ROLE OF PTEN’S POST-TRANSLATIONAL
MODIFICATIONS IN AUTOPHAGY

Thesis submitted to
Jadavpur University
for the degree of

Doctor of Philosophy (Science)

Submitted by
Debojyoti De
(Reg. No: SLSBT1108221)

Under the supervision of
Prof. Parimal Karmakar
Dept. of Life Science & Biotechnology,
Jadavpur University.
188, Raja Subodh Chandra Mallick Rd,
Jadavpur, Kolkata 700032, West Bengal.



IR fanfawstay
THATTIT-40000%, BITT

*JADAVPUR UNIVERSITY
KOLKATA-700 032, INDIA

DEPARTMENT OF LIFE SCIENCE AND BIOTECHNOLOGY

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis entitled "Role of PTEN’s post-translational
modifications in autophagy" submitted by Mr.Debojyoti De who

got his name registered on 21/04/2021 for the award of Ph.D. (Science) df;’gree of
JadavpurUniversity, is absolutely based upon his own work under the supervision
of Prof. ParimalKarmakar and that neither this thesis nor any part of it has been

submitted for either any degreeor any other academic award anywhere before.

/4,\,%,\/( bomass 34824

(Signature of the Supervisor(s) date with official seal) '

Departrnent Of Life 9 & Biotechnic

r}}A‘gAVPUR UNIVERSITY, K& L

Email:pkamakar_?%@yahoo.c»;,m
(M) 9433366323

Established on and from 24" December, 1955 vide Notification No.10986-Edn/IU-42/55 dated 6 December, 1955 under JadavpurUniversity Act, 1955
(West Bengal Act XXXIII of 1955) followed by Jadavpur University Act,1981 (West Bengal Act XXIV of 1981) .

HASTA: 3858-vavo Website:www.jadavpur.edu

Phone : 2414-6710




Declaration

I do hereby declare that the work embodied in this thesis entitled “Role of PTEN’s
post-translational modifications in autophagy” submitted for the award of
Doctorate of Philosophy (Ph.D.) in Science, is the completion of the work carried
out under the supervision of Prof. Parimal Karmakar at the Department of Life
science & Biotechnology, Jadavpur University. Neither this thesis nor any part of
it has been submitted for either any degree/diploma or any other academic award

anywhere before.

De éo/ yo A be
Date OZ/ 05/ 2024 Signature of the candidate



Preface

The importance of PTEN lies in the fact that it serves as a guardian of the genome
and preserves cellular health. Autophagy is a fundamental cellular phenomenon
which also safeguards cells against any undesirable outcome. As we know that
post-translational modifications fine-tune several characteristics of a protein, we
based our work on finding out the impact of such modifications of PTEN in
autophagy. Our work will not only advance the knowledge of these three elements
that we based our research on, but also the holistic understanding of cell biology.
The entire work has been structured into three chapters. The first chapter
comprises of the foundational literature that is required for the understanding of
the following results. The discourse on the PTEN domains, PTEN regulation,
autophagy regulation is especially important regarding this. The second chapter
contains all the results that we recorded, depicting the relationship between
sumoylation as well as phosphorylation of PTEN and autophagy. In the third
chapter, we talked about the significance of our results and analysed all
implications stemming out from each observation. All the materials and methods
that we applied are mentioned in a separate section, with a separate segment at the

end for the overall conclusion as well.
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Abstract




Autophagy is a cellular phenomenon that simply eliminates ‘unwanted’
compounds. But beyond this apparent ‘destruction’, autophagy effectively plays
the role of a recycling system. PTEN is a protein, primarily known for its tumour-
suppressive actions but it is also involved in varied domains of cell metabolism.
Like every other protein, post-translational modifications (PTM) modulate the
various functions of PTEN. PTM are chemical modifications that occur on a
protein after it has been synthesized and subsequently regulate the activity,
localization, and stability of proteins. PTEN can be localized to the nucleus,
cytoplasm or cell membrane which accordingly affects its functions and
interactions. The domains that constitute PTEN are N-terminal PBD, phosphatase
domain, C2 domain, C-terminal tail, and the PDZ-BD. The N-terminal PBD is the
attachment site for PTEN’s primary substrate PIP2 whereas PTEN’s enzymatic
nature is instilled in it by the phosphatase domain. The C2 domain assists in the
association of this phosphatase domain with the plasma membrane where PTEN
can express its phosphatase nature. The C-terminal tail is mainly involved in
maintaining stability and function and the PDZ-BD is associated with additional
signalling. PTEN exists in two conformations namely open and closed which
serve as the gateway for the enzyme’s active site. Numerous factors including
PTM can modulate this alternating conformation shift. The PI3K/AKT
intracellular signaling pathway plays a crucial role in regulating cellular events
like autophagy. At the plasma membrane, AKT attaches itself to PIP3 and gets
activated. PI3K assists in this conversion of PIP2 to PIP3 while PTEN
dephosphorylates PIP3 back to PIP2. Hence, deleted or dysfunctional PTEN

results in a dysregulated PI3K/AKT pathway. Two most important PTM that
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modulate PTEN function are phosphorylation and sumoylation. PTEN is
phosphorylated at several locations, especially within the C-terminal tail, whereas
the possible sumoylation sites are all located in the C2 domain.

We wanted to carry out this study on PTEN as it is frequently mutated or deleted
in various types of cancer. Also, defective PTEN causes syndrome like PHTS
which give rise to a propensity of developing cancers throughout life. Moreover,
the paramount importance of a phenomenon like autophagy lies in the exhaustive
role it displays in both physiology and pathophysiology. Taking both of these into
account, we wanted to examine the effects of PTEN’s phosphorylation and
sumoylation on autophagy. We set off with finding out the alteration in autophagy
patterns with respect to these PTM and the reasons behind it. We tried to further
examine these alterations with respect to different causative processes of
autophagy namely nutrient stress and ER stress. We finally tested our hypotheses
on multiple cell lines, both PTEN null and PTEN positive cells, to reach a
befitting consensus.

