rnk

12

[
p∑

i=1
Ckiiηi(1)ηi(2)+

p∑
i=1

p∑
j=1

Cki jηi(1)η j(2)

]
. (2.4)

In the second sum i < j and ηi(m) = e−ρ irm , ρ being the non-linear parameter. p denotes
the number of non-linear parameters which are taken in a geometrical sequence following
ρ i = ρ i−1γ; γ being the geometrical sequence. The function g(1,2) containing correlation terms,
is expanded into Hylleraas basis set as follows, the effect of the radial correlation is incorporated
through different ρ ’s in the wave function whereas, the angular correlation effect is taken
care of through different powers of r12. The dimension of the full multi-exponent basis (N) is[

p(p+1)
2 × s

]
, where s is the number of terms involving r12 and p is the number of exponents.

For a fixed number of basis, p and s should be chosen in such a manner that the effect of radial
as well as angular correlation is properly incorporated in the wavefunction.

After choosing the proper trial radial wave function, the energy eigenvalues are obtained by
solving the generalized eigenvalue equation involving the Hamiltonian and overlap matrices
given by

H C = ES C , (2.5)

where H and S are Hamiltonian and overlap matrices respectively. The necessary basis integrals
of the form

A(m,n, l;a1,a2)=
∫ ∞

r1=0

∫ ∞

r2=0

∫ r1+r2

|r1−r2|
rm

1 rn
2 rl

12e−a1r1−a2r2 dr1dr2dr12 (2.6)

with the condition, m ≥ 0, n ≥ 0, l ≥ 0 and a1,a2 > 0. This integral has been evaluated following
Calais and Lowdin [6]. All calculations are carried out in quadruple precision in order to have a
better numerical accuracy. Repeated diagonalization of the Hamiltonian matrix in the Hylleraas
basis set of 675 parameters is done in the present work for 200 different values of γ. The plot of
each energy eigenroot versus γ produces the stabilization diagram. The density of resonance
states is then calculated from the stabilization diagram and by fitting with a Lorentzian profile
we have estimated the parameters of a particular resonance state.

3. Results and Discussions
A portion of the stabilization diagram for 1Se states originating from two negatively charged
kions (K) of exotic pKK ion is given in Figure 1. In this diagram we have plotted first 40
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eigenroots of 1Se symmetry of exotic pKK ion for 200 different values of γ ranging from 0.63058
a.u. to 0.74954 a.u. From Figure 1, one can see that there exist two classes of states:

(1) There exists only one energy level below N = 1 ionization threshold of pK at −316.515
a.u., formed due to ground state (1s2) configuration remains invariant with the variation
in γ. The energy eigenvalue of this level is −330.800637 which is consistent with the
value obtained by Dutta et al. [10] using 990 terms in the multi-exponant Hylleraas type
basis set.

(2) Roots lying above N = 1 but below N = 2 ionization threshold of pK at −79.129 a.u. are
sensitive with the variation in γ and give rise to flat plateau in the vicinity of avoided
crossings of the energy eigenroots for some particular energy value which is a clear
signature of resonance states.

Similar classes of states are also observed for the other exotic systems like pµµ, ppµ, pππ,
ppπ and ppK . The ground state energies of atomic (pX X )− ion and molecular (ppX )+ ion
[X =µ,π,K] are given in Table 1 and the present results are compared with the lowest energy
eigenvalues available in literature [5,10,18].

Figure 1. Stabilization diagram for 1Se states of exotic pKK ion

Table 1. Bound states energies (−E in a.u.) of atomic (pX X )− ion and molecular (ppX )+ ion below
pX (1s) threshold EpX =−λ

2 a.u.; λ being the reduced mass of the exotic pX atom

Epµ =−92.920 408 Epπ =−118.882 182 EpK =−316.514 843

pµµ ppµ pππ ppπ pKK ppK

97.566 983 102.223 503 124.690 678 129.718 076 330.798 993 334.575 390

97.566 984 59a 102.223 503 6b 124.690 674c 129.718 073c 330.800 637c 334.575 377c

a [5]; b [18]; c [10]

Enlarged view of the stabilization diagram (Figure 1) for 1Se state of exotic pKK ion in the
energy range -100 a.u. to −78.5 a.u. is given in Figure 2. From a closer look at Figure 2, one
can see that for a short range of γ each eigenroot becomes almost flat in the vicinity of avoided
crossings in the neighborhood of a particular resonance state. The density of states ρn(E) is
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calculated by evaluating the inverse of the slope at a number of points near the flat plateau of
each energy eigenroot using the formula [28,34] given by:

ρn(E)=
∣∣∣∣ γi+1 −γi−1

En(γi+1)−En(γi−1)

∣∣∣∣
En(γi)=E i

. (3.1)

The calculated density of resonance states ρn(E) is then fitted to the following Lorentzian form
[28,34],

ρn(E)= y0 + A
π

Γr/2

(E−Er)2 + (Γr/2)2 , (3.2)

where y0 is the baseline background, A is the total area under the curve from the baseline, Er
gives the position of the centre of the peak of the curve and Γr represents the full width of the
peak of the curve at half height. Among different fitting curves for each eigenroot corresponding
to a particular resonance state, the fitting curve with least χ2 and the square of correlation
closer to unity leads to the desired resonance energy (Er) and width (Γ) as mentioned in ref. [28].
For example, from the stabilization plot of Figure 2 for the first 1Se resonance state below N = 2
ionization threshold of pK , we have calculated the inverse of the slope by using (3.1) at different
points near the flat plateau of 24th eigenvalues in the interval of γ= 0.724−0.738.

Figure 2. Enlarged view of the Stabilization diagram for 1Se states of exotic pKK ion below N = 2
ionization threshold of pK

The corresponding fitted curve is obtained by using (3.2) and is shown in Figure 3. The
circles in Figure 3 are the calculated values of ρn(E) while the solid line (red) corresponds to
the fitted curve. Repeated calculations of ρn(E) near the flat plateau of each of the eigenroot for
first 1Se resonance state resulted Lorentzian fitted curve similar to that of Figure 3. Among all
this fitting curve, we have found that 24th eigenroot corresponds to the best fit and from which
−Er = 95.06738(a.u.) and Γr = 0.31004(a.u.) are obtained. Similarly, the best fits for the second
and third 1Se resonance states are shown in Figure 4 and 5, respectively.

Table 2 shows all the resonance energies (Er in a.u.) and widths (Γr in a.u.) of 1Se states
of exotic atomic (pX X )− ions and molecular (ppX )+ ions [X = µ,π,K] below N = 2 ionization
threshold of pX atom. The results are being compared with those available in literature
[18,19] for (pX X )− and (ppX )+ [X =µ,π] ions. The comparison shows that resonance energies
and widths are in very good agreement with the available results [18,19]. To the best of our
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knowledge the present calculated resonance energies and widths of (pKK)− and (ppK)+ ions
are given for the first time in the literature. Table 2 shows that the widths of the negative
ions (pX X ) are higher than the corresponding three body positive counterpart (ppX ), which
indicates that the resonance states of the molecular (ppX )+ ions are more long lived than that
of the atomic (pX X )− ions.

Figure 3. Calculated density (circles) and the fitted Lorentzian (solid line in red) for the 1Se resonance
state [−Er = 95.06738(a.u.) and Γr = 0.31004(a.u.)] of exotic pKK ion

Figure 4. Calculated density (stars) and the fitted Lorentzian (solid line in red) for the 1Se resonance
state [−Er = 80.0428(a.u.) and Γr = 0.03131(a.u.)] of exotic pKK ion

Figure 5. Calculated density (diamonds) and the fitted Lorentzian (solid line in red) for the 1Se resonance
state [−Er = 79.1798(a.u.) and Γr = 0.0084(a.u.)] of exotic pKK ion
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4. Conclusion
In the present work we have adopted extended Hylleraas type basis set to estimate the ground
state energy eigenvalues of exotic atomic (pX X )− ions and molecular (ppX )+ ions [X =µ,π,K]
below N = 1 ionization threshold of pX atom. Stabilization method is used to calculate the
resonance energies and widths of the above mentioned exotic systems below N = 2 ionization
threshold of pX atom. The present results consistent with those available in literature. The
advantage of the present method lies in the fact that a single methodology enables us to predict
reasonably accurate bound state energies and resonance parameters with much lesser number
of terms in the basis set expansion thus minimizing the computational time. The resonance
parameters for ppK and pKK ions are given for the first time in the literature. We hope the
present results will be useful for the future references.

Acknowledgments
JKS acknowledges the partial financial support from the Department of Science and Technology,
Govt. of West Bengal, India under grant number 249(Sanc.)/ST/P/ S& T/16G-26/2017.
SB acknowledges the partial financial support from the Department of Science and Technology,
Govt. of West Bengal, India under grant number 23(Sanc.)/ST/P/ S& T/16G-35/2017.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] D. F. Anagnostopoulos, S. Biri, G. Borchert, W. Breunlich, M. Cargnelli, J.-P. Egger, H. Fuhrmann,

D. Gotta, M. Giersch, A. Gruber, M. Hennebach, P. Indelicato, T. S. Jensen, F. Kottmann, Y.-W. Liu,
B. Manil, V. M. Markushin, J. Marton, N. Nelms, G. C. Oades, G. Rasche, P. A. Schmelzbach,
L. M. Simons and J. Zmeskal, The pionic hydrogen experiment at PSI, Hyperfine Interactions, 138
(2001), 131, DOI: 10.1023/A:1020815220597.

[2] G. Backenstoss, in Progress in Atomic Spectroscopy (eds. W. Hanle and H. Kleinpoppen), 1385,
Plenum, New York (1979).

[3] G. Beer, A. M. Bragadireanu, M. Cargnelli, C. Curceanu-Petrascu, J.-P. Egger, H. Fuhrmann,
C. Guaraldo, M. Iliescu, T. Ishiwatari, K. Itahashi, M. Iwasaki, P. Kienle, T. Koike, B. Lauss,
V. Lucherini, L. Ludhova, J. Marton, F. Mulhauser, T. Ponta, L. A. Schaller, R. Seki, D. L. Sirghi,
F. Sirghi and J. Zmeskal, Measurement of the kaonic hydrogen X-ray spectrum, Physical Review
Letters 94 (2005), 212302, DOI: 10.1103/PhysRevLett.94.212302.

[4] A. K. Bhatia and A. Temkin, Symmetric euler-angle decomposition of the two-electron fixed-nucleus
problem, Reviews of Modern Physics 36 (1964), 1050, DOI: 10.1103/RevModPhys.36.1050.

[5] S. Bhattacharyya, J. K. Saha, P. K. Mukherjee and T. K. Mukherjee, Three-body negative ions under
Coulomb interaction, Physica Scripta 85 (2012), 065305, DOI: 10.1088/0031-8949/85/06/065305.

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 1, pp. 51–60, 2020

http://doi.org/10.1088/0031-8949/85/06/065305
http://doi.org/10.1103/RevModPhys.36.1050
http://doi.org/10.1103/PhysRevLett.94.212302
http://doi.org/10.1023/A:1020815220597


Resonance States of Hadronic Three-Body Ions: Stabilization Method: S. Dutta et al. 59

[6] J. L. Calais and P. O. Löwdin, A simple method of treating atomic integrals containing functions of
r12, Journal of Molecular Spectroscopy 8 (1962), 203, DOI: 10.1016/0022-2852(62)90021-8.

[7] J. C. Cohen, Review of Fundamental Processes and Applications of Atoms and Ions, 61, World
Scientific, Singapore (1993).

[8] C. Cohen-Tannoudji, B. Diu and F. E. Lalo, Quantum Mechanics, Vol. 1, 811, Wiley, New York
(2005).

[9] N. Daldosso and L. Pavesi, Nanosilicon, Chapter 1, (ed. V. Kumar), Elsevier, New York (2005).

[10] S. Dutta, J. K. Saha, S. Bhattacharyya, P. K. Mukherjee and T. K. Mukherjee, Exotic systems under
screened Coulomb interactions: a study on Borromean windows, Physica Scripta 89 (2014), 015401,
DOI: 10.1088/0031-8949/89/01/015401.

[11] E. Fermi and E. Teller, The capture of negative Mesotrons in matter, Physical Review 72 (1947),
399, DOI: 10.1103/PhysRev.72.399.

[12] K. Frankowski and C. L. Pekeris, Logarithmic terms in the wave functions of the ground state of
two-electron atoms, Physical Review 146 (1966), 46, DOI: 10.1103/PhysRev.146.46.

[13] K. Frankowski, Logarithmic terms in the wave functions of the 21S and 23S states of two-electron
atoms, Physical Review 160 (1967), 1, DOI: 10.1103/PhysRev.160.1.

[14] P. Froelich, Muon catalysed fusion Chemical confinement of nuclei within the muonic molecule dtµ,
Advances in Physics 41 (1992), 405, DOI: 10.1080/00018739200101533.

[15] D. Gotta, F. D. Amaro, D. F. Anagnostopoulos, A. B̈uhler, D. S. Covitab, H. Gorke,
A. Gruber, M. Hennebach, A. Hirtl, P. Indelicato, T. Ishiwatari, E.-O. Le Bigot, J. Marton,
M. Nekipelov, J. M. F. dos Santos, S. Schlesser, Ph. Schmid, L. M. Simons, Th. Strauch,
M. Trassinelli, J. F. C. A. Veloso, J. Zmeskal, Pionic hydrogen, Physics Procedia 17 (2011), 69,
DOI: 10.1016/j.phpro.2011.06.019.

[16] E. A. Hylleraas and B. Undheim, Numerische Berechnung der 2S-Terme von Ortho- und Par-
Helium, Zeitschrift für Physik 65 (1930), 759, DOI: 10.1007/BF01397263.

[17] E. A. Hylleraas, Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten
Terms von Ortho-Helium, Zeitschrift für Physik 54 (1929), 347, DOI: 10.1007/BF01375457.

[18] S. Kar and Y. K. Ho, Bound states and resonance states of the plasma-embedded ppµ molecular
ion, Physical Review A 75 (2007), 062509, DOI: 10.1103/PhysRevA.75.062509.

[19] S. Kilic, J.-P. Karr and L. Hilico, Coulombic and radiative decay rates of the resonances of
the exotic molecular ions ppµ, ppπ, ddµ, ddπ and dtµ, Physical Review A 70 (2004), 042506,
DOI: 10.1103/PhysRevA.70.042506.

[20] W. Kolos, C. C. J. Roothaan and R. A. Sack, Ground state of systems of three particles with coulomb
interaction, Reviews of Modern Physics 32 (1960), 178, DOI: 10.1103/RevModPhys.32.178.

[21] V. I. Korobov, Nonrelativistic ionization energy for the helium ground state, Physical Review A 66
(2002), 024501, DOI: 10.1103/PhysRevA.66.024501.

[22] J. Kulpa and S. Wycech, On the formation of Pionium, Acta Physica Polonica B 27 (1996), 941,
URL: https://www.actaphys.uj.edu.pl/R/27/4/941/pdf.

[23] T. K. Mukherjee and P. K. Mukherjee, Variational equation of states of arbitrary angular momenta
for three-particle systems, Physical Review A 51 (1995), 4276, DOI: 10.1103/PhysRevA.51.4276.

[24] M. Pawlak, M. Bylicki and P. K. Mukherjee, On the limit of existence of Borromean binding in
three-particle systems with screened Coulomb interactions, Journal of Physics B: Atomic, Molecular
and Optical Physics 47 (2014), 095701, DOI: 10.1088/0953-4075/47/9/095701.