We found out that transfection of WT PTEN recovered autophagy in PTEN-null
PC3 and U87MG cells. Sumoylation of PTEN was found to have boosted
autophagy as observed from the reduced expression of autophagy related proteins
in sumoylation deficient PTEN mutant transfected cells. Phosphorylation of
PTEN curtailed autophagy as observed from the expression of autophagy in
dephosphorylation-mimicking and phosphorylation-mimicking PTEN mutants
transfected cells. This modulation by sumoylation and phosphorylation was also
observed in PTEN positive normal (WI38) and cancer (A549, Hela) cells. The
overall reason behind this modulation was that sumoylation of PTEN assisted

whereas phosphorylation hindered plasma membrane localisation of PTEN. The
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observed effects of alteration in autophagy were similar when surfacing from both
nutrient deprivation as well as ER stress, induced by EBSS and Tunicamycin
treatment respectively.

WT PTEN transfection had triggered autophagy, and as the starvation period
increased, there was a consistent rise in the number of active cells exhibiting
autophagy. Because phosphatase deficient PTEN mutant couldn’t fully recover
autophagy, we could infer that it was catalytically inactive and PTEN’s lipid
phosphatase activity was deemed essential for the induction of autophagy. The C2
domain of PTEN is mostly responsible for its interaction with the plasma
membrane as well as for the correct orientation of its catalytic phosphatase
domain. This is crucial from a functional standpoint because PTEN's enzymatic
efficiency rely both on its penetration and orientation within the membrane. The
location of cellular substrates inside the cell is determined by their sumoylation.
PTEN was in fact directed to the cytoplasm by decreased sumoylation, as shown
in the sumoylation deficient PTEN mutant transfected cells. PTEN's net positive
charge on the C2 domain had supposed to have increased from sumoylation and it
was subsequently drawn towards the negatively charged cell membrane, hence
facilitating its association. As a result, sumoylation deficient mutant transfected
cells showed prolonged AKT and mTOR phosphorylation both of which are
deemed essential for subduing autophagy. On the other hand, the phosphorylation-
mimicking and dephosphorylation-mimicking PTEN mutant transfected cells
showed decreased and increased plasma membrane affinity respectively. Needless
to say, the autophagy levels in the cells got changed accordingly. The C-terminal

phosphorylation behaved as a molecular clamp on the C2 domain and
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consequently determined the aforementioned alteration in open and closed
conformation of PTEN.

The parameters that we checked in our experiments for successful autophagy
occurrence are namely MDC dye staining that preferentially accumulates in the
autophagic vesicles; immunolabeling of LC3B which determines the formation of
autophagosomes; western blot of cargo receptor protein p62 which binds to LC3B
and provides perception about the autophagic flux; immunoblot of other
autophagic marker proteins Beclinl, ATGS5, ATG7 which are distinctly regulated
during the whole process, and ultimately the ultrastructure of autophagic vesicles
inside the cells using TEM. PTEN’s sumoylation and phosphorylation status after
autophagy was found out using a combination of both immunoprecipitation and
western blot. Finally, PTEN’s subcellular localisation was ascertained by
immunolabeling followed by subsequent inspection under confocal microscopy.
PTEN's physiological functions have been repeatedly linked to its defective
membrane recruitment. Here, we were able to show how autophagy and PTEN’s
post-translational modifications were related with respect to cell membrane
association. In a nutshell, we had successfully rescued autophagy (stemming from
both nutrient deprivation as well as ER stress) in PTEN null cells by transfecting
WT PTEN. We had found out that the lipid phosphatase activity of PTEN was
responsible for inducing autophagy via PI3K/Akt/mTOR axis. Most importantly
we had observed (in both PTEN null and PTEN positive cells) that sumoylation of
PTEN was aiding in autophagy while phosphorylation was curbing it. This was
occurring due to the modulation of PTEN’s cell membrane localisation by the

PTM where PTEN’s enzymatic activity controls autophagy.
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Chapterl

Introduction




1.1 Overview

Overall, our study is based on three broad topics namely PTEN, autophagy and
post-translational modifications.

PTEN is a protein that is essential for controlling a variety of cellular processes
including autophagy [1][2]. The most important cellular functions like apoptosis,
angiogenesis, and cell size can be influenced by PTEN [1][3][4]. Additionally, it
can also modulate the actin cytoskeleton and cell adhesion dynamics, which are
essential for cell migration and invasion [5][6]. But it’s most well-known for its
function as a tumour suppressor gene, implying that it stops malignant tumours
from growing and spreading [1][3][4][5][6]. PTEN protects the genome by
preventing cells from proliferating uncontrolled or avoiding planned cell death
[1][3][4][5][6]. So, when PTEN is lost or mutated, unchecked cell proliferation
and survival take place, which eventually increases the propensity to form
malignant tumours [1][3][4][5][6]. Additionally, its depletion or inactivation is
linked to resistance to specific cancer therapies [7]. Furthermore, PTEN's
significance goes beyond studies on cancer. According to recent research, it may
also be involved in neurological diseases and disorders such as ASD, intellectual
difficulties, and developmental delays have all been linked to PTEN abnormalities
[8][9]. This demonstrates the complexity of PTEN function and the extensive
effects that its faulty action may have on human health. Therefore, it may be
possible to develop innovative treatment therapies by comprehending the
mechanisms underlying PTEN inactivation and investigating methods to restore

its activity.
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Figure 1.1

Timeline of key events in PTEN research.

Adapted from Song, M. S., Salmena, L., &Pandolfi, P. P. (2012). The functions
and regulation of the PTEN tumour suppressor. Nature reviews. Molecular cell

biology, 13(5), 283-296. https://doi.org/10.1038/nrm3330

Cells recycle their components through a highly dynamic and regulated process
called autophagy. It functions as a cellular quality control mechanism, destroying
and recycling intracellular pathogens, misfolded proteins, and damaged organelles
in a selective manner, in order to preserve cellular homeostasis [10][11]. The
phrase autophagy somewhat implies that cells "eat themselves" during this
process [12]. The targeted cargo is engulfed by a double membrane structure
known as autophagosome [12][13]. The lysosome, a cellular organelle packed
with potent enzymes, and the autophagosome combine to produce an
autolysosome [12]. These enzymes then break down the cargo inside the

autolysosome, releasing the end products back into the cytoplasm for further use
17