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 1, pp. 51–60, 2020

http://doi.org/10.1088/0953-4075/47/9/095701
http://doi.org/10.1103/PhysRevA.51.4276
https://www.actaphys.uj.edu.pl/R/27/4/941/pdf
http://doi.org/10.1103/PhysRevA.66.024501
http://doi.org/10.1103/RevModPhys.32.178
http://doi.org/10.1103/PhysRevA.70.042506
http://doi.org/10.1103/PhysRevA.75.062509
http://doi.org/10.1007/BF01375457
http://doi.org/10.1007/BF01397263
http://doi.org/10.1016/j.phpro.2011.06.019
http://doi.org/10.1080/00018739200101533
http://doi.org/10.1103/PhysRev.160.1
http://doi.org/10.1103/PhysRev.146.46
http://doi.org/10.1103/PhysRev.72.399
http://doi.org/10.1088/0031-8949/89/01/015401
http://doi.org/10.1016/0022-2852(62)90021-8


60 Resonance States of Hadronic Three-Body Ions: Stabilization Method: S. Dutta et al.

[25] R. Pohl, H. Daniel, F. J. Hartmann, P. Hauser, F. Kottmann, V. E. Markushin, M. Mühlbauer,
C. Petitjean, W. Schott, D. Taqqu and P. Wojciechowski-Grosshauser, Observation of long-
lived Muonic hydrogen in the 2S state, Physical Review Letters 97 (2006), 193402,
DOI: 10.1103/PhysRevLett.97.193402.

[26] W. W. Repko and D. A. Dicus, Muonic hydrogen and the proton size, Physical Review D 98 (2018),
013002, DOI: 10.1103/PhysRevD.98.013002.

[27] M. B. Ruiz, J. T. Margraf and A. M. Frolov, Hylleraas-configuration-interaction analysis of the
low-lying states in the three-electron Li atom and Be+ ion, Physical Review A 88 (2013), 012505,
DOI: 10.1103/PhysRevA.88.012505.

[28] J. K. Saha and T. K. Mukherjee, Doubly excited bound and resonance (3P e) states of helium,
Physical Review A 80 (2009), 022513, DOI: 10.1103/PhysRevA.80.022513.

[29] C. Schwartz, Experiment and theory in computations of the he atom ground state, International
Journal of Modern Physics E 15 (2006), 877, DOI: 10.1142/S0218301306004648.

[30] I. Shimamura, Moleculelike metastable states of antiprotonic and mesic helium, Physical Review A
46 (1992), 3776, DOI: 10.1103/PhysRevA.46.3776.

[31] SIDDHARTA Collaboration, M. Bazzi, G. Beer, L. Bombelli, A. M. Bragadireanua, M. Cargnelli,
G. Corradi, C. Curceanu (Petrascu), A. d’Uffizi, C. Fiorini, T. Frizzi, F. Ghio, B. Girolami, C. Guaraldo,
R. S. Hayano, M. Iliescua, T. Ishiwatari, M. Iwasaki, P. Kienlee, P. Levi Sandri, A. Longoni,
V. Lucherini, J. Marton, S. Okada, D. Pietreanua, T. Ponta, A. Rizzo, A. Romero Vidal, A. Scordo,
H. Shi, D. L. Sirghia, F. Sirghia, H. Tatsuno, A. Tudorache, V. Tudorache, O. Vazquez Doce,
E. Widmann and J. Zmeskal, A new measurement of kaonic hydrogen X-rays, Physics Letters B
704 (2011), 113, DOI: 10.1016/j.physletb.2011.09.011.

[32] J. S. Sims and S. Hagstrom, Combined configuration-interaction-Hylleraas-type wave-function
study of the ground state of the Beryllium atom, Physical Review A 4 (1971), 908,
DOI: 10.1103/PhysRevA.4.908.

[33] K. Szalewicz, H. J. Monkhorst, W. Kolos and A. Scrinzi, Variational calculation of the energy levels
for the tdµ ion, Physical Review A 36 (1987), 5494, DOI: 10.1103/PhysRevA.36.5494.

[34] S. S. Tan and Y. K. Ho, Determination of resonance energy and width by calculation of the density
of resonance states using the stabilisation method, Chinese Journal of Physics 35 (1997), 701,
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=35&num=6-I&page=701.

[35] G. Tanner, K. Richter and J. M. Rost, The theory of two-electron atoms: between
ground state and complete fragmentation, Reviews of Modern Physics 72 (2000), 497,
DOI: 10.1103/RevModPhys.72.497.

[36] A. S. Wightman, Moderation of negative mesons in hydrogen I: moderation from high energies to
capture by an H2 molecule, Physical Review 77 (1950), 521, DOI: 10.1103/PhysRev.77.521.

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 1, pp. 51–60, 2020

http://doi.org/10.1103/PhysRev.77.521
http://doi.org/10.1103/RevModPhys.72.497
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=35&num=6-I&page=701
http://doi.org/10.1103/PhysRevA.36.5494
http://doi.org/10.1103/PhysRevA.4.908
http://doi.org/10.1016/j.physletb.2011.09.011
http://doi.org/10.1103/PhysRevA.46.3776
http://doi.org/10.1142/S0218301306004648
http://doi.org/10.1103/PhysRevA.80.022513
http://doi.org/10.1103/PhysRevA.88.012505
http://doi.org/10.1103/PhysRevD.98.013002
http://doi.org/10.1103/PhysRevLett.97.193402


Atomic Data and Nuclear Data Tables 158 (2024) 101649

Available online 21 April 2024
0092-640X/© 2024 Published by Elsevier Inc.

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Precise structure calculations of 1,3𝐹 𝑒 states of helium atom under
exponentially screened Coulomb potential
A.N. Sil a, S. Dutta b,c, D. Ghosh d, J.K. Saha e, S. Bhattacharyya c, T.K. Mukhopadhyay f,∗

a Department of Physics, Jogamaya Devi College, Kolkata 700026, India
b Belgharia Texmaco Estate School, Belgharia, Kolkata 700056, India
c Jadavpur University, Kolkata 700032, West Bengal, India
d Department of Physics, Bangabasi Evening College, Kolkata 700009, India
e Aliah University, ll-A/27, Action Area II, Newtown, Kolkata, West Bengal 700160, India
f Department of Physics, Narula Institute of Technology, Agarpara, Kolkata 700109, India

A R T I C L E I N F O

Keywords:
Classical weakly coupled plasma
Exponentially screened Coulomb potential
Helium atom
Doubly excited 1,3F e states
Explicitly correlated multi-exponent
Hylleraas-type wavefunction
Stabilization method

A B S T R A C T

The structural properties of doubly excited 1,3𝐹 𝑒 metastable-bound and resonance states of neutral helium
atom under exponentially screened Coulomb potential are studied using explicitly correlated multi-exponent
Hylleraas type basis set. Precise energy eigenvalues of 2𝑝𝑛𝑓 (1,3𝐹 𝑒) states [𝑛 = 4 − 15] are estimated in the
framework of Ritz variational principle. Stabilization method has been employed to calculate the resonance
parameters (energy and width) of 1,3𝐹 𝑒 states below 𝐻𝑒+(3𝑝) and 𝐻𝑒+(4𝑝) thresholds for different screening
conditions. The resonance parameters above 𝐻𝑒+(3𝑝) threshold under screened Coulomb environment are
reported for the first time in literature. Furthermore, pioneering calculations for the variation of structural
properties such as one- and two-particle moments and inter-electronic angles are carried out for both
metastable-bound and resonance 1,3𝐹 𝑒 states of He atom under screened Coulomb potential. The present results
may serve as benchmark for future references.
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1. Introduction

Atomic systems confined under various external environments like
plasma [1–26], quantum dot [27,28], fullerene cages [29–31], zeolite
sieves [32,33], helium droplets [34] etc., have become an attractive
field of research over the years. Such investigations are significant
because they offer an excellent testing ground for many quantum chem-
ical approximation techniques, such as variation, perturbation, various
numerical techniques, etc., and they provide a wealth of information
about the confining environment. Among these different confinements
plasma is being widely studied due to its abundance in both natural
and laboratory scenario [35]. Depending on the Coulomb coupling
parameter (𝛤𝐶 ) defined by the ratio of average potential energy to
average kinetic energy of the plasma particles, plasma can be classified
into two category — weakly coupled plasma (𝛤𝐶 < 1) and strongly
coupled plasma (𝛤𝐶 ≥ 1). The Debye–Hückel potential or exponentially
screened Coulomb potential (ESCP) [36], is mostly used to mimic
the interactions between the particles within weakly coupled plasma
environment while various other types of potentials are used in case of
strongly coupled plasma [37]. Precise atomic data, particularly of H-
like and He-like ions produced by using such model potentials serve as
important tools for plasma diagnostics. Ionization potential depression,
level shifting phenomena, line merging, vanishing of spectral lines
etc. of He-like systems provide useful information [24,26,38–42] about
different physical properties of plasma like density, temperature etc.

The study of doubly excited states (DES) of He-like systems have
acquired a lot of attention because of their importance in the field
of plasma physics, astrophysics, laser technology etc. [43–46]. Lot
of investigations [21,47–57] for 𝑆, 𝑃 ,𝐷− symmetry states have been
conducted to determine the structural properties of DES of He-like
systems in plasma environments. Similar type of calculation for the
next higher angular momentum 𝐹 𝑒 states are quite limited [9,25,58].
Using CI-type basis functions, Kar and Ho calculated energies of meta-
stable bound 1,3𝐹 𝑒 states below 𝑛 = 2 ionization threshold [9,58]
and the resonance parameters (energy and width) of 1,3𝐹 𝑒 resonance
states below 𝑛 = 3 ionization threshold [9] of He-atom embedded in
the weakly coupled plasma environment modelled by ESCP. Kar and
Ho [9,58] approximated the screened electron–electron repulsion term
by Taylor expansion for the sake of simplicity in their calculations. In
our earlier investigation [25], we estimated the energy eigenvalues of
meta-stable bound 1,3𝐹 𝑒 states and the transition wavelengths between
2𝑝𝑛𝑓 (1,3𝐹 𝑒) and 2𝑝𝑛′𝑑(1,3𝐷𝑜) states (𝑛 = 4−6; 𝑛′ = 3−6) of two-electron
systems like He, Li+ and Be2+ under ESCP where the screening was
considered in both electron–electron and electron-nucleus parts of the
potential without any approximation. The wavefunction used in that
work [25] consists of only 𝑝𝑓 configuration. In another work [59] we
took the explicit effect of 𝑝𝑓 and 𝑑𝑑 configurations in the wavefunction
while studying the meta-stable bound and resonance 3𝐹 𝑒 states of free
He-atom. We showed that the mixing of 𝑝𝑓 and 𝑑𝑑 configurations
in the wavefunction expedite the convergence rate of the meta-stable
bound state energies. In comparison to the meta-stable bound states, it
was demonstrated that the 𝑑𝑑 configuration significantly adds to the
computations of the resonance parameters [59]. Thus it is necessary

to investigate the structural properties of meta-stable bound and reso-
nance 1,3𝐹 𝑒 states using a complete wavefunction containing both 𝑝𝑓
and 𝑑𝑑 configurations explicitly under the ESCP where the screening
is to be considered in both the parts of the potential without any
approximation.

In this communication, we have made an extensive investigation on
the structural properties of 1,3𝐹 𝑒 states of He-atom under ESCP using
wavefunction consisting of both 𝑝𝑓 and 𝑑𝑑 configurations expanded
in multi-exponent Hylleraas-type basis set. Energies of the meta-stable
bound 1,3𝐹 𝑒 states are calculated using Ritz variation principle for
different screening conditions of the potential. ‘‘Soft wall’’ strategy [59–
61] of the stabilization method [62] has been used to determine the
resonance parameters of 1,3𝐹 𝑒 states of He atom lying below He+(3𝑝)
and He+(4𝑝) thresholds for various screening of ESCP. The basis integral
arising in the matrix elements for both the attractive and repulsive parts
of ESCP are calculated analytically in a closed form without any ap-
proximation although the effective potential to describe the interaction
is not being constructed from the first principle. The resonance parame-
ters above 𝐻𝑒+(3𝑝) threshold under screened Coulomb environment are
reported for the first time in literature for 1,3𝐹 𝑒 states of He-atom. Other
structural properties like one- and two-particle moments, expectation
values of inter-electronic angles etc. under ESCP are also estimated to
study how the overall structure of the atom alters as screening changes.
Atomic units are used throughout unless otherwise specified.

2. Method

The general variational equation of a two-electron system can be
written as

𝛿 ∫ [𝐻 − 𝐸]𝛹𝑑𝜏 = 0 (1)

where the volume element is 𝑑𝜏 = 𝑟1 𝑟2 𝑟12 𝑑𝑟1 𝑑𝑟2 𝑑𝑟12 sin 𝜃 𝑑𝜃 𝑑𝜙 𝑑𝜓 ;
𝑟1 and 𝑟2 being the respective distances of the electrons from the
nucleus, 𝑟12 being the inter-electronic distance and (𝜃, 𝜙, 𝜓) being the
Eulerian angles [63] which specify the rotation of the triangle formed
by 𝑟1, 𝑟2 and 𝑟12 in space. 𝐸 is the energy eigenvalue of the atom
considered. The Hamiltonian (𝐻) of the two-electron system is given
by,

𝐻 = −1
2
∇2
1 −

1
2
∇2
2 + 𝑉𝑒𝑓𝑓 (2)

where 𝑉𝑒𝑓𝑓 is the effective potential of the two-electron system which
takes the following form under ESCP

𝑉𝑒𝑓𝑓 = −𝑍𝑒
−𝑟1∕𝜆𝐷

𝑟1
− 𝑍𝑒−𝑟2∕𝜆𝐷

𝑟2
+ 𝑒−𝑟12∕𝜆𝐷

𝑟12
(3)

where 𝑍 is the nuclear charge and 𝜆𝐷 is the plasma screening length
[25].

The wavefunction of the 1,3𝐹 𝑒 state can be written as the sum of the
products of the radial and the angular parts [59] as given below,

𝛹 = 𝑓 0
3𝐷

0
3 + 𝑓

2+
3 𝐷2+

3 + 𝑓 2−
3 𝐷2−

3 (4)

The angular parts 𝐷𝜅±
𝐿 (𝐿 being the angular momentum of the state) are

the real symmetric Wigner functions [63] which are the eigenfunctions
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of the two-electron angular momentum operator. The explicit forms of
𝐷0

3, 𝐷
2+
3 and 𝐷2−

3 as a function of the Eulerian angles (𝜃, 𝜙, 𝜓) [63] are
given by

𝐷0
3 = 5 cos3 𝜃 − 3 cos 𝜃

2

𝐷2+
3 =

√

15
2

cos 2𝜓 sin2 𝜃 cos 𝜃

𝐷2−
3 =

√

15
2

sin 2𝜓 sin2 𝜃 cos 𝜃

(5)

The radial parts 𝑓𝜅±𝐿 consist of two most dominant configurations pf
and dd. The explicit forms of 𝑓𝜅±𝐿 [59] are given by

𝑓 0
3 = −(𝑓 ∓ 𝑓 ) sin 𝜃12 −

√

10
7
(𝑔 ∓ 𝑔̃) sin 𝜃12 cos 𝜃12

𝑓 2+
3 =

√

15
6

(𝑓 ∓ 𝑓 ) sin 2𝜃12 +
√

50
21

(𝑔 ∓ 𝑔̃) sin 𝜃12

𝑓 2−
3 =

√

15
6

(𝑓 ± 𝑓 )(1 − cos 2𝜃12)

(6)

Upper and lower signs in the parentheses correspond to singlet and
triplet states respectively. Here 𝜃12 is the angle between ⃖⃖⃗𝑟1 and ⃖⃖⃗𝑟2.
In Eq. (6), 𝑓 (𝑟1, 𝑟2, 𝑟12) and 𝑔(𝑟1, 𝑟2, 𝑟12) functions are associated with
pf and dd configurations respectively where 𝑓 = 𝑓 (𝑟2, 𝑟1, 𝑟12) and
𝑔̃ = 𝑔(𝑟2, 𝑟1, 𝑟12). The trial radial functions 𝑓 and 𝑔 are expanded in
nine-exponent Hylleraas type basis set as given below

𝑓 (𝑟1, 𝑟2, 𝑟12) =
𝑖𝑚𝑎𝑥
∑

𝑖=1
𝑟𝑎𝑖1 𝑟𝑏𝑖2 𝑟𝑐𝑖12

[ 9
∑

𝛼=1
𝐶𝑖𝛼𝛼𝑒

−𝜌𝛼(𝑟1+𝑟2) +
9
∑

𝛼=1

9
∑

𝛽=1
𝐶𝑖𝛼𝛽𝑒

−𝜌𝛼 𝑟1−𝜌𝛽 𝑟2

]

𝑔(𝑟1, 𝑟2, 𝑟12) =
𝑖𝑚𝑎𝑥
∑

𝑖=1
𝑟𝑎

′
𝑖

1 𝑟𝑏
′
𝑖
2 𝑟𝑐

′
𝑖
12

[ 9
∑

𝛼=1
𝐷𝑖𝛼𝛼𝑒

−𝜎𝛼(𝑟1+𝑟2) +
9
∑

𝛼=1

9
∑

𝛽=1
𝐷𝑖𝛼𝛽𝑒

−𝜎𝛼 𝑟1−𝜎𝛽 𝑟2

]
(7)

In Eq. (7), the powers (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) and (𝑎′𝑖 , 𝑏
′
𝑖 , 𝑐

′
𝑖 ) are positive integers and

𝑖𝑚𝑎𝑥 is the maximum number of the set of powers of 𝑟1, 𝑟2 and 𝑟12. In the
above equation 𝜌𝛼 and 𝜌𝛽 are the non-linear parameters for electrons 1
and 2 respectively. The first summation for 𝑓 in Eq. (7) corresponds to
𝛼 = 𝛽 and that of the second summation corresponds to 𝛼 ≠ 𝛽. In the
double sum of Eq. (7), 𝛼 < 𝛽 is being taken while 𝑓 takes care of the
terms with 𝛼 > 𝛽. Similar notations are being used for 𝑔 functions. 𝐶𝑖𝛼𝛽
and 𝐷𝑖𝛼𝛽 are the linear expansion coefficients of 𝑓 and 𝑔 respectively.
The number of terms in the summation of 𝛼 and 𝛽 is 9(9 + 1)∕2 i.e. 45.
Hence, combining 𝑓 and 𝑔, the total number of terms in the basis set
is 𝑁 = 90 × 𝑖𝑚𝑎𝑥. In the present calculation we have taken 𝑁 = 900.
The non-linear parameters of pf and dd configurations are produced in
a geometrical progression using the relations 𝜌𝑖 = 𝜌𝑖−1𝛾 and 𝜎𝑖 = 𝜎𝑖−1𝛾 ′,
where 𝛾 and 𝛾 ′ are geometrical progression ratios in 𝑓 and 𝑔 functions
respectively. The energy eigenvalues (𝐸) are derived by solving the
generalized eigenvalue equation,

𝐻 𝐶 = 𝐸𝑆 𝐶 (8)

where 𝐻 is the Hamiltonian matrix, 𝑆 is the overlap matrix and 𝐶 is a
column matrix made up of linear variational coefficients. To estimate
the matrix elements of𝐻 and 𝑆, one need to evaluate the basis integrals
of the following form :

𝐴(𝑚, 𝑛, 𝑙; 𝑎1, 𝑎2) = ∫

∞

𝑟1=0
∫

∞

𝑟2=0
∫

𝑟1+𝑟2

|𝑟1−𝑟2|
𝑟𝑚1 𝑟

𝑛
2𝑟
𝑙
12𝑒

−𝑎1𝑟1−𝑎2𝑟2𝑑𝑟1𝑑𝑟2𝑑𝑟12 (9)

The analytic forms of 𝐴(𝑚, 𝑛, 𝑙; 𝑎1, 𝑎2) are given in our previous work
[64]. The linear variational parameters as obtained from Eq. (8) are
used to determine different one and two-particle moments such as
⟨𝑟1⟩,

⟨

𝑟21
⟩

, ⟨𝑟12⟩,
⟨

𝑟212
⟩

and inter-electronic angles ⟨𝜃12⟩ by estimating
⟨cos 𝜃12⟩ and using the following relation [65]

⟨𝜃12⟩ ≈
𝜋
2
− 3𝜋

2
⟨cos 𝜃12⟩ (10)

These expectation values altogether contribute to understand the ge-
ometry of the atom quite clearly.

To explore the behaviour of two-electron energy levels under ESCP,
it is essential to calculate the respective one-electron threshold energy
(

𝐸𝑡ℎ
)

under ESCP. The radial variational equation for 2𝑝 state of He+
ion under the ESCP environment can be written as

𝛿 ∫

{

(

𝜕𝜒
𝜕𝑟

)2
+ 2
𝑟2
𝜒2 + 2𝑒−𝑟∕𝜆𝐷

𝑟
𝜒2 − 𝐸𝑡ℎ𝜒2

}

𝑑𝑟 = 0 (11)

The radial function 𝜒(𝑟) is expanded in the following type of basis set
as

𝜒(𝑟) =
∑

𝑖
𝐶𝑖 𝑟

𝑛𝑖 𝑒−𝜉𝑖𝑟 (12)

In the present work, the basis set in Eq. (12) contains 44 terms, and
the exponents are taken in a geometrical sequence, 𝜉𝑖 = 𝜉𝑖−1𝜁 ; 𝜁
being the geometrical ratio. The matrix diagonalization approach using
Eq. (8) determines the energy eigenvalues 𝐸𝑡ℎ and linear variational
coefficients 𝐶𝑖’s. In the current situation, this technique is repeated for
each different screening length (𝜆𝐷). All computations are performed
with quadruple precision.

3. Results and discussions

A typical stabilization diagram for 3𝐹 𝑒 state of He atom (𝜆𝐷 = 70
a.u.) is given in Fig. 1. For a fixed value of 𝛾 ′ repeated diagonalization
has been done for 432 different values of 𝛾. The plot 1 up to 𝐻𝑒+(4𝑝)
threshold energy −0.098644 a.u. shows two classes of states:

(i) The energy eigenroots which are insensitive to the variation of
𝛾 lies below 𝐻𝑒+(2𝑝) threshold energy −0.471931 a.u. are the
metastable bound states (MBS) having dominant configurations
2𝑝𝑛𝑓 [4 ≤ 𝑛 ≤ 8].

(ii) Above the 𝐻𝑒+(2𝑝) threshold energy, the variation of energy
eigenroots with 𝛾 show avoided crossings and plateaus which
indicates the presence of resonance states (RS).

The convergence of the energy eigenvalues of 2𝑝𝑛𝑓 (𝑛 = 4 − 6) MBS
(1,3𝐹 𝑒) for two different screening lengths 𝜆𝐷 = 100 a.u. and 𝜆𝐷 = 40
a.u. are shown in the table Table A. It is clear from Table A that the
energy eigenvalues are converged at least up to 7th decimal place. For
the free He atom, the convergence behaviour of the energy eigenvalues
was shown in our earlier work [59]. In the succeeding tables we have
given the energy eigenvalues up to 6th decimal place.

The optimized MBS (1,3𝐹 𝑒) energy eigenvalues of He atom for
different 𝜆𝐷 are given in Tables B and C. With the decrease in 𝜆𝐷,
the MBSs gradually move towards the respective dressed threshold of
𝐻𝑒+(2𝑝) under plasma. As a consequence the number of MBS decreases
sharply. It is noticeable that below 𝜆𝐷 = 20 a.u., there exists no MBS of
3𝐹 𝑒 symmetry of He atom. The comparison of the present results with
those of Kar and Ho [58,66] as shown in Tables B and C reveals that
the present energy eigenvalues of metastable bound 2𝑝𝑛𝑓 (𝑛 = 4 − 6)
states for 𝜆𝐷 = ∞ are consistent up to sixth decimal place. In fact,
we find that under the plasma scenario (𝜆𝐷 ≤ 100 a.u.), our present
calculated energy values for MBS are lowest yet obtained as evident
from Tables B and C. The Ritz variational calculation provides an upper
bound to the exact energy eigenvalues for bound states, and hence, the
present results are more accurate in a sense that they are supposed to
be closer to the exact values, as compared to other existing results. The
reason behind this accuracy of the present method lies in the fact that
Kar and Ho [58,66] used an approximated form of the screened inter-
electronic repulsion by expanding it in a Taylor series truncated up to
a finite limit as

𝑒−𝑟12∕𝜆𝐷
𝑟12

≈
𝑚
∑

𝑛=0
(−1)𝑛

𝑟𝑛−112
𝜆𝑛𝐷𝑛!

In contrast we have used the exact analytic form of the screened inter-
electronic repulsion and estimated the matrix element analytically.
Tables D and E show different structural properties like repulsive
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Fig. 1. Stabilization plot of first 250 diagonalized energy eigenroots using 𝑁 = 900 terms in the basis set for 3𝐹 𝑒 state of He-atom in the energy range −0.5 a.u. to −0.098644 a.u.
for 𝜆𝐷 = 70 a.u. showing existence of both metastable bound and resonance states.

Table A
Convergence table for the energy eigenvalues (𝐸 in a.u.) of 2𝑝𝑛𝑓 (𝑛 = 4 − 6) MBS (1,3𝐹 𝑒) for screening lengths 𝜆𝐷 = 100 a.u. and 𝜆𝐷 = 40 a.u.
and basis sizes 𝑁 = 720, 810 and 900.
𝜆𝐷 = 100

3𝐹 𝑒 1𝐹 𝑒

N 2𝑝4𝑓 2𝑝5𝑓 2𝑝6𝑓 2𝑝4𝑓 2𝑝5𝑓 2𝑝6𝑓

720 −0.50305211 −0.49202045 −0.48639964 −0.50305606 −0.49202303 −0.48640116
810 −0.50305211 −0.49202045 −0.48639965 −0.50305606 −0.49202304 −0.48640117
900 −0.50305211 −0.49202047 −0.48639966 −0.50305606 −0.49202305 −0.48640117

𝜆𝐷 = 40
3𝐹 𝑒 1𝐹 𝑒

N 2𝑝4𝑓 2𝑝5𝑓 2𝑝6𝑓 2𝑝4𝑓 2𝑝5𝑓 2𝑝6𝑓

720 −0.46329714 −0.45477196 −0.45178121 −0.46330037 −0.45477358 −0.45178169
810 −0.46329714 −0.45477196 −0.45178123 −0.46330037 −0.45477358 −0.45178170
900 −0.46329714 −0.45477197 −0.45178124 −0.46330037 −0.45477359 −0.45178172

Table B
Energy eigenvalues (𝐸 in a.u.) of metastable bound 2𝑝𝑛𝑓 3𝐹 𝑒 [𝑛 ≥ 4] states of He below He+(2𝑝) threshold and 2𝑝 state of He+ ion for different screening length 𝜆𝐷 in a.u.

States 𝜆𝐷
∞ 100 70 50 40 30 25 20 15 12

He+(2𝑝) −0.5 −0.480247 −0.471931 −0.460980 −0.451525 −0.436025 −0.423853 −0.405969 −0.377135 −0.349478
2𝑝4𝑓 −0.531991 −0.503052 −0.491264 −0.476087 −0.463297 −0.442971 −0.427595 −0.406086

−0.5319915a −0.502952a −0.4910705a −0.4757335a −0.46278a −0.442148a −0.426497a

−0.531991326b −0.503052113b −0.476087092b −0.4060871b

2𝑝5𝑓 −0.520383 −0.492020 −0.480773 −0.466541 −0.454771 −0.436544
−0.520383a −0.491925a −0.480597a −0.466237a −0.454334a

2𝑝6𝑓 −0.514111 −0.486399 −0.475734 −0.462493 −0.451781
−0.514111a −0.486313a −0.475580a −0.462197a

2𝑝7𝑓 −0.510344 −0.483338 −0.473276 −0.461041
2𝑝8𝑓 −0.507906 −0.481645 −0.472187
2𝑝9𝑓 −0.506238 −0.480744
2𝑝10𝑓 −0.505044 −0.480330
2𝑝11𝑓 −0.504144
2𝑝12𝑓 −0.503410
2𝑝13𝑓 −0.502832

(continued on next page)
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Table B (continued).
States 𝜆𝐷

∞ 100 70 50 40 30 25 20 15 12

2𝑝14𝑓 −0.502296
2𝑝15𝑓 −0.501224

a [66].
b [58].

Table C
Energy eigenvalues (𝐸 in a.u.) of metastable bound 2𝑝𝑛𝑓 1𝐹 𝑒 [𝑛 ≥ 4] states of He below He+(2𝑝) threshold and 2𝑝 state of He+ ion for different screening length 𝜆𝐷 in a.u.

States 𝜆𝐷
∞ 100 70 50 40 30 25 20 15 12

He+(2𝑝) −0.5 −0.480247 −0.471931 −0.460980 −0.451525 −0.436025 −0.423853 −0.405969 −0.377135 −0.349478
2𝑝4𝑓 −0.531995 −0.503056 −0.491268 −0.476090 −0.463300 −0.442973 −0.427597 −0.406087

−0.5319955a −0.502956a −0.491074a −0.4757375a −0.462784a −0.4421585a −0.426532a

−0.531995436b −0.503056068b −0.476090624b −0.4060876b

2𝑝5𝑓 −0.520385 −0.492023 −0.480775 −0.466543 −0.454773 −0.436545
−0.5203855a −0.491928a −0.4805995a −0.4662415a −0.454351a

2𝑝6𝑓 −0.514113 −0.486401 −0.475736 −0.462494 −0.451781
−0.514113a −0.4863145a −0.4755835a −0.4622235a

2𝑝7𝑓 −0.510345 −0.483339 −0.473276 −0.461042
2𝑝8𝑓 −0.507907 −0.481645 −0.472187
2𝑝9𝑓 −0.506239 −0.480745
2𝑝10𝑓 −0.505045 −0.480330
2𝑝11𝑓 −0.504144
2𝑝12𝑓 −0.503411
2𝑝13𝑓 −0.502832
2𝑝14𝑓 −0.502296
2𝑝15𝑓 −0.501230

a [66].
b [58].

Table D
Expectation values of repulsive potential ⟨𝑉𝑟⟩, attractive potential ⟨𝑉𝑎⟩, ratio of attractive to repulsive potential 𝜂 =

|

|

|

|

⟨𝑉𝑎⟩
⟨𝑉𝑟⟩

|

|

|

|

, ⟨cos 𝜃12⟩, inter-electronic angles ⟨𝜃12⟩ (in degree) using

(10), different one and two-particle moments of metastable bound 2𝑝𝑛𝑓 3𝐹 𝑒 [𝑛 = 4−15] states of He atom below 𝐻𝑒+(2𝑝) threshold for different screening length 𝜆𝐷 . The notation
𝐴[±𝐵] stands for 𝐴 × 10±𝐵 . All values are given in atomic units.