https://doi.org/10.1038/nrm3330

[13][14]. Autophagy can be broadly classified into three categories:
macroautophagy, microautophagy and CMA [15][16][17][18]. The kind of
autophagy that has been researched and understood the most is macroautophagy.
It entails the widespread breakdown of cytoplasmic elements such as aggregates
of proteins, long-lived proteins, and organelles. On the other hand,
microautophagy entails the direct invasion of lysosomal membranes to absorb
cytoplasmic particles. CMA is a relatively selective type in contrast to the other
two forms [15][16][17][18]. Being a highly regulated process, autophagy's
dysregulation can cause a plethora of diseases such as metabolic disorders,
neurological diseases and even cancers [19]. In the context of tumorigenesis,
autophagy can have both favourable and deleterious effects [20]. In one way
autophagy can function as a tumour suppressor by breaking down damaged cell
parts and stopping the spread of dangerous mutations [20]. On the other hand,
autophagy has the potential to accelerate the growth of tumours by giving cancer
cells sustenance and energy during nutrient shortage or hypoxia [20]. Autophagy
seems promising from a therapeutic perspective, for instance, it has been
demonstrated that increasing autophagy can aid in the removal of harmful
aggregates of proteins that are typical of neurodegenerative diseases like
Alzheimer's and Parkinson's disease [19][21]. In a similar vein, blocking
autophagy has been investigated to curate novel anticancer treatments [19].
Hence, the development of innovative therapies for a variety of illnesses could
benefit greatly from in-depth study into the mechanics and regulation of

autophagy.
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Figure 1.2

Both non-selective or selective types of autophagy can target a broad and
heterogeneous range of cytoplasmic entities for lysosomal destruction, whether
they are intracellular or extracellular.

Adapted from Galluzzi, L., Bachrecke, E. H., Ballabio, A., Boya, P., Bravo-San
Pedro, J. M., Cecconi, F., Choi, A. M., Chu, C. T., Codogno, P., Colombo, M. L.,
Cuervo, A. M., Debnath, J., Deretic, V., Dikic, 1., Eskelinen, E. L., Fimia, G. M.,
Fulda, S., Gewirtz, D. A., Green, D. R., Hansen, M., ... Kroemer, G. (2017).
Molecular definitions of autophagy and related processes. The EMBO journal,

36(13), 1811-1836. https://doi.org/10.15252/embj.201796697

Proteins undergo chemical changes known as post-translational modifications
(PTM) following synthesis [22][23]. The regulation of protein structure, function,
localization, and stability is greatly aided by these alterations [22][23]. They

adjust protein activity in response to different biological signals and add to the
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proteome's enormous diversity [23]. PTM come in several forms, such as
acetylation, glycosylation, sumoylation, methylation and phosphorylation
[24][25]. They provide precise control of cellular activities by adding to the total
complexity of the proteome [23]. Additionally, PTM have the ability to act
combinatorially, which increases the specificity and functional variety of protein
regulation [26]. PTMs’ dynamic and reversible properties enable cells to carry out
intricate biological activities with efficiency and to react swiftly to external
stimuli [22][23][24][25][26][27]. To decipher the intricacy of cellular processes
and create treatment approaches that specifically target these alterations, it is

essential to comprehend the role of PTM and their functional implications.

Succinylation
Adds a succinyl group to a lysine
residue.

Hydroxylation
Attaches a hydroxyl group (-OH)
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Figure 1.3
Post-translational modifications at a glance.
Adapted from https://www.creative-proteomics.com/pronalyse/protein-

modifications-analysis.html
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1.2 PTEN domains

The PTEN protein is made up of several domains, each of which performs a
distinct function [1][4]. One of the PTEN domains that has been explored the
most is the phosphatase domain [1][4]. The phosphatase domain of PTEN inhibits
AKT-mediated cellular signaling and PI3K activity by dephosphorylating PIP3,
which eventually limits biological phenomenon like cell proliferation [28][29]. In
addition to its catalytic roles, this domain also aids in interaction with membranes
[28][29]. The C2 domain of PTEN is another essential domain that has been
demonstrated to play a role in controlling PTEN's subcellular localization [1][4].
PTEN is targeted to plasma membrane by the C2 domain and this affinity towards
membrane association is greater when compared to that of phosphatase domain
[28][29]. The location is essential to PTEN's correct operation, as for example, its
absence from the plasma membrane would make it more difficult to regulate
PI3K/AKT signaling and encourage unchecked cell proliferation [28][29]. Also,
by keeping the catalytic domain of PTEN stable, the C2 domain helps to maintain
the protein’s effective activation [28][29]. Another essential part of PTEN is its C-
terminal tail, which also interacts with different molecules to regulate and
contribute to PTEN's overall activity [1][4]. The PTEN's C-terminal tail plays an
important role in regulating the protein's subcellular distribution. The C-terminal
tail contains distinct motifs that can lead PTEN to the plasma membrane where it
subsequently exerts enzymatic activity [28][29]. Furthermore, the PTEN C-
terminal tail serves as a location for PTMs such as phosphorylation and
ubiquitination, which further modulate PTEN's stability and degradation [28][29].

In addition, the C-terminal tail of PTEN provides binding sites for a variety of
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interacting proteins, including the PDZ domain-containing proteins [28][29]. This
brings us to the last domain known as PDZ-BD, which helps to engage in
interactions with proteins that have PDZ domains [1][4][28][29]. PDZ proteins
exhibit dynamic function as scaffolding molecules to arrange and control different

signaling pathways [28][29].

D Phosphatase domain C2 domain

15 185 351 399

403

Figure 1.4

The domain structure of PTEN. PTEN is comprised of 403 amino acids and can
be divided into five domains.