States 𝜆𝐷 ⟨𝑉𝑟⟩ ⟨𝑉𝑎⟩ 𝜂 ⟨𝑟1⟩
⟨

𝑟21
⟩

⟨𝑟12⟩
⟨

𝑟212
⟩

⟨cos 𝜃12⟩ ⟨𝜃12⟩

2𝑝4𝑓 ∞ 6.38[−2] −1.12[+0] 17.65 9.96[+0] 1.72[+2] 1.76[+1] 3.47[+2] −1.32[−2] 93.59
100 5.39[−2] −1.08[+0] 20.17 1.00[+1] 1.78[+2] 1.79[+1] 3.57[+2] −1.28[−2] 93.47
70 4.97[−2] −1.07[+0] 21.53 1.02[+1] 1.83[+2] 1.81[+1] 3.67[+2] −1.24[−2] 93.36
50 4.41[−2] −1.04[+0] 23.74 1.04[+1] 1.93[+2] 1.86[+1] 3.88[+2] −1.17[−2] 93.17
40 3.93[−2] −1.02[+0] 26.15 1.07[+1] 2.06[+2] 1.91[+1] 4.13[+2] −1.09[−2] 92.95
30 3.13[−2] −9.96[−1] 31.78 1.14[+1] 2.39[+2] 2.05[+1] 4.79[+2] −9.34[−3] 92.52
25 2.48[−2] −9.69[−1] 38.96 1.23[+1] 2.86[+2] 2.24[+1] 5.73[+2] −7.76[−3] 92.09
20 1.41[−2] −9.28[−1] 65.49 1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] −4.64[−3] 91.25

2𝑝5𝑓 ∞ 4.07[−2] −1.08[+0] 26.56 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] −6.77[−3] 91.82
100 3.08[−2] −1.04[+0] 33.79 1.71[+1] 5.79[+2] 3.19[+1] 1.15[+3] −6.27[−3] 91.69
70 2.67[−2] −1.02[+0] 38.36 1.77[+1] 6.19[+2] 3.30[+1] 1.23[+3] −5.81[−3] 91.56
50 2.13[−2] −1.00[+0] 46.93 1.88[+1] 7.03[+2] 3.52[+1] 1.40[+3] −5.02[−3] 91.35
40 1.67[−2] −9.83[−1] 58.64 2.02[+1] 8.27[+2] 3.81[+1] 1.65[+3] −4.17[−3] 91.12
30 8.98[−3] −9.51[−1] 105.83 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] −2.41[−3] 90.65

2𝑝6𝑓 ∞ 2.81[−2] −1.05[+0] 37.48 2.48[+1] 1.26[+3] 4.72[+1] 2.52[+3] −3.90[−3] 91.05
100 1.84[−2] −1.01[+0] 55.18 2.64[+1] 1.43[+3] 5.04[+1] 2.87[+3] −3.34[−3] 90.90
70 1.44[−2] −1.00[+0] 69.09 2.81[+1] 1.64[+3] 5.39[+1] 3.28[+3] −2.86[−3] 90.77
50 9.42[−3] −9.78[−1] 103.87 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] −2.04[−3] 90.55
40 5.01[−3] −9.60[−1] 191.34 4.06[+1] 3.52[+3] 7.89[+1] 7.05[+3] −1.15[−3] 90.31

2𝑝7𝑓 ∞ 2.06[−2] −1.04[+0] 50.39 3.44[+1] 2.50[+3] 6.65[+1] 5.00[+3] −2.45[−3] 90.66
100 1.10[−2] −1.00[+0] 90.45 3.86[+1] 3.14[+3] 7.48[+1] 6.28[+3] −1.85[−3] 90.50
70 7.34[−3] −9.86[−1] 134.26 4.37[+1] 4.04[+3] 8.50[+1] 8.08[+3] −1.35[−3] 90.36
50 2.53[−3] −9.65[−1] 381.10 6.40[+1] 8.91[+3] 1.25[+2] 1.78[+4] −5.17[−4] 90.13

2𝑝8𝑓 ∞ 1.57[−2] −1.03[+0] 65.32 4.56[+1] 4.45[+3] 8.89[+1] 8.90[+3] −1.64[−3] 90.44
100 6.43[−3] −9.92[−1] 154.20 5.53[+1] 6.51[+3] 1.08[+2] 1.30[+4] −1.01[−3] 90.27
70 2.95[−3] −9.77[−1] 331.09 7.15[+1] 1.09[+4] 1.40[+2] 2.18[+4] −5.20[−4] 90.14

2𝑝9𝑓 ∞ 1.24[−2] −1.02[+0] 82.20 5.83[+1] 7.33[+3] 1.14[+2] 1.46[+4] −1.16[−3] 90.31
100 3.38[−3] −9.86[−1] 291.23 8.00[+1] 1.37[+4] 1.57[+2] 2.74[+4] −5.12[−4] 90.13

2𝑝10𝑓 ∞ 9.99[−3] −1.02[+0] 102.05 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] −8.09[−4] 90.21
100 1.33[−3] −9.82[−1] 733.41 1.25[+2] 3.38[+4] 2.48[+2] 6.76[+4] −1.96[−4] 90.05

2𝑝11𝑓 ∞ 7.99[−3] −1.01[+0] 127.19 9.15[+1] 1.81[+4] 1.80[+2] 3.63[+4] −5.13[−4] 90.14
2𝑝12𝑓 ∞ 6.15[−3] −1.01[+0] 164.69 1.17[+2] 3.00[+4] 2.33[+2] 6.00[+4] −3.16[−4] 90.08
2𝑝13𝑓 ∞ 6.75[−3] −1.01[+0] 149.84 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] −5.17[−4] 90.14
2𝑝14𝑓 ∞ 5.08[−3] −1.00[+0] 198.36 1.83[+2] 7.49[+4] 3.63[+2] 1.49[+5] −3.51[−4] 90.09
2𝑝15𝑓 ∞ 7.02[−3] −1.00[+0] 142.97 2.12[+2] 1.11[+5] 4.22[+2] 2.23[+5] −7.68[−4] 90.20
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Table E
Expectation values of repulsive potential ⟨𝑉𝑟⟩, attractive potential ⟨𝑉𝑎⟩, ratio of attractive to repulsive potential 𝜂 =

|

|

|

|

⟨𝑉𝑎⟩
⟨𝑉𝑟⟩

|

|

|

|

, ⟨cos 𝜃12⟩, inter-electronic angles ⟨𝜃12⟩ (in degree) using

(10), different one and two-particle moments of metastable bound 2𝑝𝑛𝑓 1𝐹 𝑒 [𝑛 = 4−15] states of He atom below 𝐻𝑒+(2𝑝) threshold for different screening length 𝜆𝐷 . The notation
𝐴[±𝐵] stands for 𝐴 × 10±𝐵 . All values are given in atomic units.

States 𝜆𝐷 ⟨𝑉𝑟⟩ ⟨𝑉𝑎⟩ 𝜂 ⟨𝑟1⟩
⟨

𝑟21
⟩

⟨𝑟12⟩
⟨

𝑟212
⟩

⟨cos 𝜃12⟩ ⟨𝜃12⟩

2𝑝4𝑓 ∞ 6.39[−2] −1.12[+0] 17.64 9.96[+0] 1.72[+2] 1.76[+1] 3.46[+2] −1.28[−2] 93.46
100 5.39[−2] −1.08[+0] 20.15 1.00[+1] 1.77[+2] 1.78[+1] 3.57[+2] −1.24[−2] 93.36
70 4.97[−2] −1.07[+0] 21.52 1.02[+1] 1.83[+2] 1.81[+1] 3.67[+2] −1.20[−2] 93.25
50 4.41[−2] −1.04[+0] 23.73 1.04[+1] 1.93[+2] 1.86[+1] 3.87[+2] −1.13[−2] 93.07
40 3.93[−2] −1.02[+0] 26.14 1.07[+1] 2.06[+2] 1.91[+1] 4.13[+2] −1.06[−2] 92.87
30 3.13[−2] −9.96[−1] 31.76 1.14[+1] 2.39[+2] 2.05[+1] 4.79[+2] −9.11[−3] 92.45
25 2.49[−2] −9.69[−1] 38.93 1.23[+1] 2.86[+2] 2.24[+1] 5.73[+2] −7.59[−3] 92.05
20 1.41[−2] −9.28[−1] 65.43 1.59[+1] 5.32[+2] 2.94[+1] 1.06[+3] −4.57[−3] 91.23

2𝑝5𝑓 ∞ 4.07[−2] −1.08[+0] 26.55 1.66[+1] 5.41[+2] 3.09[+1] 1.08[+3] −6.43[−3] 91.73
100 3.08[−2] −1.04[+0] 33.76 1.71[+1] 5.79[+2] 3.19[+1] 1.15[+3] −5.96[−3] 91.61
70 2.67[−2] −1.02[+0] 38.33 1.77[+1] 6.18[+2] 3.30[+1] 1.23[+3] −5.53[−3] 91.49
50 2.13[−2] −1.00[+0] 46.90 1.88[+1] 7.03[+2] 3.52[+1] 1.40[+3] −4.80[−3] 91.29
40 1.67[−2] −9.83[−1] 58.59 2.02[+1] 8.27[+2] 3.81[+1] 1.65[+3] −4.00[−3] 91.08
30 8.99[−3] −9.51[−1] 105.71 2.56[+1] 1.37[+3] 4.88[+1] 2.74[+3] −2.33[−3] 90.63

2𝑝6𝑓 ∞ 2.82[−2] −1.05[+0] 37.46 2.48[+1] 1.26[+3] 4.72[+1] 2.52[+3] −3.67[−3] 90.99
100 1.84[−2] −1.01[+0] 55.14 2.64[+1] 1.43[+3] 5.04[+1] 2.87[+3] −3.15[−3] 90.85
70 1.44[−2] −1.00[+0] 69.04 2.81[+1] 1.64[+3] 5.39[+1] 3.28[+3] −2.70[−3] 90.73
50 9.43[−3] −9.78[−1] 103.78 3.22[+1] 2.17[+3] 6.21[+1] 4.34[+3] −1.94[−3] 90.52
40 5.02[−3] −9.60[−1] 191.11 4.06[+1] 3.52[+3] 7.88[+1] 7.05[+3] −1.10[−3] 90.29

2𝑝7𝑓 ∞ 2.06[−2] −1.04[+0] 50.37 3.44[+1] 2.50[+3] 6.65[+1] 5.00[+3] −2.29[−3] 90.61
100 1.10[−2] −1.00[+0] 90.38 3.86[+1] 3.14[+3] 7.48[+1] 6.28[+3] −1.74[−3] 90.46
70 7.35[−3] −9.86[−1] 134.16 4.37[+1] 4.04[+3] 8.50[+1] 8.08[+3] −1.27[−3] 90.34
50 2.53[−3] −9.65[−1] 380.59 6.40[+1] 8.91[+3] 1.25[+2] 1.78[+4] −4.91[−4] 90.13

2𝑝8𝑓 ∞ 1.57[−2] −1.03[+0] 65.29 4.56[+1] 4.44[+3] 8.89[+1] 8.90[+3] −1.53[−3] 90.41
100 6.44[−3] −9.92[−1] 154.09 5.52[+1] 6.51[+3] 1.08[+2] 1.30[+4] −9.50[−4] 90.25
70 2.95[−3] −9.77[−1] 330.77 7.14[+1] 1.09[+4] 1.40[+2] 2.18[+4] −4.89[−4] 90.13

2𝑝9𝑓 ∞ 1.24[−2] −1.02[+0] 82.17 5.83[+1] 7.33[+3] 1.14[+2] 1.46[+4] −1.07[−3] 90.29
100 3.39[−3] −9.86[−1] 291.01 8.00[+1] 1.37[+4] 1.57[+2] 2.74[+4] −4.78[−4] 90.12

2𝑝10𝑓 ∞ 9.99[−3] −1.02[+0] 102.02 7.31[+1] 1.15[+4] 1.43[+2] 2.31[+4] −7.48[−4] 90.20
100 1.34[−3] −9.82[−1] 732.32 1.25[+2] 3.38[+4] 2.48[+2] 6.76[+4] −1.83[−4] 90.04

2𝑝11𝑓 ∞ 7.99[−3] −1.01[+0] 127.14 9.14[+1] 1.81[+4] 1.80[+2] 3.63[+4] −4.70[−4] 90.12
2𝑝12𝑓 ∞ 6.15[−3] −1.01[+0] 164.66 1.17[+2] 3.00[+4] 2.33[+2] 6.00[+4] −2.85[−4] 90.07
2𝑝13𝑓 ∞ 6.74[−3] −1.01[+0] 150.09 1.33[+2] 4.07[+4] 2.64[+2] 8.15[+4] −4.67[−4] 90.13
2𝑝14𝑓 ∞ 5.07[−3] −1.00[+0] 198.97 1.83[+2] 7.49[+4] 3.64[+2] 1.49[+5] −3.09[−4] 90.08
2𝑝15𝑓 ∞ 6.76[−3] −1.00[+0] 147.92 2.15[+2] 1.13[+5] 4.27[+2] 2.26[+5] −6.59[−4] 90.17

potential ⟨𝑉𝑟⟩, attractive potential ⟨𝑉𝑎⟩, ⟨cos 𝜃12⟩, ⟨𝜃12⟩, ⟨𝑟1⟩,
⟨

𝑟21
⟩

, ⟨𝑟12⟩
and

⟨

𝑟212
⟩

of 3𝐹 𝑒 and 1𝐹 𝑒 MBSs for different 𝜆𝐷 values. It can be seen
from Tables D and E that both the one and two-particle moments ⟨𝑟1⟩
and ⟨𝑟12⟩ increase when 𝜆𝐷 decreases for 1,3𝐹 𝑒 states. This indicates that
the size of the atom increases with the decrease of 𝜆𝐷, i.e. expansion of
the atom occurs.

We have used the ‘‘soft-wall’’ technique [59,60,67] of the well
celebrated stabilization method [61,62] to estimate the energy (𝐸𝑟) and
width (𝛤𝑟) of the RSs. Firstly we calculate the density of states (DOS)
of a single RS as the inverse of the slope of the stabilization plot, taking
points from the plateau region as given in the following formula,

𝜌𝑘(𝐸) =
|

|

|

|

|

𝛾𝑖+1 − 𝛾𝑖−1
𝐸𝑘(𝛾𝑖+1) − 𝐸𝑘(𝛾𝑖−1)

|

|

|

|

|

(13)

Finally, the resonance parameters (𝐸𝑟, 𝛤𝑟) are obtained by Lorentzian
fitting of the DOS as

𝜌𝑘(𝐸) = 𝑦0 +
𝐴
𝜋

𝛤𝑟∕2
(𝐸 − 𝐸𝑟)2 + (𝛤𝑟∕2)2

(14)

where 𝑦0 is the baseline background, 𝐴 is the total area under the
curve from the baseline, 𝐸𝑟 gives the position of the centre of the peak
of the curve, and 𝛤𝑟 represents the full width at half maximum. For
example, Fig. 2 shows the plot of DOS of the 9-th root with respect to
energy values (E) which is fitted by Lorentzian curve using Eq. (14).
The fitting gives the resonance parameters as 𝐸𝑟 = −0.026947 a.u. and
𝛤𝑟 = 0.00195 a.u. All plotting and fitting operations are done using the
QtiPlot software, and the plot with least 𝜒2 fitting is considered.

The values of 𝐸𝑟 and 𝛤𝑟 of resonance 3𝐹 𝑒 states below the 𝐻𝑒+(3𝑝)
threshold for various 𝜆𝐷 are provided in Tables F and G, respectively.
The feature of the decrease of the number of RS with respect to
the decrease in 𝜆𝐷 is similar to that of MBS. Estimated resonance

parameters (𝐸𝑟, 𝛤𝑟) are compared with the only available values of
Kar and Ho [66] below the 𝐻𝑒+(3𝑝) threshold in the Tables F and G.
We have obtained a greater number of RSs than reported by Kar and
Ho [66] for each 𝜆𝐷. The resonance 3𝐹 𝑒 state can originate from the
electronic configurations 3𝑑𝑛𝑑 [𝑛 ≥ 3], 3𝑝𝑛𝑓 [𝑛 ≥ 4] and 3𝑑𝑛𝑔 [𝑛 ≥ 5].
The identification [59,66] of the configurations are given below:

(i) 3𝐹 𝑒(1),3 𝐹 𝑒(2),3 𝐹 𝑒(4),3 𝐹 𝑒(7),3 𝐹 𝑒(10),3 𝐹 𝑒(13),3 𝐹 𝑒(16) and 3𝐹 𝑒(19)
states originate from the dominant 3𝑑𝑛𝑑 [3 ≤ 𝑛 ≤ 10] configura-
tions.

(ii) 3𝐹 𝑒(3),3 𝐹 𝑒(5),3 𝐹 𝑒(8),3 𝐹 𝑒(11),3 𝐹 𝑒(14),3 𝐹 𝑒(17) and 3𝐹 𝑒(20) states
originate from the dominant 3𝑝𝑛𝑓 [4 ≤ 𝑛 ≤ 10] configurations.

(iii) 3𝐹 𝑒(6),3 𝐹 𝑒(9),3 𝐹 𝑒(12),3 𝐹 𝑒(15) and 3𝐹 𝑒(18) states originate from
the dominant 3𝑑𝑛𝑔 [5 ≤ 𝑛 ≤ 9] configurations.

From Table G it can be seen that the width 𝛤𝑟 of RS decreases with the
decrease of 𝜆𝐷 for most of the states except the RSs having dominant
configurations 3𝑑𝑛𝑔 [5 ≤ 𝑛 ≤ 9]. Fig. 3 depicts the variation of 𝛤𝑟
with respect to 1

𝜆𝐷
for the 3𝐹 𝑒(1),3 𝐹 𝑒(3) and 3𝐹 𝑒(6) RS, corresponding

to the dominant electronic configurations 3𝑑2, 3𝑝4𝑓 and 3𝑑5𝑔 respec-
tively. A similar feature for the resonance widths of 3𝑃 𝑒 symmetry of
two-electron systems are reported in literature [68,69].

We have estimated the changes of the structural properties with the
change of screening length 𝜆𝐷. The structural properties like ⟨𝑉𝑟⟩, ⟨𝑉𝑎⟩,
𝜂
(

=
|

|

|

|

⟨𝑉𝑎⟩
⟨𝑉𝑟⟩

|

|

|

|

)

, ⟨cos 𝜃12⟩, ⟨𝜃12⟩ using (10), ⟨𝑟1⟩,
⟨

𝑟21
⟩

, ⟨𝑟12⟩ and
⟨

𝑟212
⟩

of

resonance 3𝐹 𝑒 states of He atom below 𝐻𝑒+(3𝑝) threshold are given
in the Table H. Like the MBSs, ⟨𝑉𝑎⟩ and ⟨𝑉𝑟⟩ decrease while the ratio
𝜂 increases with the decrease of 𝜆𝐷. Table H shows that similar to
MBS, ⟨𝑟1⟩,

⟨

𝑟21
⟩

, ⟨𝑟12⟩ and
⟨

𝑟212
⟩

increases as 𝜆𝐷 decreases. From the
last column of Table H it can be seen that, ⟨𝜃12⟩ values of 3𝑑𝑛𝑑 and
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Table F
Resonance energy 𝐸𝑟 (a.u.) of 3𝐹 𝑒 states of He atom below He+(3𝑝) threshold and energy of 3𝑝 state of He+ ion for different screening length 𝜆𝐷 in a.u.

States 𝜆𝐷
∞ 100 70 50 40 30 25 20 15 12

𝐻𝑒+(3𝑝) −0.222222 −0.202835 −0.194885 −0.184610 −0.175918 −0.162017 −0.151409 −0.136315 −0.113232 −0.092587
3𝐹 𝑒(1) −0.31072 −0.28159 −0.26947 −0.25385 −0.24059 −0.21926 −0.20291 −0.17953 −0.14352 −0.11113

−0.31069a −0.28135a −0.269175a −0.253315a −0.23978a −0.217945a −0.2011a −0.176905a −0.139385a −0.10523a

3𝐹 𝑒(2) −0.26283 −0.23404 −0.22239 −0.20750 −0.19505 −0.17546 −0.16080 −0.14047
−0.262825a −0.23388a −0.22211a −0.206995a −0.194305a −0.17426a −0.159195a −0.138115a

3𝐹 𝑒(3) −0.25826 −0.22956 −0.21801 −0.20327 −0.19098 −0.17171 −0.15734 −0.13759
−0.25826a −0.229345a −0.217605a −0.202535a −0.1899a −0.16996a −0.155015a

3𝐹 𝑒(4) −0.24681 −0.21852 −0.20739 −0.19338 −0.18188 −0.16426
−0.246805a −0.218385a −0.20712a −0.192915a −0.18122a −0.16309a

3𝐹 𝑒(5) −0.24438 −0.21621 −0.20524 −0.19145 −0.18018 −0.16300
−0.244385a −0.21604a −0.20485a −0.19077a −0.179205a

3𝐹 𝑒(6) −0.2412 −0.21318 −0.20213 −0.18840 −0.17724
−0.2413a −0.2129a −0.2017a −0.1876a −0.1762a

3𝐹 𝑒(7) −0.23871 −0.21104 −0.20046 −0.18741 −0.17691
−0.238705a −0.210905a −0.20022a −0.186985a

3𝐹 𝑒(8) −0.23730 −0.20979 −0.19936 −0.18655 −0.17631
−0.237295a −0.209605a −0.199015a −0.18593a

3𝐹 𝑒(9) −0.23560 −0.20815 −0.19776 −0. 18513
−0.2356a −0.2079a −0.19735a

3𝐹 𝑒(10) −0.23403 −0.20705 −0.19705 −0.18494
−0.234035a −0.20693a −0.196835a

3𝐹 𝑒(11) −0.23314 −0.20636 −0.19650
−0.233155a −0.206175a −0.19618a

3𝐹 𝑒(12) −0.23207 −0.20526 −0.19559
−0.2321a −0.2052a −0.19525a

3𝐹 𝑒(13) −0.23108 −0.20483 −0.19543
3𝐹 𝑒(14) −0.23071 −0.20443 −0.19518
3𝐹 𝑒(15) −0.22975 −0.20340
3𝐹 𝑒(16) −0.22906
3𝐹 𝑒(17) −0.22882
3𝐹 𝑒(18) −0.22743
3𝐹 𝑒(19) −0.22624
3𝐹 𝑒(20) −0.22401

a [66].

Fig. 2. Calculated DOS (hollow black circles) and the fitted Lorentzian (red line) for the first resonance 3𝐹 𝑒 state of He-atom below 𝐻𝑒+(3𝑝) threshold for 𝜆𝐷 = 70 a.u. which
gives the resonance energy and width 𝐸𝑟 = −0.026947 a.u. and 𝛤𝑟 = 0.00195 a.u. respectively.
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Fig. 3. The variation of resonance widths for the 3𝐹 𝑒(1),3 𝐹 𝑒(3) and 3𝐹 𝑒(6) states corresponding to the dominating configurations 3𝑑2 , 3𝑝4𝑓 and 3𝑑5𝑔 respectively, with respect to

the reciprocal of screening lengths
(

1
𝜆𝐷

)

.

Table G
Resonance width 𝛤𝑟 (a.u.) of 3𝐹 𝑒 states of He below He+(3𝑝) threshold for different screening length 𝜆𝐷 in a.u. The notation 𝐴[±𝐵] stands for 𝐴 × 10±𝐵 .

States 𝜆𝐷
∞ 100 70 50 40 30 25 20 15 12

3𝐹 𝑒(1) 1.97[−3] 1.98[−3] 1.95[−3] 1.93[−3] 1.88[−3] 1.83[−3] 1.77[−3] 1.66[−3] 1.47[−3] 1.23[−3]
1.98[−3]a 1.975[−3]a 1.965[−3]a 1.945[−3]a 1.925[−3]a 1.88[−3]a 1.835[−3]a 1.76[−3]a 1.61[−3]a 1.4[−3]a

3𝐹 𝑒(2) 4.50[−4] 4.49[−4] 4.37[−4] 4.31[−4] 4.12[−4] 3.80[−4] 3.46[−3] 2.79[−4]
4.515[−4]a 4.47[−4]a 4.425[−4]a 4.33[−4]a 4.205[−4]a 3.905[−4]a 3.575[−4]a 3.01[−4]a

3𝐹 𝑒(3) 1.67[−4] 1.60[−3] 1.46[−4] 1.37[−4] 1.14[−4] 8.58[−5] 6.52[−5] 4.21[−5]
1.68[−4]a 1.57[−4]a 1.465[−4]a 1.29[−4]a 1.115[−4]a 8.25[−5]a 0.615[−4]a

3𝐹 𝑒(4) 2.08[−4] 1.99[−4] 1.92[−4] 1.83[−4] 1.68[−4] 1.14[−4]
2.065[−4]a 2.005[−4]a 1.945[−4]a 1.805[−4]a 1.635[−4]a 1.305[−4]a

3𝐹 𝑒(5) 1.12[−4] 1.04[−4] 8.10[−5] 6.63[−5] 5.04[−5] 4.09[−5]
1.06[−4]a 9.25[−5]a 8.1[−5]a 6.4[−5]a 5.05[−5]a

3𝐹 𝑒(6) 1.29[−9] 2.49[−8] 5.08[−7] 1.48[−6] 2.37[−6]
3𝐹 𝑒(7) 1.09[−4] 9.55[−5] 9.26[−5] 7.43[−5] 4.48[−5]

1.105[−4]a 1.035[−4]a 9.45[−5]a 7.75[−5]a

3𝐹 𝑒(8) 6.61[−5] 5.24[−5] 3.94[−5] 3.64[−5] 2.75[−5]
6.6[−5]a 5.2[−5]a 4.15[−5]a 3.0[−5]a

3𝐹 𝑒(9) 1.18[−8] 1.73[−7] 1.22[−5] 1.73[−5]
3𝐹 𝑒(10) 5.96[−5] 5.37[−5] 4.39[−5] 1.41[−5]

6.6[−5]a 5.95[−5]a

3𝐹 𝑒(11) 5.37[−5] 2.71[−5] 1.07[−5]
3𝐹 𝑒(12) 2.45[−7] 2.91[−6] 1.16[−5]
3𝐹 𝑒(13) 1.84[−4] 1.11[−4] 4.36[−5]

(continued on next page)
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Table G (continued).
States 𝜆𝐷

∞ 100 70 50 40 30 25 20 15 12
3𝐹 𝑒(14) 1.61[−4] 3.05[−5] 1.16[−5]
3𝐹 𝑒(15) 4.06[−6] 9.0[−5]
3𝐹 𝑒(16) 6.53[−5]
3𝐹 𝑒(17) 1.06[−4]
3𝐹 𝑒(18) 7.46[−5]
3𝐹 𝑒(19) 1.60[−4]
3𝐹 𝑒(20) 1.83[−4]

a [66].

Table H
Expectation values of repulsive potential ⟨𝑉𝑟⟩, attractive potential ⟨𝑉𝑎⟩, ratio of attractive to repulsive potential 𝜂 =

|

|

|

|

⟨𝑉𝑎⟩
⟨𝑉𝑟⟩

|

|

|

|

, ⟨cos 𝜃12⟩, inter-electronic angles ⟨𝜃12⟩ (in degree) using

(10), different one and two-particle moments of resonance 3𝐹 𝑒 states of He atom below 𝐻𝑒+(3𝑝) threshold. The notation 𝐴[±𝐵] stands for 𝐴× 10±𝐵 . All values are given in atomic
units.

States 𝜆 ⟨𝑉𝑟⟩ ⟨𝑉𝑎⟩ 𝜂 ⟨𝑟1⟩
⟨

𝑟21
⟩

⟨𝑟12⟩
⟨

𝑟212
⟩

⟨cos 𝜃12⟩ ⟨𝜃12⟩
3𝐹 𝑒(1) ∞ 1.11[−1] −7.49[−1] 6.75 6.70[+0] 5.70[+1] 1.04[+1] 1.28[+2] −1.36[−1] 126.85

100 1.01[−1] −7.10[−1] 7.01 6.63[+0] 5.46[+1] 1.03[+1] 1.24[+2] −1.37[−1] 127.06
70 9.74[−2] −6.93[−1] 7.12 6.62[+0] 5.42[+1] 1.03[+1] 1.23[+2] −1.36[−1] 126.86
50 9.23[−2] −6.71[−1] 7.26 6.61[+0] 5.39[+1] 1.02[+1] 1.22[+2] −1.35[−1] 126.69
40 8.84[−2] −6.49[−1] 7.35 6.59[+0] 5.27[+1] 1.02[+1] 1.20[+2] −1.37[−1] 127.12
30 8.13[−2] −6.18[−1] 7.60 6.62[+0] 5.38[+1] 1.02[+1] 1.22[+2] −1.35[−1] 126.68
25 7.60[−2] −5.93[−1] 7.79 6.64[+0] 5.42[+1] 1.03[+1] 1.23[+2] −1.35[−1] 126.64
20 6.86[−2] −5.55[−1] 8.09 6.71[+0] 5.51[+1] 1.04[+1] 1.25[+2] −1.36[−1] 126.77
15 5.69[−2] −4.94[−1] 8.68 6.88[+0] 5.83[+1] 1.07[+1] 1.32[+2] −1.35[−1] 126.50
12 4.63[−2] −4.32[−1] 9.33 7.14[+0] 6.34[+1] 1.11[+1] 1.44[+2] −1.35[−1] 126.52

3𝐹 𝑒(2) ∞ 6.67[−2] −5.96[−1] 8.93 1.07[+1] 1.59[+2] 1.82[+1] 3.74[+2] −2.31[−1] 152.41
100 5.70[−2] −5.57[−1] 9.76 1.08[+1] 1.62[+2] 1.83[+1] 3.80[+2] −2.29[−1] 152.03
70 5.30[−2] −5.40[−1] 10.17 1.09[+1] 1.66[+2] 1.85[+1] 3.87[+2] −2.28[−1] 151.71
50 4.79[−2] −5.17[−1] 10.80 1.10[+1] 1.71[+2] 1.88[+1] 3.99[+2] −2.26[−1] 151.04
40 4.35[−2] −4.98[−1] 11.43 1.12[+1] 1.79[+2] 1.91[+1] 4.15[+2] −2.24[−1] 150.50
30 3.65[−2] −4.66[−1] 12.77 1.16[+1] 1.95[+2] 1.99[+1] 4.47[+2] −2.19[−1] 149.18
25 3.11[−2] −4.41[−1] 14.18 1.20[+1] 2.13[+2] 2.07[+1] 4.85[+2] −2.15[−1] 148.05
20 2.33[−2] −4.03[−1] 17.30 1.30[+1] 2.56[+2] 2.25[+1] 5.75[+2] −2.10[−1] 146.73

3𝐹 𝑒(3) ∞ 6.50[−2] −5.83[−1] 8.96 1.10[+1] 1.70[+2] 1.73[+1] 3.34[+2] 9.91[−3] 87.32
100 5.53[−2] −5.43[−1] 9.81 1.11[+1] 1.73[+2] 1.74[+1] 3.39[+2] 1.11[−2] 86.99
70 5.13[−2] −5.26[−1] 10.24 1.12[+1] 1.76[+2] 1.76[+1] 3.45[+2] 1.17[−2] 86.83
50 4.63[−2] −5.04[−1] 10.89 1.13[+1] 1.82[+2] 1.79[+1] 3.56[+2] 1.39[−2] 86.22
40 4.19[−2] −4.84[−1] 11.56 1.15[+1] 1.89[+2] 1.82[+1] 3.71[+2] 1.53[−2] 85.84
30 3.48[−2] −4.53[−1] 12.99 1.20[+1] 2.08[+2] 1.90[+1] 4.05[+2] 2.05[−2] 84.46
25 2.93[−2] −4.27[−1] 14.57 1.25[+1] 2.31[+2] 1.99[+1] 4.50[+2] 2.70[−2] 82.68
20 2.08[−2] −3.89[−1] 18.69 1.39[+1] 3.01[+2] 2.25[+1] 5.81[+2] 4.78[−2] 77.07

3𝐹 𝑒(4) ∞ 4.32[−2] −5.38[−1] 12.46 1.65[+1] 4.41[+2] 2.95[+1] 9.81[+2] −2.54[−1] 158.78
100 3.37[−2] −4.99[−1] 14.79 1.67[+1] 4.58[+2] 3.00[+1] 1.01[+3] −2.44[−1] 155.89
70 2.97[−2] −4.82[−1] 16.24 1.72[+1] 4.86[+2] 3.09[+1] 1.07[+3] −2.48[−1] 156.97
50 2.47[−2] −4.60[−1] 18.61 1.78[+1] 5.29[+2] 3.21[+1] 1.16[+3] −2.41[−1] 155.25
40 2.05[−2] −4.41[−1] 21.45 1.86[+1] 5.85[+2] 3.37[+1] 1.27[+3] −2.35[−1] 153.64
30 1.38[−2] −4.10[−1] 29.54 2.09[+1] 7.57[+2] 3.80[+1] 1.62[+3] −2.28[−1] 151.75