Adapted from Song, M. S., Salmena, L., &Pandolfi, P. P. (2012). The functions
and regulation of the PTEN tumour suppressor. Nature reviews. Molecular cell

biology, 13(5), 283-296. https://doi.org/10.1038/nrm3330

1.3 Subcellular Distribution of PTEN

Understanding the subcellular distribution of proteins is critical in cellular biology
for unravelling the mysteries of diverse cellular processes. Numerous factors,
including lipid binding and protein-protein interactions, affect PTEN localization
[29][30]. For example, the interaction between PTEN and NHERF1 enhances
PTEN translocation to the plasma membrane, so improving its ability to regulate
cell growth and survival [31]. On the other hand, PTEN's tumour-suppressive
effects can be diminished by selective ubiquitylation depending on specific

subcellular localization [32]. PTEN’s location at the plasma membrane allows it
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to directly block PI3K signaling, preventing Akt from being hyperactivated and
promoting greater motility and invasive behaviour [29][30]. PTEN expression has
also been observed in cellular sites like mitochondria [29][30]. PTEN localization
in mitochondria is crucial for preserving its integrity and functionality [33]. PTEN
controls the generation of reactive oxygen species in the mitochondria, which are
important for a number of biological functions, including cell cycle progression
and death [34]. The fact that it is found in mitochondria indicates a further
function of PTEN in preserving cellular homeostasis and delaying the
development of pathological diseases [33][34]. Another important organelle
where PTEN has been seen is the ER [35]. Under stressful ER conditions, PTEN
has been shown to affect the UPR. elF2a is dephosphorylated by PTEN, which
leads to the reduction of protein synthesis, hence reducing ER stress and re-
establishing cellular homeostasis [36][37]. PTEN is also found in the nucleus,
where it directly or indirectly dictates a plethora of cellular activity. PTEN
interacts with other proteins in the nucleus and performs phosphatase-independent
activities [38][39]. It regulates the expression of several target genes involved in
DNA repair and cell cycle control by acting as a transcriptional regulator [40][41].
Furthermore, it has been demonstrated that PTEN interacts with chromatin
remodeling complexes to affect transcription factors' ability to access DNA [42].
PTEN's range of nuclear actions broadens its role as a dynamic protein that
controls gene expression and preserves genomic stability [38][39][40][41][42]. It
has recently been found that PTEN is capable of being secreted from cells, which
allows it to continue playing its vital function outside of the cell [28][29][30].
PTEN isoforms are exceptional and potent tools in the fight against cancer

because, once produced, it can use its tumour-inhibiting abilities on nearby cells
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or distant locations [43]. Secreted PTEN also operates by dephosphorylating PIP3
and inhibiting the PI3K/AKT pathway [43]. Furthermore, secreted PTEN has
distinct characteristics that set it apart from its intracellular equivalent. Most
importantly, released PTEN is not restricted to the tumour site, rather it can travel
throughout the bloodstream, reaching distant metastases and successfully stopping
their growth [43]. Thus, the identification of secreted PTEN presents encouraging
opportunities for therapeutic intervention [28][29][30]. To take advantage of
PTEN's ability to prevent tumour growth, researchers are presently exploring a
number of delivery systems for the protein. Such methods entail delivering genes
encoding secreted PTEN directly to tumour locations using polymer-lipid
nanoparticles or expression of modified viruses [44][45]. As an alternative, PTEN
can be delivered to cancer cells specifically via exosomes, which are tiny,
membrane-bound vesicles released by cells [46]. There is hope for precise,
tailored treatments with little side effects thanks to these creative approaches, like
our research on exosomes which suggest the possibility of delivering PTEN from
PTEN positive cells to PTEN null cells via exosomes and consequently alleviating

DNA damage induced senescence [46].

25




Wt
PYBLEA \i\i\i\i\i\i\i\i\i\i\i\i\i\i\l\i o3 YUPUNY
> U% =

-
i

Prpr,P
RTK
|
/'—'_—_h_'“\\
(e )
Cell Cycle — N/
vV
Cell growth vV
\
Cell survival @
Figure 1.5

The PTEN/PI3K/Akt/mTOR pathway.
Adapted from Phin, S., Moore, M. W., & Cotter, P. D. (2013). Genomic
Rearrangements of PTEN in Prostate Cancer. Frontiers in oncology, 3, 240.

https://doi.org/10.3389/fonc.2013.00240

1.4 PTEN Regulation

PTEN regulation begins at the gene expression level where it is closely regulated
to provide precise PTEN levels [47][48]. The abnormal methylation of the PTEN
promoter results in epigenetic silencing and subsequently tumourigenesis [49].
Additionally, the epigenetic silencing is carried out by histone deacetylases and
chromatin remodeling enzymes, recruited by transcription factors like SALL4

[50][51]. The transcription factor SNAIL and ID1 have been shown to negatively

26




regulate PTEN transcription by competing with p53, another transcriptional
activator of PTEN [52][53]. NOTCHI controls PTEN transcription through MYC
and CBF1, in a positive and negative manner, respectively [54][55]. PTEN
transcription is additionally repressed by three other transcription factors, EVII,
BMI1 and cJUN, which are dysregulated in a variety of malignancies
[56][57][58]. PTEN transcription also appears to be downregulated by NF-xB
signaling either directly or indirectly, and upregulated by transcription factors
EGR1 and PPARY [59][60][61]. These transcription factors highlight the
significance of PTEN in preserving genomic integrity under influence of varied
physiological cues, such as oxidative stress and DNA damage [47][48][51].
miRNAs play a function in PTEN regulation as well. It has been shown that many
miRNAs downregulate PTEN expression, which in turn promotes cancer or
metabolic diseases [62][63]. These comprise, but are not limited to, the miR-
17~92 cluster in autoimmunity and lymphoproliferative disorders, miR-19 in
colorectal cancer and osteosarcoma, and miR-21 in oral squamous cell carcinoma,
breast cancer, and recurrent spontaneous abortions [62][63][64][65].

The identification of a novel mechanism of gene regulation resulted from the
revelation that PTENP1 regulates PTEN expression through an unexpected coding
independent function [66][67][68]. Significant sequence homology exists between
the PTENP1 transcript and PTEN mRNA, especially in the coding region and the
first third of its 3" UTR, which are both enriched for known miRNA target regions
[66][67][68]. As a consequence, miRNAs that aim at PTEN, mistakenly target
PTENPI instead [66][67][68]. The undesired effect of miRNAs on PTEN

expression and function is prevented because of this [66][67][68]. The finding that
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lower PTENP1 expression coincides with disease progression lends credence to
the significance of this mechanism [66][67][68].