3𝐹 𝑒(5) ∞ 4.12[−2] −5.30[−1] 12.88 1.74[+1] 5.05[+2] 2.97[+1] 9.95[+2] 2.79[−2] 82.44
100 3.19[−2] −4.92[−1] 15.40 1.77[+1] 5.23[+2] 3.01[+1] 1.02[+3] 4.34[−2] 78.25
70 2.76[−2] −4.74[−1] 17.17 1.83[+1] 5.61[+2] 3.13[+1] 1.10[+3] 3.78[−2] 79.77
50 2.26[−2] −4.52[−1] 20.01 1.91[+1] 6.20[+2] 3.28[+1] 1.21[+3] 4.89[−2] 76.79
40 1.83[−2] −4.33[−1] 23.58 2.02[+1] 7.01[+2] 3.48[+1] 1.36[+3] 6.31[−2] 72.94
30 1.14[−2] −4.02[−1] 35.09 2.34[+1] 9.83[+2] 4.09[+1] 1.90[+3] 1.00[−1] 62.83

3𝐹 𝑒(6) ∞ 4.04[−2] −5.23[−1] 12.93 1.68[+1] 4.55[+2] 2.75[+1] 8.35[+2] 1.81[−1] 40.86
100 3.04[−2] −4.83[−1] 15.89 1.73[+1] 4.85[+2] 2.85[+1] 8.96[+2] 1.77[−1] 42.11
70 2.59[−2] −4.65[−1] 17.98 1.79[+1] 5.31[+2] 2.98[+1] 9.85[+2] 1.72[−1] 43.44
50 2.00[−2] −4.43[−1] 22.13 1.92[+1] 6.26[+2] 3.24[+1] 1.17[+3] 1.63[−1] 45.81
40 1.40[−2] −4.21[−1] 30.12 2.25[+1] 9.20[+2] 3.89[+1] 1.75[+3] 1.35[−1] 53.29

3𝐹 𝑒(7) ∞ 2.98[−2] −5.08[−1] 17.01 2.39[+1] 1.02[+3] 4.42[+1] 2.20[+3] −2.65[−1] 161.74
100 2.04[−2] −4.69[−1] 22.95 2.49[+1] 1.12[+3] 4.62[+1] 2.40[+3] −2.56[−1] 159.20
70 1.66[−2] −4.52[−1] 27.17 2.61[+1] 1.23[+3] 4.86[+1] 2.64[+3] −2.56[−1] 159.15
50 1.20[−2] −4.31[−1] 35.91 2.84[+1] 1.49[+3] 5.31[+1] 3.16[+3] −2.49[−1] 157.30
40 8.87[−3] −4.13[−1] 46.62 3.08[+1] 1.81[+3] 5.78[+1] 3.81[+3] −2.22[−1] 150.06

3𝐹 𝑒(8) ∞ 2.85[−2] −5.03[−1] 17.67 2.53[+1] 1.17[+3] 4.53[+1] 2.31[+3] 3.58[−2] 80.32
100 1.90[−2] −4.64[−1] 24.32 2.65[+1] 1.29[+3] 4.75[+1] 2.54[+3] 5.54[−2] 75.03
70 1.51[−2] −4.47[−1] 29.51 2.81[+1] 1.46[+3] 5.05[+1] 2.87[+3] 5.94[−2] 73.93
50 1.14[−2] −4.29[−1] 37.65 3.01[+1] 1.72[+3] 5.52[+1] 3.44[+3] 1.09[−3] 89.70
40 6.73[−3] −4.08[−1] 60.73 3.57[+1] 2.44[+3] 6.53[+1] 4.78[+3] 1.15[−1] 58.94

3𝐹 𝑒(9) ∞ 2.80[−2] −4.99[−1] 17.76 2.52[+1] 1.16[+3] 4.40[+1] 2.20[+3] 2.04[−1] 34.77
100 1.79[−2] −4.59[−1] 25.59 2.71[+1] 1.36[+3] 4.78[+1] 2.58[+3] 1.91[−1] 38.17
70 1.37[−2] −4.42[−1] 32.17 2.92[+1] 1.60[+3] 5.20[+1] 3.06[+3] 1.81[−1] 40.89

(continued on next page)
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Table H (continued).
States 𝜆 ⟨𝑉𝑟⟩ ⟨𝑉𝑎⟩ 𝜂 ⟨𝑟1⟩

⟨

𝑟21
⟩

⟨𝑟12⟩
⟨

𝑟212
⟩

⟨cos 𝜃12⟩ ⟨𝜃12⟩

50 6.80[−3] −4.18[−1] 61.46 3.96[+1] 3.12[+3] 7.32[+1] 6.15[+3] 7.65[−2] 69.33
3𝐹 𝑒(10) ∞ 2.17[−2] −4.90[−1] 22.52 3.29[+1] 2.05[+3] 6.21[+1] 4.33[+3] 2.71[−1] 163.34

100 1.25[−2] −4.51[−1] 35.86 3.55[+1] 2.41[+3] 6.73[+1] 5.06[+3] −2.56[−1] 159.16
70 8.99[−3] −4.35[−1] 48.40 3.89[+1] 2.93[+3] 7.41[+1] 6.12[+3] −2.57[−1] 159.57
50 4.71[−3] −4.14[−1] 88.03 4.91[+1] 4.87[+3] 9.33[+1] 9.76[+3] −2.41[−2] 96.51

3𝐹 𝑒(11) ∞ 2.09[−2] −4.87[−1] 23.27 3.47[+1] 2.32[+3] 6.39[+1] 4.60[+3] 5.16[−2] 76.04
100 1.14[−2] −4.48[−1] 38.99 3.82[+1] 2.84[+3] 7.08[+1] 5.61[+3] 6.04[−2] 73.67
70 7.94[−3] −4.32[−1] 54.41 4.24[+1] 3.52[+3] 7.88[+1] 6.94[+3] 8.98[−2] 65.72

3𝐹 𝑒(12) ∞ 2.08[−2] −4.84[−1] 23.20 3.48[+1] 2.36[+3] 6.30[+1] 4.52[+3] 2.21[−1] 30.16
100 1.11[−2] −4.45[−1] 39.99 3.96[+1] 3.12[+3] 7.28[+1] 6.04[+3] 1.93[−1] 37.76
70 6.24[−3] −4.28[−1] 68.58 4.97[+1] 5.04[+3] 9.30[+1] 9.84[+3] 1.63[−1] 45.72

3𝐹 𝑒(13) ∞ 1.64[−2] −4.78[−1] 29.07 4.36[+1] 3.76[+3] 8.36[+1] 7.82[+3] −2.69[−1] 162.69
100 7.54[−3] −4.40[−1] 58.37 5.00[+1] 4.97[+3] 9.62[+1] 1.02[+4] −2.62[−1] 160.82
70 4.50[−3] −4.25[−1] 94.44 5.81[+1] 6.81[+3] 1.12[+2] 1.40[+4] −2.52[−1] 158.04

3𝐹 𝑒(14) ∞ 1.59[−2] −4.77[−1] 29.87 4.57[+1] 4.16[+3] 8.56[+1] 8.24[+3] 6.26[−2] 73.07
100 7.80[−3] −4.41[−1] 56.58 5.18[+1] 5.46[+3] 9.87[+1] 1.09[+4] −1.20[−2] 93.25
70 3.70[−3] −4.23[−1] 114.22 6.48[+1] 8.56[+3] 1.23[+2] 1.69[+4] 1.19[−1] 57.61

3𝐹 𝑒(15) ∞ 1.54[−2] −4.75[−1] 30.69 4.77[+1] 4.60[+3] 8.87[+1] 8.93[+3] 2.20[−1] 30.34
100 4.92[−3] −4.35[−1] 88.43 6.93[+1] 9.94[+3] 1.33[+2] 1.98[+4] 4.56[−3] 88.76

3𝐹 𝑒(16) ∞ 1.36[−2] −4.72[−1] 34.67 5.47[+1] 6.13[+3] 1.05[+2] 1.25[+4] −1.98[−1] 143.56
3𝐹 𝑒(17) ∞ 1.32[−2] −4.72[−1] 35.67 5.67[+1] 6.63[+3] 1.08[+2] 1.32[+4] 8.88[−3] 87.60
3𝐹 𝑒(18) ∞ 1.06[−2] −4.66[−1] 43.76 6.99[+1] 1.01[+4] 1.34[+2] 2.03[+4] 3.25[−3] 89.12
3𝐹 𝑒(19) ∞ 1.46[−2] −4.78[−1] 32.76 6.41[+1] 9.26[+3] 1.23[+2] 1.85[+4] −8.82[−4] 90.23
3𝐹 𝑒(20) ∞ 1.72[−2] −4.82[−1] 28.01 5.17[+1] 6.17[+3] 9.84[+1] 1.23[+4] −4.61[−3] 91.24

Table I
Resonance energy 𝐸𝑟 (a.u.) of 3𝐹 𝑒 states of He atom below He+(4𝑝) threshold and energy of 4𝑝 state of He+ ion for different screening length 𝜆𝐷 in a.u.

States 𝜆𝐷
∞ 100 70 50 40 30 25 20 15 12

𝐻𝑒+(4𝑝) −0.125 −0.106103 −0.098644 −0.089253 −0.081531 −0.069631 −0.060935 −0.049177 −0.032750 −0.019932
3𝐹 𝑒(1) −0.22202 −0.20241 −0.19440 −0.18395 −0.17523 −0.16051 −0.15062 −0.13401 −0.11073 −0.09137
3𝐹 𝑒(2) −0.21320 −0.20061 −0.19321 −0.18309 −0.17463 −0.15971 −0.14973 −0.13371 −0.10951 −0.09064
3𝐹 𝑒(3) −0.20705 −0.19778 −0.19119 −0.18161 −0.17354 −0.15838 −0.14921 −0.13304 −0.10896 −0.08733
3𝐹 𝑒(4) −0.20295 −0.19311 −0.18794 −0.17923 −0.17182 −0.15638 −0.14827 −0.13195 −0.10809 −0.08686
3𝐹 𝑒(5) −0.19788 −0.18588 −0.18301 −0.17563 −0.16924 −0.15354 −0.14684 −0.12799 −0.10680 −0.08622
3𝐹 𝑒(6) −0.17866 −0.17531 −0.17557 −0.17021 −0.16541 −0.14928 −0.14468 −0.12466 −0.10497 −0.08538
3𝐹 𝑒(7) −0.16622 −0.16197 −0.16471 −0.16264 −0.15979 −0.14329 −0.14158 −0.11989 −0.10239 −0.08401
3𝐹 𝑒(8) −0.16420 −0.15717 −0.15082 −0.15122 −0.15167 −0.13470 −0.13712 −0.11320 −0.09869 −0.08201
3𝐹 𝑒(9) −0.15838 −0.15052 −0.14595 −0.13672 −0.14008 −0.12263 −0.13082 −0.10385 −0.09353 −0.07923
3𝐹 𝑒(10) −0.15714 −0.14977 −0.13851 −0.13171 −0.12506 −0.10678 −0.12189 −0.09086 −0.08634 −0.07530
3𝐹 𝑒(11) −0.15085 −0.13829 −0.12623 −0.12417 −0.11987 −0.10134 −0.10927 −0.07409 −0.06270 −0.05173
3𝐹 𝑒(12) −0.14718 −0.13555 −0.11925 −0.11592 −0.11225 −0.09445 −0.09317 −0.06865 −0.04578 −0.03751
3𝐹 𝑒(13) −0.14593 −0.13052 −0.11803 −0.11107 −0.10816 −0.08210 −0.08758 −0.06165 −0.04131 −0.02294
3𝐹 𝑒(14) −0.14483 −0.12912 −0.11197 −0.10546 −0.10009 −0.08083 −0.08012 −0.05080
3𝐹 𝑒(15) −0.14376 −0.12357 −0.10877 −0.10442 −0.09423 −0.07734 −0.06868 −0.05080
3𝐹 𝑒(16) −0.13969 −0.11937 −0.10799 −0.09849 −0.09310 −0.07613 −0.06503
3𝐹 𝑒(17) −0.13922 −0.11806 −0.10675 −0.09486 −0.08839 −0.07179 −0.06391
3𝐹 𝑒(18) −0.13823 −0.11733 −0.10265 −0.09394 −0.08451 −0.06995
3𝐹 𝑒(19) −0.13570 −0.11667 −0.10208 −0.09293 −0.08377
3𝐹 𝑒(20) −0.13314 −0.11257 −0.10017 −0.09096 −0.08273
3𝐹 𝑒(21) −0.13115 −0.11222
3𝐹 𝑒(22) −0.12967 −0.11161
3𝐹 𝑒(23) −0.12827 −0.10936
3𝐹 𝑒(24) −0.12705 −0.10748
3𝐹 𝑒(25) −0.12638

3𝑝𝑛𝑓 states decrease with the decrease of 𝜆𝐷. The clear difference in
the variation of ⟨𝜃12⟩ between 3𝑑𝑛𝑑 and 3𝑝𝑛𝑓 states lies in the fact
that ⟨𝜃12⟩ is obtuse in case of 3𝑑𝑛𝑑 states whereas ⟨𝜃12⟩ assumes acute
values in case of 3𝑝𝑛𝑓 states. The nature of variation of ⟨𝜃12⟩ for 3𝑑𝑛𝑔
states is completely different from those of 3𝑑𝑛𝑑 and 3𝑝𝑛𝑓 states. In
free case, ⟨𝜃12⟩ of 3𝑑𝑛𝑔 states are smaller than that of 3𝑝𝑛𝑓 states.
⟨𝜃12⟩ of 3𝑑𝑛𝑔 states increase as 𝜆𝐷 decreases. Thus it is evident that
the variation of width 𝛤𝑟 with respect to 𝜆𝐷 has a clear correlation
with the changes in the inter-electronic angle ⟨𝜃12⟩. Small acute inter-
electronic angles correspond to small widths i.e. higher autoionizing
lifetime. Hence 3𝑑𝑛𝑔 states are very much stable against autoionization
in free case and become autoionizing prone as 𝜆𝐷 decreases. Resonance
energy and width of 3𝐹 𝑒 states of He below He+(4𝑝) threshold are given
in Tables I and J respectively for different screening length 𝜆𝐷. Unlike
the variation of width for RSs below He+(3𝑝) threshold, the variation

of resonance widths (𝛤𝑟) of some RSs below He+(4𝑝) threshold does not
always follow a fixed pattern. The resonance parameters of 1𝐹 𝑒 states
below He+(3𝑝) and He+(4𝑝) thresholds are given in Tables K, L, M and
N. These tables reveal similar features as discussed in case of 3𝐹 𝑒 states.
Several structural properties like ⟨𝑉𝑟⟩, ⟨𝑉𝑎⟩, ⟨cos 𝜃12⟩, ⟨𝜃12⟩, ⟨𝑟1⟩,

⟨

𝑟21
⟩

,
⟨𝑟12⟩ and

⟨

𝑟212
⟩

of resonance 1𝐹 𝑒 states below He+(3𝑝) threshold are
given in Table O.

4. Conclusions

In the present investigation, we have estimated the structural prop-
erties of meta-stable bound and resonance 1,3𝐹 𝑒 states of He-atom
where the electron-nucleus and electron–electron interactions are mod-
elled by exponentially screened Coulomb potential. The trial radial
wavefunction is expanded in explicitly correlated multi-exponent
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Table J
Resonance width 𝛤𝑟 (a.u.) of 3𝐹 𝑒 states of He atom below He+(4𝑝) threshold for different screening length 𝜆𝐷 in a.u. The notation 𝐴[±𝐵] stands for 𝐴 × 10±𝐵 .

States 𝜆𝐷
∞ 100 70 50 40 30 25 20 15 12

3𝐹 𝑒(1) 4.32[−4] 9.00[−5] 6.74[−5] 4.29[−5] 2.67[−5] 3.12[−5] 1.00[−4] 2.23[−5] 4.01[−4] 8.83[−5]
3𝐹 𝑒(2) 4.53[−4] 3.00[−4] 9.27[−5] 7.68[−5] 3.80[−5] 5.51[−5] 1.36[−5] 6.17[−5] 1.52[−5] 3.88[−5]
3𝐹 𝑒(3) 7.05[−4] 2.80[−4] 1.40[−4] 1.50[−4] 1.16[−4] 7.37[−5] 4.16[−5] 6.91[−5] 5.01[−5] 6.04[−7]
3𝐹 𝑒(4) 6.08[−4] 4.61[−4] 2.87[−4] 1.98[−4] 1.38[−4] 1.51[−4] 6.02[−5] 9.51[−5] 6.09[−5] 2.09[−5]
3𝐹 𝑒(5) 6.15[−4] 6.90[−4] 3.10[−4] 2.19[−4] 1.73[−4] 1.98[−4] 1.14[−4] 1.46[−4] 8.03[−5] 5.46[−5]
3𝐹 𝑒(6) 1.05[−3] 5.65[−4] 4.86[−4] 4.28[−4] 2.29[−4] 2.70[−4] 1.48[−4] 1.65[−4] 1.32[−4] 9.38[−5]
3𝐹 𝑒(7) 1.07[−3] 6.19[−4] 5.76[−4] 6.08[−4] 3.41[−4] 3.23[−4] 1.98[−4] 2.31[−4] 1.28[−4] 1.24[−4]
3𝐹 𝑒(8) 8.00[−4] 6.36[−4] 6.37[−4] 5.79[−4] 4.92[−4] 4.70[−4] 2.61[−4] 3.05[−4] 1.47[−4] 1.01[−4]
3𝐹 𝑒(9) 2.73[−4] 1.83[−3] 6.39[−4] 6.49[−4] 5.82[−4] 5.97[−4] 3.14[−4] 4.54[−4] 2.08[−4] 1.06[−4]
3𝐹 𝑒(10) 4.98[−4] 1.18[−3] 1.24[−3] 6.09[−4] 6.58[−4] 6.47[−4] 4.69[−4] 5.90[−4] 2.65[−4] 1.41[−4]
3𝐹 𝑒(11) 3.20[−4] 1.27[−3] 1.03[−3] 1.18[−3] 6.27[−4] 6.06[−4] 4.88[−4] 6.59[−4] 5.82[−4] 3.72[−4]
3𝐹 𝑒(12) 4.99[−4] 7.67[−5] 4.91[−5] 4.31[−5] 1.03[−3] 2.36[−3] 6.77[−4] 5.86[−4] 5.36[−4] 5.68[−4]
3𝐹 𝑒(13) 3.79[−4] 6.02[−5] 1.90[−4] 1.24[−3] 2.39[−5] 7.44[−4] 5.86[−4] 7.41[−4] 5.38[−4] 2.74[−4]
3𝐹 𝑒(14) 5.93[−5] 2.96[−4] 2.37[−4] 4.58[−5] 9.39[−4] 7.31[−4] 8.24[−5] 2.85[−4]
3𝐹 𝑒(15) 2.26[−4] 6.27[−4] 2.67[−4] 2.21[−4] 4.56[−5] 2.51[−5] 6.56[−4] 2.85[−4]
3𝐹 𝑒(16) 9.67[−5] 4.30[−4] 1.31[−4] 1.80[−4] 1.76[−4] 9.53[−5] 1.44[−4]
3𝐹 𝑒(17) 2.25[−5] 2.01[−4] 7.53[−5] 1.06[−4] 2.33[−4] 2.63[−4] 4.07[−4]
3𝐹 𝑒(18) 2.28[−4] 5.96[−5] 4.71[−5] 7.98[−5] 2.48[−4] 1.42[−4]
3𝐹 𝑒(19) 1.71[−4] 9.57[−4] 2.73[−5] 8.27[−5] 8.36[−5]
3𝐹 𝑒(20) 2.50[−4] 1.91[−4] 2.88[−5] 4.15[−5] 1.54[−4]
3𝐹 𝑒(21) 1.90[−4] 1.80[−5]
3𝐹 𝑒(22) 3.23[−5] 6.29[−5]
3𝐹 𝑒(23) 9.07[−5] 3.47[−5]
3𝐹 𝑒(24) 2.36[−4] 6.07[−5]
3𝐹 𝑒(25) 3.30[−4]

Table K
Resonance energy 𝐸𝑟 (a.u.) of 1𝐹 𝑒 states of He atom below He+(3𝑝) threshold and energy of 3𝑝 state of He+ ion for different screening length 𝜆𝐷 in a.u.

States 𝜆𝐷
∞ 100 70 50 40 30 25 20 15 12

𝐻𝑒+(3𝑝) −0.22222 −0.202835 −0.194885 −0.18461 −0.1759181 −0.162017 −0.151409 −0.136315 −0.113232 −0.092587
1𝐹 𝑒(1) −0.26853 −0.23968 −0.22798 −0.21299 −0.20040 −0.18051 −0.16554 −0.14459

−0.268535a −0.23953a −0.22769a −0.21245a −0.19961a −0.179235a −0.16384a −0.14222a

1𝐹 𝑒(2) −0.26096 −0.23215 −0.22050 −0.20559 −0.19312 −0.17350 −0.15885 −0.13862
−0.26096a −0.231955a −0.220125a −0.204905a −0.192105a −0.17185a −0.156635a

1𝐹 𝑒(3) −0.24883 −0.22050 −0.20931 −0.19519 −0.18356 −0.16558 −0.15244
−0.248835a −0.22035a −0.209025a −0.194695a −0.182855a −0.16451a

1𝐹 𝑒(4) −0.24571 −0.21747 −0.20636 −0.19242 −0.18101 −0.16356
−0.24571a −0.21727a −0.20599a −0.191765a −0.18007a

1𝐹 𝑒(5) −0.24130 −0.21317 −0.20214 −0.18842 −0.17749
−0.24131a −0.21293a −0.20173a −0.18765a −0.17685a

1𝐹 𝑒(6) −0.23967 −0.21194 −0.20129 −0.18811 −0.17722
−0.239665a −0.21180a −0.20104a

1𝐹 𝑒(7) −0.23802 −0.21041 −0.19990 −0.18696 −0.17660
−0.23803a −0.210235a −0.19961a −0.18625a −0.17615a

1𝐹 𝑒(8) −0.23560 −0.20813 −0.19777 −0.18526
−0.23560a −0.20792a −0.197365a −0.18475a

1𝐹 𝑒(9) −0.23457 −0.20751 −0.19727 −0.18508
−0.23458a

1𝐹 𝑒(10) −0.23358 −0.20667 −0.19675 −0.18481
−0.233595a −0.20650a −0.1963a

1𝐹 𝑒(11) −0.23201 −0.20508 −0.19563
−0.2321a −0.2052a −0.1948a

1𝐹 𝑒(12) −0.23106 −0.20456
−0.2314a −0.2045a

1𝐹 𝑒(13) −0.23078 −0.20350
−0.2035a

1𝐹 𝑒(14) −0.22925
1𝐹 𝑒(15) −0.22778
1𝐹 𝑒(16) −0.22670
1𝐹 𝑒(17) −0.22518

a [66].

Hylleraas-type basis set having total 900 terms in the basis expansion.
Instead of using truncated electron–electron screening terms, we have
developed analytic closed versions of the electron–electron screening
term for the structural determination of meta-stable bound and reso-
nance 1,3𝐹 𝑒 states of He atom. The variation method is used to obtain
energy eigenvalues of the meta-stable bound 1,3𝐹 𝑒 states and the results
are in reasonable agreement with those available in the literature

and many of them are the lowest yet obtained. It is found that, if
𝜆𝐷 decreases, the energies of the meta-stable bound states increases
towards the destabilization limit and as a result the number of bound
states decreases. The resonance parameters i.e. energy and widths of the
resonance 1,3𝐹 𝑒 states of He atom are estimated for different 𝜆𝐷 using
the stabilization method between He+(2𝑝) to He+(4𝑝) thresholds. For
each 𝜆𝐷, most of the resonance parameters below He+(3𝑝) threshold
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Table L
Resonance width 𝛤𝑟 (a.u.) of 1𝐹 𝑒 states of He atom below He+(3𝑝) threshold for different screening length 𝜆𝐷 in a.u. The notation 𝐴[±𝐵] stands for 𝐴 × 10±𝐵 .

States 𝜆𝐷
∞ 100 70 50 40 30 25 20

1𝐹 𝑒(1) 1.99[−7] 1.95[−7] 1.91[−7] 1.84[−7] 1.68[−7] 1.32[−7] 1.04[−7] 5.76[−8]
3.9[−7]a 3.80[−7]a 3.66[−7]a 3.39[−7]a 2.92[−7]a

1𝐹 𝑒(2) 4.75[−5] 4.68[−5] 4.52[−5] 4.24[−5] 3.94[−5] 3.31[−5] 2.76[−5] 1.83[−5]
9.68[−5]a 9.39[−5]a 9.10[−5]a 8.58[−5]a 8.00[−5]a

1𝐹 𝑒(3) 6.20[−8] 4.26[−8] 2.47[−8] 6.20[−9] 5.92[−9] 2.71[−10] 2.38[−12]
1𝐹 𝑒(4) 2.92[−5] 2.72[−5] 2.36[−5] 1.93[−5] 1.73[−5] 1.52[−5]

5.41[−5]a 5.04[−5]a 4.69[−5]a 4.07[−5]a 3.42[−5]a

1𝐹 𝑒(5) 1.23[−7] 2.03[−7] 8.10[−7] 1.30[−6] 7.97[−6]
1𝐹 𝑒(6) 5.49[−4] 1.38[−4] 3.38[−6] 2.15[−6] 9.69[−7]
1𝐹 𝑒(7) 1.35[−5] 1.29[−5] 1.14[−5] 1.13[−5] 4.88[−6]
1𝐹 𝑒(8) 1.87[−11] 1.01[−10] 1.63[−6] 6.86[−5]
1𝐹 𝑒(9) 4.37[−5] 2.48[−5] 2.26[−5] 1.74[−5]
1𝐹 𝑒(10) 3.62[−5] 2.04[−5] 1.24[−5] 3.83[−6]
1𝐹 𝑒(11) 1.09[−10] 2.99[−7] 9.69[−6]
1𝐹 𝑒(12) 5.84[−5] 4.83[−7]
1𝐹 𝑒(13) 3.96[−4] 2.66[−5]
1𝐹 𝑒(14) 3.59[−5]
1𝐹 𝑒(15) 1.57[−5]
1𝐹 𝑒(16) 1.37[−5]
1𝐹 𝑒(17) 9.44[−5]

a [66].

Table M
Resonance energy 𝐸𝑟 (a.u.) of 1𝐹 𝑒 states of He atom below He+(4𝑝) threshold and energy of 4𝑝 state of He+ ion for different screening length 𝜆𝐷 in a.u.

States 𝜆𝐷
∞ 100 70 50 40 30 25 20

𝐻𝑒+(4𝑝) −0.12500 −0.10610 −0.09864 −0.08925 −0.08153 −0.06963 −0.06093 −0.0492
1𝐹 𝑒(1) −0.21747 −0.20156 −0.19378 −0.18414 −0.17543 −0.16117 −0.15112
1𝐹 𝑒(2) −0.20937 −0.19942 −0.19225 −0.18349 −0.17489 −0.16071 −0.14982
1𝐹 𝑒(3) −0.19736 −0.19589 −0.18978 −0.18236 −0.17408 −0.16008 −0.14945
1𝐹 𝑒(4) −0.18227 −0.19057 −0.18603 −0.18050 −0.17275 −0.15906 −0.14876
1𝐹 𝑒(5) −0.17932 −0.18204 −0.18029 −0.17775 −0.17070 −0.15753 −0.14760
1𝐹 𝑒(6) −0.16237 −0.16982 −0.17172 −0.17361 −0.16772 −0.15522 −0.14583
1𝐹 𝑒(7) −0.15679 −0.15428 −0.15901 −0.16751 −0.16332 −0.15190 −0.14344
1𝐹 𝑒(8) −0.15455 −0.15149 −0.14244 −0.15860 −0.15694 −0.14716 −0.13988
1𝐹 𝑒(9) −0.15289 −0.13365 −0.14049 −0.14556 −0.14772 −0.14037 −0.13496
1𝐹 𝑒(10) −0.15006 −0.12862 −0.12297 −0.12799 −0.13438 −0.13067 −0.12787
1𝐹 𝑒(11) −0.14773 −0.12649 −0.11729 −0.12662 −0.11595 −0.11680 −0.11786
1𝐹 𝑒(12) −0.14559 −0.12472 −0.11480 −0.10910 −0.11514 −0.09711 −0.10367
1𝐹 𝑒(13) −0.14433 −0.12205 −0.11355 −0.10354 −0.09772 −0.08014 −0.08358
1𝐹 𝑒(14) −0.14170 −0.12002 −0.11182 −0.10158 −0.09235 −0.07565 −0.06799
1𝐹 𝑒(15) −0.14041 −0.11774 −0.10944 −0.09958 −0.09057 −0.07402 −0.06335
1𝐹 𝑒(16) −0.13913 −0.11669 −0.10706 −0.09830 −0.08787 −0.07110 −0.06207
1𝐹 𝑒(17) −0.13841 −0.11433 −0.10627 −0.09646 −0.08732 −0.07054
1𝐹 𝑒(18) −0.13640 −0.11327 −0.10394 −0.09397 −0.08604
1𝐹 𝑒(19) −0.13609 −0.11191 −0.10329 −0.09346 −0.08384
1𝐹 𝑒(20) −0.13592 −0.11175 −0.10214 −0.09177 −0.08310
1𝐹 𝑒(21) −0.13530 −0.11014 −0.10174 −0.09124 −0.08219
1𝐹 𝑒(22) −0.13354 −0.10973 −0.10064 −0.09031 −0.08172
1𝐹 𝑒(23) −0.13337 −0.10890 −0.10025 −0.08988
1𝐹 𝑒(24) −0.13110 −0.10692 −0.09969 −0.08943
1𝐹 𝑒(25) −0.12979 −0.10632 −0.09906
1𝐹 𝑒(26) −0.12832
1𝐹 𝑒(27) −0.12592

agree reasonably well with those available in literature and a few
resonance states are reported for the first time below He+(3𝑝) threshold.
It is found that the resonance energies increase as well as the number of
such states decrease with the decrease of 𝜆𝐷. Widths of the resonance
states having dominant configurations 3𝑑𝑛𝑑 [3 ≤ 𝑛 ≤ 10] and 3𝑝𝑛𝑓
[4 ≤ 𝑛 ≤ 10] decreases with the decrease of 𝜆𝐷. The resonance states
having dominant configuration 3𝑑𝑛𝑔 [5 ≤ 𝑛 ≤ 9] have very small widths
(∼ 10−8 − 10−12 a.u.) in free environment and the widths increase with

respect to the decrease of 𝜆𝐷. In this context, we have shown that if
the inter-electronic angle increases with decrease in 𝜆𝐷, the width of
the states will decrease. These theoretical predictions call for studies
to be conducted to determine the widths of resonance 1,3𝐹 𝑒 states
of both free atoms and atoms embedded in plasma. The resonance
parameters of 1,3𝐹 𝑒 states of He atom between the He+(3𝑝) to He+(4𝑝)
thresholds are given for the first time in the literature. The variations of
other structural properties like ratio of attractive to repulsive potential,
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Table N
Resonance width 𝛤𝑟 (a.u.) of 1𝐹 𝑒 states of He atom below He+(4𝑝) threshold for different screening length 𝜆𝐷 in a.u. The notation 𝐴[±𝐵] stands for 𝐴 × 10±𝐵 .