According to a paradigm called the ceRNA binding hypothesis, both non-coding
and protein-coding genes have a unique mRNA-dependent non-coding role that
allows them to behave as a decoy to prevent the action of specific miRNAs on
other RNAs [68][69]. This vast regulatory network has also been found to
regulate PTEN expression by sequestering PTEN-targeting miRNAs in cancers
[68][70]. For example, the tumour suppressive function of PTEN ceRNAs was
shown in an oncogenic BRAF-induced mouse model of melanoma [68][70].
Concurrently, a novel computational method has identified over 7000 potential
ceRNAs that could potentially mediate thousands of pairwise gene interactions in
tumours [70].

The previously mentioned post-translational modifications also regulate both the
stability and function of PTEN [71][72][73]. We explored two of them in our
research, phosphorylation as well as sumoylation. PTEN's C-terminal tail contains
particular residues where phosphorylation events primarily occur [74]. These
residues are regulated by several kinases, such as CK2, GSK3 [75]. PTEN can be
phosphorylated at a number of locations, including tyrosine, serine, and threonine
residues [71][73][75]. PTEN experiences structural changes upon
phosphorylation, which influences its stability, intracellular location, and
enzymatic activity [71][72][73][74][75]. PTEN's interaction with other proteins
and the following signaling cascades are also modulated by its phosphorylation
[75]. One of the most important effects of PTEN’s phosphorylation is on the
PI3K/Akt signaling pathway. When PTEN is phosphorylated, its phosphatase

activity is inhibited, which consequently activates Akt and triggers further
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signaling events, like enhanced cell survival and proliferation [74][75].
Furthermore, additional proteins involved in cellular processes such as cell
migration and nuclear export can interact with phosphorylated PTEN
[71][73][74][75]. PTEN's phosphorylation-induced inactivation promotes cancer
by enabling unchecked cellular proliferation as mentioned above [75]. In addition,
PTEN phosphorylation anomalies may give resistance to targeted cancer
treatments that obstruct the PI3K/Akt pathway [74][75]. Furthermore, abnormal
neural connections and anomalies in brain are caused by disrupted PTEN
phosphorylation, which impairs PTEN's normal physiological roles in neuronal
development [74][76].

Sumoylation is the reversible covalent binding of SUMO proteins to particular
target proteins which generally contain lysine residues [77]. PTEN sumoylation is
achieved by conjugating either SUMO1 or SUMO2/3, mainly at residues 254,
266, and 289 [73][75][78]. According to experimental results, sumoylation
increases PTEN phosphatase activity, stabilizes PTEN, and inhibits ubiquitin-
mediated degradation of PTEN [73][75][78]. Furthermore, it has been
demonstrated that sumoylation controls PTEN subcellular localization, including
facilitating its translocation to the nucleus, where it can influence a range of
transcriptional processes [73][75]. All these results suggest that PTEN
sumoylation is essential for preserving PTEN-mediated cellular homeostasis. A
number of malignancies and even EMT have been linked to aberrant sumoylation
patterns [79]. PTEN function may be compromised by these dysregulated
sumoylation events, which can result in increased DNA damage, cell
proliferation, and altered subcellular localization-all characteristics that mark the

advancement of cancer [73][75][78].
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Figure 1.6
Major sites for post-translational modifications of PTEN.

Adapted from https://www.cytoskeleton.com/april-newsletter-posttranslational-

regulation-of-phosphatase-and-tensin-homolog-pten

1.5 PTEN and Autophagy

The capacity of PTEN to control the PI3K/AKT/mTOR signaling pathway is
fundamental to its role of controlling the cellular processes including autophagy
[80][81][82][83]. Overall, activation of PI3K leads to the catalysis of PIP2 lipids
to PIP3 [80][81][82][83]. Akt binds to PIP3 at the cell membrane, allowing PDK1
to access and subsequently phosphorylate it, activating it as a result [81][82][83].
AKT further phosphorylates and activates a number of downstream targets,
including mTOR which in turn exhibits active role in curtailing autophagy
[80][81][82][83][84][85]. PTEN inhibits the PI3K/AKT pathway by
dephosphorylating PIP3 to PIP2 and as a result preventing PIP3 membrane
recruitment and activation of AKT [81][83]. This impairs downstream signaling

via the mTOR proteins and consequently induces autophagy [84][85].
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1.6 Autophagy Machinery

The process of autophagy can be broken down into mechanistically separate
processes, such as induction, vesicle production, autophagosome-lysosome fusion,
cargo detection and selection, and the resultant breakdown that is followed by
release of the degradation products back into the cytosol [86]. These stages
involve several sets of Atg proteins, which make up the basic autophagic
machinery [87]. The double membrane structure better known as the isolation
membrane or phagophore sequesters the designated cargo. The two primary stages
of phagophore production are initiation and elongation [86]. The first step in this
process is the activation of Atgl kinase complex or ULK1 complex in case of
yeast or mammalian cells respectively [88]. Nutrient sensors control this complex,
which transduces signals to synchronize the onset of autophagy [88]. The
phagophore assembly site, which is frequently located in certain subcellular areas
like the ER or Mitochondria, is where the Atgl/ULK1 complex attracts more
proteins during activation [89][90]. After the aforementioned initiation, vesicles
from different cellular compartments are recruited and integrated, causing the
phagophore to lengthen [89][90]. PI3KC3 complex catalyzes the synthesis of
PI3P, which is essential for phagophore elongation as it attracts particular effector
proteins [91]. The phagophore’s elongation and subsequent maturation depends
on such effectors like DFCP1 [86][90]. Beclin-1, Vps34, BIF-1, Ambral and
ATGI14L are additional components that are either part of or help to form this
complex [86][88][89][90][91]. Phagophore development can occur via a variety
of processes, resulting in distinct forms of phagophores. One type is the Atg9
reservoir-derived phagophore, in which the transmembrane protein Atg9 functions