States 𝜆𝐷
∞ 100 70 50 40 30 25

1𝐹 𝑒(1) 1.06[−4] 2.66[−5] 5.07[−5] 3.67[−5] 3.47[−5] 5.51[−5] 3.28[−5]
1𝐹 𝑒(2) 3.72[−4] 3.31[−5] 4.55[−5] 2.09[−5] 1.31[−5] 1.60[−5] 2.06[−6]
1𝐹 𝑒(3) 8.25[−5] 2.65[−4] 5.48[−5] 3.43[−5] 1.69[−5] 2.84[−5] 7.91[−5]
1𝐹 𝑒(4) 5.83[−4] 9.78[−5] 7.59[−5] 8.47[−5] 6.58[−5] 4.35[−5] 7.28[−5]
1𝐹 𝑒(5) 7.33[−5] 3.41[−4] 1.49[−4] 6.47[−5] 7.87[−5] 9.35[−5] 9.33[−5]
1𝐹 𝑒(6) 2.11[−5] 6.84[−5] 1.19[−4] 8.01[−5] 8.77[−5] 1.47[−4] 8.87[−5]
1𝐹 𝑒(7) 1.14[−5] 2.69[−3] 7.31[−5] 9.56[−5] 8.17[−5] 1.49[−4] 1.30[−4]
1𝐹 𝑒(8) 2.56[−4] 6.81[−5] 5.34[−4] 7.66[−5] 9.48[−5] 1.57[−4] 1.19[−4]
1𝐹 𝑒(9) 9.00[−5] 2.55[−4] 5.29[−5] 6.03[−5] 1.15[−4] 1.04[−4] 8.55[−5]
1𝐹 𝑒(10) 4.66[−4] 1.10[−5] 1.41[−5] 5.23[−4] 5.82[−5] 1.04[−4] 1.05[−4]
1𝐹 𝑒(11) 1.67[−5] 2.60[−4] 9.61[−5] 6.15[−5] 5.60[−4] 4.49[−5] 7.45[−5]
1𝐹 𝑒(12) 2.97[−5] 9.17[−5] 3.73[−5] 5.45[−5] 5.63[−5] 4.64[−5] 4.89[−5]
1𝐹 𝑒(13) 1.37[−4] 4.29[−4] 2.84[−5] 8.86[−5] 1.21[−5] 7.07[−3] 4.40[−5]
1𝐹 𝑒(14) 1.04[−5] 8.39[−6] 1.93[−5] 1.88[−4] 8.71[−5] 1.17[−4] 6.75[−5]
1𝐹 𝑒(15) 8.66[−6] 1.66[−5] 8.88[−6] 5.24[−5] 2.13[−4] 3.85[−4] 9.70[−5]
1𝐹 𝑒(16) 4.88[−4] 1.65[−4] 2.25[−5] 2.82[−6] 6.28[−5] 2.41[−5] 4.04[−4]
1𝐹 𝑒(17) 8.81[−6] 2.10[−4] 1.45[−4] 1.03[−5] 2.87[−6] 2.82[−6]
1𝐹 𝑒(18) 2.57[−6] 2.86[−5] 3.16[−5] 3.48[−5] 8.99[−6]
1𝐹 𝑒(19) 1.16[−5] 2.94[−4] 3.63[−5] 9.04[−5] 5.74[−5]
1𝐹 𝑒(20) 1.66[−4] 1.35[−4] 6.97[−5] 2.81[−5] 3.51[−5]
1𝐹 𝑒(21) 2.49[−4] 4.48[−6] 1.34[−4] 1.90[−6] 3.11[−6]
1𝐹 𝑒(22) 9.06[−6] 1.49[−5] 1.22[−5] 3.08[−5] 1.48[−5]
1𝐹 𝑒(23) 3.33[−5] 9.83[−6] 1.27[−5] 1.72[−5]
1𝐹 𝑒(24) 2.51[−4] 4.33[−6] 2.09[−5] 4.81[−6]
1𝐹 𝑒(25) 1.75[−4] 4.94[−6] 3.46[−5]
1𝐹 𝑒(26) 1.75[−4]
1𝐹 𝑒(27) 1.86[−4]

Table O
Expectation values of repulsive potential ⟨𝑉𝑟⟩, attractive potential ⟨𝑉𝑎⟩, ratio of attractive to repulsive potential 𝜂 =

|

|

|

|

⟨𝑉𝑎⟩
⟨𝑉𝑟⟩

|

|

|

|

, ⟨cos 𝜃12⟩, inter-electronic angles ⟨𝜃12⟩ (in degree) using

(10), different one and two-particle moments of resonance 1𝐹 𝑒 states of 𝐻𝑒−atom below 𝐻𝑒+(3𝑝) threshold. The notation 𝐴[±𝐵] stands for 𝐴×10±𝐵 . All values are given in atomic
units.

States 𝜆𝐷 ⟨𝑉𝑟⟩ ⟨𝑉𝑎⟩ 𝜂 ⟨𝑟1⟩
⟨

𝑟21
⟩

⟨𝑟12⟩
⟨

𝑟212
⟩

⟨cos 𝜃12⟩ ⟨𝜃12⟩
1𝐹 𝑒(1) ∞ 6.55[−2] −6.02[−1] 9.18 1.01[+1] 1.37[+2] 1.68[+1] 3.07[+2] −1.67[−1] 135.10

100 5.60[−2] −5.63[−1] 10.04 1.01[+1] 1.38[+2] 1.68[+1] 3.10[+2] −1.66[−1] 134.91
70 5.22[−2] −5.46[−1] 10.45 1.01[+1] 1.40[+2] 1.69[+1] 3.14[+2] −1.65[−1] 134.74
50 4.74[−2] −5.24[−1] 11.05 1.02[+1] 1.43[+2] 1.71[+1] 3.20[+2] −1.64[−1] 134.47
40 4.34[−2] −5.05[−1] 11.64 1.03[+1] 1.46[+2] 1.73[+1] 3.27[+2] −1.63[−1] 134.21
30 3.71[−2] −4.75[−1] 12.78 1.06[+1] 1.54[+2] 1.77[+1] 3.43[+2] −1.62[−1] 133.78
25 3.24[−2] −4.50[−1] 13.88 1.08[+1] 1.62[+2] 1.81[+1] 3.61[+2] −1.61[−1] 133.49
20 2.59[−2] −4.15[−1] 16.03 1.13[+1] 1.81[+2] 1.90[+1] 3.99[+2] −1.60[−1] 133.32

1𝐹 𝑒(2) ∞ 7.01[−2] −5.92[−1] 8.44 1.00[+1] 1.32[+2] 1.58[+1] 2.76[+2] −6.98[−2] 108.87
100 6.04[−2] −5.52[−1] 9.14 1.01[+1] 1.34[+2] 1.59[+1] 2.81[+2] −6.84[−2] 108.47
70 5.64[−2] −5.36[−1] 9.49 1.02[+1] 1.37[+2] 1.60[+1] 2.85[+2] −6.65[−2] 107.96
50 5.12[−2] −5.13[−1] 10.02 1.03[+1] 1.42[+2] 1.63[+1] 2.94[+2] −6.39[−2] 107.26
40 4.68[−2] −4.94[−1] 10.55 1.05[+1] 1.47[+2] 1.65[+1] 3.04[+2] −5.98[−2] 106.16
30 3.96[−2] −4.62[−1] 11.67 1.09[+1] 1.62[+2] 1.72[+1] 3.32[+2] −5.22[−2] 104.11
25 3.38[−2] −4.37[−1] 12.89 1.14[+1] 1.80[+2] 1.80[+1] 3.67[+2] −4.29[−2] 101.59
20 2.49[−2] −3.97[−1] 15.97 1.26[+1] 2.37[+2] 2.03[+1] 4.77[+2] −2.08[−2] 95.63

1𝐹 𝑒(3) ∞ 4.19[−2] −5.39[−1] 12.86 1.58[+1] 4.03[+2] 2.81[+1] 8.75[+2] −1.86[−1] 140.41
100 3.25[−2] −5.00[−1] 15.37 1.61[+1] 4.18[+2] 2.86[+1] 9.05[+2] −1.84[−1] 139.72
70 2.88[−2] −4.83[−1] 16.76 1.63[+1] 4.33[+2] 2.90[+1] 9.36[+2] −1.82[−1] 139.14
50 2.42[−2] −4.62[−1] 19.05 1.68[+1] 4.62[+2] 2.99[+1] 9.95[+2] −1.78[−1] 138.28
40 2.05[−2] −4.44[−1] 21.66 1.74[+1] 4.99[+2] 3.10[+1] 1.06[+3] −1.76[−1] 137.66
30 1.47[−2] −4.14[−1] 28.17 1.88[+1] 5.95[+2] 3.38[+1] 1.26[+3] −1.76[−1] 137.76
25 1.03[−2] −3.90[−1] 37.80 2.07[+1] 7.47[+2] 3.76[+1] 1.58[+3] −1.87[−1] 140.57

1𝐹 𝑒(4) ∞ 4.32[−2] −5.34[−1] 12.36 1.62[+1] 4.22[+2] 2.77[+1] 8.60[+2] −5.00[−2] 103.51
100 3.36[−2] −4.95[−1] 14.72 1.66[+1] 4.44[+2] 2.83[+1] 9.01[+2] −4.47[−2] 102.08
70 2.97[−2] −4.78[−1] 16.09 1.69[+1] 4.66[+2] 2.90[+1] 9.41[+2] −3.80[−2] 100.27
50 2.47[−2] −4.56[−1] 18.47 1.76[+1] 5.11[+2] 3.02[+1] 1.02[+3] −2.50[−2] 96.76
40 2.04[−2] −4.37[−1] 21.44 1.86[+1] 5.78[+2] 3.20[+1] 1.15[+3] −1.05[−2] 92.85
30 1.36[−2] −4.07[−1] 29.82 2.10[+1] 7.59[+2] 3.64[+1] 1.49[+3] 3.71[−2] 79.96

1𝐹 𝑒(5) ∞ 4.04[−2] −5.23[−1] 12.93 1.68[+1] 4.56[+2] 2.75[+1] 8.35[+2] 1.86[−1] 39.67
100 3.03[−2] −4.83[−1] 15.93 1.74[+1] 4.91[+2] 2.86[+1] 9.04[+2] 1.82[−1] 40.59
70 2.57[−2] −4.65[−1] 18.07 1.80[+1] 5.38[+2] 3.00[+1] 9.97[+2] 1.78[−1] 41.81
50 1.98[−2] −4.42[−1] 22.28 1.94[+1] 6.40[+2] 3.27[+1] 1.19[+3] 1.68[−1] 44.57
40 8.91[−3] −4.15[−1] 46.58 2.88[+1] 1.53[+3] 5.34[+1] 3.18[+3] −1.61[−1] 133.47

1𝐹 𝑒(6) ∞ 2.90[−2] −5.08[−1] 17.52 2.32[+1] 9.53[+2] 4.26[+1] 2.01[+3] −1.98[−1] 143.51
100 1.97[−2] −4.69[−1] 23.73 2.40[+1] 1.03[+3] 4.43[+1] 2.18[+3] −1.92[−1] 141.86

(continued on next page)
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Table O (continued).
States 𝜆𝐷 ⟨𝑉𝑟⟩ ⟨𝑉𝑎⟩ 𝜂 ⟨𝑟1⟩

⟨

𝑟21
⟩

⟨𝑟12⟩
⟨

𝑟212
⟩

⟨cos 𝜃12⟩ ⟨𝜃12⟩

70 1.62[−2] −4.53[−1] 27.86 2.49[+1] 1.11[+3] 4.60[+1] 2.35[+3] −1.88[−1] 140.92
50 1.21[−2] −4.32[−1] 35.59 2.65[+1] 1.28[+3] 4.92[+1] 2.69[+3] −1.80[−1] 138.82
40 1.41[−2] −4.22[−1] 29.74 2.21[+1] 8.79[+2] 3.82[+1] 1.67[+3] 1.43[−1] 51.32

1𝐹 𝑒(7) ∞ 2.95[−2] −5.05[−1] 17.12 2.39[+1] 1.02[+3] 4.29[+1] 2.07[+3] −4.05[−2] 100.93
100 1.98[−2] −4.66[−1] 23.46 2.53[+1] 1.16[+3] 4.54[+1] 2.33[+3] −2.09[−2] 95.65
70 1.62[−2] −4.50[−1] 27.71 2.63[+1] 1.26[+3] 4.74[+1] 2.53[+3] −2.17[−2] 95.86
50 1.15[−2] −4.28[−1] 37.22 2.90[+1] 1.55[+3] 5.25[+1] 3.10[+3] 4.51[−3] 88.78
40 7.69[−3] −4.10[−1] 53.33 3.32[+1] 2.11[+3] 6.08[+1] 4.20[+3] 3.18[−2] 81.39

1𝐹 𝑒(8) ∞ 2.80[−2] −4.99[−1] 17.77 2.52[+1] 1.16[+3] 4.40[+1] 2.19[+3] 2.12[−1] 32.73
100 1.80[−2] −4.59[−1] 25.48 2.71[+1] 1.37[+3] 4.78[+1] 2.59[+3] 2.03[−1] 35.04
70 1.38[−2] −4.42[−1] 32.02 2.91[+1] 1.59[+3] 5.18[+1] 3.04[+3] 1.93[−1] 37.80
50 5.38[−3] −4.16[−1] 77.29 4.25[+1] 3.54[+3] 8.05[+1] 7.23[+3] −1.23[−1] 123.43

1𝐹 𝑒(9) ∞ 2.12[−2] −4.90[−1] 23.09 3.20[+1] 1.93[+3] 6.01[+1] 4.03[+3] −2.03[−1] 145.03
100 1.21[−2] −4.51[−1] 37.05 3.44[+1] 2.25[+3] 6.49[+1] 4.67[+3] −1.95[−1] 142.75
70 8.96[−3] −4.36[−1] 48.62 3.69[+1] 2.61[+3] 6.88[+1] 5.41[+3] −1.88[−1] 140.87
50 7.31[−3] −4.19[−1] 57.28 3.74[+1] 2.77[+3] 6.98[+1] 5.42[+3] 1.24[−1] 56.30

1𝐹 𝑒(10) ∞ 2.15[−2] −4.88[−1] 22.70 3.32[+1] 2.09[+3] 6.11[+1] 4.20[+3] −3.09[−2] 98.36
100 1.21[−2] −4.49[−1] 36.97 3.63[+1] 2.53[+3] 6.72[+1] 5.07[+3] −1.23[−2] 93.32
70 8.61[−3] −4.33[−1] 50.36 3.99[+1] 3.08[+3] 7.42[+1] 6.16[+3] 8.76[−3] 87.63
50 4.51[−3] −4.13[−1] 91.55 4.95[+1] 4.95[+3] 9.33[+1] 9.89[+3] 2.59[−2] 82.99

1𝐹 𝑒(11) ∞ 2.12[−2] −4.85[−1] 22.80 3.50[+1] 2.40[+3] 6.33[+1] 4.61[+3] 2.19[−1] 30.81
100 7.51[−3] −4.40[−1] 58.68 4.79[+1] 4.55[+3] 9.17[+1] 9.34[+3] −1.81[−1] 138.97
70 5.00[−3] −4.26[−1] 85.22 5.31[+1] 5.65[+3] 1.01[+2] 1.14[+4] −9.96[−2] 116.89

1𝐹 𝑒(12) ∞ 1.63[−2] −4.77[−1] 29.20 4.39[+1] 3.81[+3] 8.24[+1] 7.64[+3] −1.77[−2] 94.78
100 7.21[−3] −4.39[−1] 60.89 5.20[+1] 5.40[+3] 9.79[+1] 1.07[+4] 5.12[−2] 76.15

1𝐹 𝑒(13) ∞ 1.62[−2] −4.77[−1] 29.47 4.42[+1] 3.87[+3] 8.31[+1] 7.76[+3] −2.45[−2] 96.62
100 3.96[−3] −4.32[−1] 109.24 7.34[+1] 1.10[+4] 1.39[+2] 2.17[+4] 1.89[−1] 38.90

1𝐹 𝑒(14) ∞ 1.32[−2] −4.72[−1] 35.70 5.39[+1] 5.94[+3] 1.02[+2] 1.19[+4] −2.21[−2] 95.96
1𝐹 𝑒(15) ∞ 1.06[−2] −4.66[−1] 44.05 6.76[+1] 9.49[+3] 1.30[+2] 1.90[+4] −5.83[−3] 91.57
1𝐹 𝑒(16) ∞ 9.74[−3] −4.65[−1] 47.74 7.58[+1] 1.21[+4] 1.46[+2] 2.43[+4] −5.52[−3] 91.49
1𝐹 𝑒(17) ∞ 1.59[−2] −4.79[−1] 30.11 5.82[+1] 7.98[+3] 1.11[+2] 1.59[+4] −1.15[−3] 90.31

different one and two-particle moments etc. with respect to different 𝜆𝐷
values are also studied for the first time for both metastable bound and
resonance 1,3𝐹 𝑒 states of He-atom.
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