as a mobile source of membranes to generate phagophores [87][90][92]. To
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supply lipids for phagophore production, Atg9 traffics between many
compartments, including the endosomes, Golgi complex and even membranes
associated with the mitochondria [88][93]. Another kind is the phagophore
formed from omegasomes, which develops from the membrane extensions of ER
[94]. Rich in PI3P, omegasomes attract the previously mentioned effector DFCP1
which can additionally serve as their marker [92][94]. Lipids from the ER are
supplied to the accumulating phagophore, facilitating its growth [95]. Apart from
ER, mitochondria also aid in the creation of phagophores by supplying lipids like
cardiolipin, through membranes generated from the mitochondria [96]. Next, the
conjugation between Atg5 and Atgl2, which is essential for autophagosome
formation, is at the centre of the autophagic pathway [97][98][99]. The
development of Atg8/LC3-positive autophagosome membranes, which are
essential for carrying out the sequestration and destruction of cargo, is mostly
mediated by Atg5 and Atgl2 [97][98][99]. During the initial phase of the Atg5-
Atgl2 conjugation process, Atg7 (resembling E1 enzyme) forms a thioester bond
with the C-terminus of Atgl2 to activate Atgl2 [88]. After this activation, a
transthiolation process transfers the activated Atgl2 to Atgl0 (resembling E2
enzyme) [100]. The conjugation between Atg5 and Atgl?2 is the next phase in this
complex dance [97][98][99]. This mechanism is also mediated by Atgl0, which
catalyzes the formation of an isopeptide bond between Atg5 and Atgl2 [88].
Further promoting autophagosome formation, the ensuing Atg5-Atgl2
conjugation serves as a platform for the recruitment and assembly of other Atg
proteins [86]. For example, Atgl6L (resembling E3 enzyme) produces a large
molecular weight complex that localizes to the site of autophagosome formation

when it binds to the Atgl2 moiety of the conjugate [88]. Proper autophagosomal
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membrane expansion and assembly depend on the interaction between Atgl6L
and the Atg5-Atgl2 conjugation [88][89]. The next important player in this
signaling cascade is LC3B [95][98]. Atg4, a cysteine protease, cleaves LC3B
proteolytically to produce LC3B-I when autophagy is induced. Similarly, like the
aforementioned ubiquitin-like system, the exposed glycine from cleaving gets
bound to ATG7 (resembling E1 enzyme) [88][95]. Then, following its transfer to
Atg3 (resembling E2 enzyme), LC3B-I is fully activated and subsequently
converted to processed LC3B-II by conjugating PE to the carboxyl glycine
[88][95]. So, LC3B-II is basically assembled and incorporated into the isolation
membrane, aided by Atg5—Atgl2 [95]. Both the outer and inner surfaces of
autophagosome comprise of LC3B-II [95]. This molecule is not only associated
with the hemifusion of the phagophore membrane but also the ‘hand-picking’ of
the materials to be recycled [88][95]. Another ATGS8 ortholog GABARAP
undergoes similar activation and is located at autophagosomes along with LC3
[88][95]. To guarantee that LC3B-PE conjugation plays a precise spatiotemporal
role in autophagosome formation, its dynamics are strictly regulated. Unwanted
and excessive LC3B-PE conjugation is prevented by the same Atg4, which acts
now as a deconjugating enzyme [88][90]. As a result, LC3B-PE conjugation gets
released from the autophagosome membrane, thus preventing unchecked
autophagy induction and preserving the delicate balance between autophagy and
cell survival [88][90]. Because autophagy seems to consume cytosol without
discrimination, it has generally been thought of as a random process [95]. On the
contrary, there is mounting evidence that the expanding phagophore membrane
can interact with organelles and protein aggregates in a targeted manner. As

previously mentioned, LC3B-II, for selection of the cargo, correspond to adaptor
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molecules on them [89][90][92][98][99]. In this context, the most well-
characterized molecule is p62/SQSTM1, a multifunctional adaptor molecule that
facilitates the turnover of aggregates of poly-ubiquitinated proteins
[89][90]192][95]1[98][99]. Lysosome is a single membrane bound organelle which
merges with the autophagosome to build another specific compartment called
autolysosome [98][99]. This is the penultimate stage before the final degradative
process, after fusing the growing ends of the phagophore membrane has been
properly executed [86][98][99]. But before the ultimate degradative action of the
acid proteases of the lysosome, the pH of the compartment gets already reduced
by the combination of the endosomes and the autophagosomes [95]. Cathepsin
proteases such as B and D (lysosomal proteases) are additionally necessary for

autophagosome turnover and autolysosome maturation within the lysosome [95].

Autophagosome Lysosome Aulolysosome

Isolation Phagophore O
Membrane
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Autophagy Membrane nucleation Phagophore expansion Fusion with the Degradation
initiation and phagophore lysosome
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Figure 1.7

The major steps of macroautophagy are Initiation, Elongation, Autophagosome
formation, Fusion and Degradation.
Adapted from Hansen, M., Rubinsztein, D. C., & Walker, D. W. (2018).

Autophagy as a promoter of longevity: insights from model organisms. Nature
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1.7 Autophagy Regulation

A significant increase in autophagosome production occurs during nutrient
restriction [101]. The Ras-cAMP-PKA and TOR signaling pathways perceive
nutrient condition, and control autophagy [101]. Rapamycin has the ability to
inhibit TORC1 [102]. Even in the presence of nutrients, rapamycin-induced
inactivation of TORC1 promotes autophagy, indicating that TOR inhibits
autophagy [102]. It is hypothesized that mTORCI1 directly detects nutrient signals
and 1s subsequently phosphorylated in response [85]. As a reaction to amino acid
feedback, Rag proteins induce TORCI by translocating it to its activator Rheb
[103][104][105][106]. Additionally, amino acids use class III PtdIns3K (hVps34)
to activate mTOR [105][107][108]. Amino acid stimulation of hVps34 results in
autophagy inhibition and mTOR activation [105][107][108]. In addition to
controlling the Atgl/ULK complex, TORCI inhibits autophagy in yeast by
phosphorylating Tap42, which triggers the catalytic subunits of PP2A, a negative
autophagy regulator [109][110][111]. From yeast to mammals, the Ras/cAMP
dependent PKA signaling pathway is crucial for glucose sensing [111]. The
regulatory component Bcey| is present in yeast PKA [110][111][112]. When there
is an ample availability of nutrients, Ras1 as well as Ras2 promote adenylyl
cyclase's production of cAMP [111]. Increased cAMP binds to Bcy1 and causes
PKA to be inhibited [111]. In yeast, constitutive activation of the Ras/PKA route
inhibits autophagy produced by TOR inhibition, indicating that the Ras-PKA

system and the TOR pathway both downregulate autophagy [110]. Ras/PKA may
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impede autophagy via regulating Atgl, which has been found to be a PKA
phosphorylation substrate [111]. While Atgl is dephosphorylated and localized to
the PAS during starvation, PKA phosphorylation causes Atgl to be mostly
cytosolic and dissociated from the PAS in the presence of nutrient availability
[101]. Nutrient sensing also involves protein kinase Sch9, the closest yeast
homolog to both the TOR target S6K and the mammalian Akt [111]. Autophagy is
induced by simultaneous inactivation of PKA and Sch9 which can be further
enhanced by inactivating TORCI1 [112]. This indicates that autophagy in yeast is
negatively controlled by a minimum of three concurrent pathways: TORC1,
Ras/PKA, and Sch9. Ras/PKA and Sch9 may regulate autophagy at the
transcriptional level but not TOR [112]. This can be inferred from the observation
that transcription factors Rim15 kinase as well as Msn2/4 are needed for PKA and
Sch9 activity but not TOR [112].

Even in the presence of adequate nutrients, autophagy is triggered when growth
factors are removed from the extracellular milieu [113]. The routes by which
nutrients and hormones control autophagy in higher eukaryotes differ, but all
ultimately intersect at mTOR [101]. mTOR is regulated by insulin as well as IGFs
via class I PtdIns3K [114][115]. Insulin binding causes IRS1 and IRS2 to be
recruited and phosphorylated [101][114][115]. This process produces a docking
scaffold that facilitates the binding of class I PtdIns3K subunits and other adaptor
proteins [101][114][115]. Akt and its activator PDK1 are recruited to the
membrane more frequently when PIP3 is generated by the class I PtdIns3K
[80][81]. This causes PDK1 to phosphorylate and activate Akt [80][81]. Akt
activation further upregulates the tumour suppressor TSC2 protein’s

phosphorylation [80][81]. As a consequence, TSC1 TSC2 interaction gets blocked
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leading to the lack of TSC1/2 complex [80][81]. The successful formation of this
complex negatively regulates mTOR [80][81][116]. The lack of hormones causes
mTOR to become inactive, which relieves the autophagy-inhibiting action
[114][115]. In addition to TOR, Ras signaling is involved in growth factor-
mediated autophagy control [117]. Ras transmits signals from growth factor RTK
to effectors such as class I PtdIns3K as well as Raf-1/MAP kinases [117]. One
important Ras effector Raf-1 upregulates autophagy by sensing amino acids
deficiency [118]. In this case, the Raf-1 kinase is the target of amino acids, which
suppress its activity and consequently downregulates the activity of the
downstream MEK1/2 as well as ERK1/2 kinases and subsequently autophagy
[118]. This inhibition is reversed and ERK1/2 as well as autophagy are induced by
amino acid deficiency [118]. This implies that the Ras-Raf-1-ERK1/2 and the
Ras-PtdIns3K cascade act against each other while influencing autophagy, in a
situation of amino acids deprivation vs growth factors shortage [101]. AMPK
detects a decreased level of cellular energy (ATP) in mammalian cells [119]. A
lower ATP/AMP ratio activates AMPK via the upstream LKBI1 kinase [119]. The
previously mentioned TSC1/2 complex is also phosphorylated and activated by
active AMPK, which further inhibits mTOR action by means of Rheb [116][119].
The resulting autophagy leads to increased ATP generation via nutrition recycling
[119]. Furthermore, in response to stress caused by nutrient deprivation and
growth factor withdrawal, cell cycle arrest can take place via CDK inhibitor
p27kip1 through LKB1-AMPK pathway [120]. This process is necessary to stop
cells from going through apoptosis and instead trigger autophagy for survival

[120].
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Autophagy is also strongly induced by numerous stress factors that can stem from
both inside and outside of cells [101]. The expression of aggregate-prone proteins,
glucose deprivation (which reduces glycosylation and energy for chaperone
activity), hypoxia and oxidative stress (which reduces disulfide bond formation),
and Ca?" efflux from the ER are few examples of ER stress stimuli that cause the
ER to accumulate more unfolded proteins than it can process [101][121]. ER
stress causes autophagy which depending upon the particular stress conditions and
the species, connect to several signaling pathways [101][121]. Tunicamycin
hampers N-glycosylation and can thus act as an ER stressor [122]. The
consequent cell survival is achieved by compensatory clearance of the misfolded
proteins within the ER as well as the enlarged and disorderly ER that arises from
UPR [101][121]. In yeast, the UPR signaling pathway is mediated by Irel and its
substrate Hacl [123]. The Ire1-Hacl pathway appears to be dispensable for the
transcriptional upregulation of ATGS, despite being necessary for the induction of
autophagy by ER stress [124]. Grp78/BiP, the UPR regulator, positively regulates
the formation of the phagophore which becomes evident when its siRNA
inhibition stops the formation of autophagosome [125]. Compared to yeast,
mammalian UPR signaling is more intricate and involves three different
downstream pathways: IRE1, ATF6, and PERK [121][126]. These elements
trigger the transcription of several target genes after receiving an indication of the
presence of misfolded proteins in the ER [121][126]. JNK is one of IRE1's
downstream targets which is necessary for the tunicamycin-influenced lipid
conjugation of LC3 [121][126]. PERK phosphorylates elF2a which leads to the
conversion of LC3-I to LC3-I1, in response to ER stressors like mutant polyQ72

proteins [127]. ATF6 can also sense misfolded proteins and gets activated. In
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order to induce autophagy, it binds to the promoter of DAPK1 which
consequently gets activated and phosphorylates Beclinl [128]. ER stress also
causes the release of luminal Ca?* into the cytosol in addition to UPR signaling
[129]. An increase in intracellular Ca*>* levels stimulate CaMKKJ, which in turn
activates AMPK to switch on autophagy [129]. PKCH is also phosphorylated in
response to elevated Ca>" levels, leading to LC3 conversion and autophagy in
reaction to ER stressors like tunicamycin [130]. While the aforementioned
research indicates that autophagy triggered by ER stress aids in mammalian cell
survival, other findings imply that autophagic cell death could result from ER
stressors [131]. When renal tubules of mice are injected with tunicamycin, DAPK
catalyzes both autophagy and apoptosis, resulting in cell death [132]. Activated
DAPK presumably initiates autophagy by phosphorylating Beclinl and
encouraging Beclinl separation from Bcl-2 [133]. One recurring topic is this
particular possibility that autophagy has parallel roles in deciding cell destiny,

depending on particular cell types and stimuli [131].
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Autophagy regulation under different kinds of stress.

Adapted from Lei, Y., Huang, Y., Wen, X., Yin, Z., Zhang, Z., &Klionsky, D. J.
(2022). How Cells Deal with the Fluctuating Environment: Autophagy Regulation
under Stress in Yeast and Mammalian Systems. Antioxidants (Basel,

Switzerland), 11(2), 304. https://doi.org/10.3390/antiox11020304
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Different malignancies can form and progress as a result of compromised or
transformed PTEN [134][135][136][137]. A variety of cancers, including those of
the prostate, uterus, brain, have been linked to PTEN’s dysregulation
[134][135][136][137]. When PTEN function is lost as a result of genetic or
epigenetic changes, PI3K signaling is hyperactivated, which promotes cell
survival, proliferation, and resistance to apoptosis [134][135][136][137].
Furthermore, poor clinical outcomes and resistance to traditional cancer therapy
are frequently correlated with PTEN changes [134][135][136][137]. The
importance of PTEN mutations in cancer goes beyond prognosis and diagnostics
towards treatment approaches. Targeting the PI3K pathway has grown in
popularity as a treatment strategy since PTEN loss frequently causes this pathway
to become activated [134][135][137]. Numerous PI3K inhibitors, including
copanlisib and idelalisib, have demonstrated encouraging efficacy in preclinical
and clinical investigations [138]. Moreover, determining PTEN mutations in
cancer patients can aid in predicting therapeutic outcomes and customizing
treatment approaches [134][135][136][137]. A rare genetic disorder known as
PHTS is characterized by the development of different benign growths, or
hamartomas, and a higher risk of malignancy [139][140]. PHTS encompasses
abnormalities including Cowden syndrome and Bannayan-Riley-Ruvalcaba
syndrome [139][140]. Germline mutations in PTEN are frequently the cause of
these illnesses, which can damage several organs and cause a range of symptoms,
such as skin deformities and cognitive deficits [139][140]. PTEN is also linked to
a number of neurological illnesses in addition to its roles in cancer and

developmental problems [141][142]. PTEN mutations have been discovered in
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patients with macrocephaly, a disorder marked by an increased head
circumference, and ASD [141][142]. ASD and other neurodevelopmental
disorders may arise as a result of PTEN loss or malfunction, which alters the
complex signaling pathways in the brain and affects neuronal growth and
connections [141[142]. The general health and well-being of those who suffer
from these disorders may be enhanced by novel approaches to the treatment and
prevention of diseases linked to PTEN deficiency. Also, diabetes and
cardiovascular disorders are among the plethora of illnesses linked to PTM

dysregulation [143].

Disease PTEN defects Cancer susceptibility
Cowden’s syndrome Splice variants Breast

Deletion: coding sequence promoter Thyroid

Nonsense mutation Endometrium.

Missense mutation

C124: no phosphatase activity,
G129: no lipid phosphatase activity,
K289: no nuclear translocation.

Bannayan-Riley- Deletion Breast
Ruvalcaba syndrome . Nonsense mutation Thyroid
Missense mutation Endometrium
Colorectal
Proteus/Proteus-like syndrome Missense mutation Cystadenoma of the ovary

Testicular tumours
CNS tumours
Parotid monomorphic adenoma.

Figure 1.9

PHTS and associated cancer susceptibility.

Adapted from Rodriguez, S., & Huynh-Do, U. (2012). The Role of PTEN in
Tumor Angiogenesis. Journal of oncology, 2012, 141236.
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As autophagy can either stimulate or inhibit tumour growth depending on the
situation, the intricate interaction between autophagy and cancer is still being
studied. One way autophagy affects the progression of cancer is by functioning as
a mechanism for tumour suppression [144][145][146][147][149]. Under normal
circumstances, autophagy guarantees the removal of damaged organelle, thus
inhibiting the build-up of harmful substances [146][148][151][153]. By doing so,
the growth of cancerous cells is inhibited and the likelihood of cancer developing
is decreased [146][148][151][153]. Furthermore, autophagy eliminates dangerous
reactive oxygen species, which have been shown to induce DNA damage and
genomic instability, further resulting in the creation of cancer cells
[144][145][147][149][150]. However, autophagy can act in two ways in tumours
that have already advanced, it can either encourage or impede the growth of the
malignancy [148][151]. Autophagy has the ability to stop the build-up of damaged
proteins and organelles during the early stages of carcinogenesis
[147][148][151][152]. This is necessary because it stops the formation of tumours,
as previously mentioned. On the other hand, under nutritional scarcity, autophagy
can supply cancer cells with vital nutrients and energy, allowing them to
withstand adverse circumstances and carry-on proliferating [148][151]. This
shows that autophagy may give cancer cells a survival edge and increase their
resistance to therapeutic interventions [144][148][151]. Comprehending the
correlation between autophagy and cancer holds noteworthy consequences for the
advancement of innovative cancer treatments. Creating tailored therapies for
different kinds of cancer may depend on controlling autophagic responses. For
example, inhibitors of autophagy may be used in conjunction with current

medicines to increase their effectiveness in tumours where autophagy supports
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cancer cell survival [147][148][149][151][152]. On the other hand, treatments that
promote or activate autophagy may be helpful in stopping the spread of cancer in
tumours where autophagy inhibits growth [147][148][149][151][152]. The
pathophysiology of various diseases, including metabolic syndromes and viral
infections, is also linked to dysregulation of autophagy [154][155][156]. Alpha-
synuclein and other aggregated proteins build up in Parkinson's disease due to
defective autophagy, preventing them from being cleared and causes
neurodegeneration [ 154]. Moreover, a number of metabolic disorders such as type
2 diabetes and obesity have also been linked to abnormalities in autophagy [155].
These metabolic illnesses are partly caused by impaired autophagy in metabolic
tissues, including the liver and pancreas [154][155].

Autophagy is an essential component in preserving metabolic homeostasis
because it controls insulin signaling, lipid droplet disintegration, and cellular
energy metabolism [154][155]. To enhance diagnosis, mitigate and treat these
crippling illnesses, more study is necessary to determine the precise mechanisms
driving autophagy dysregulation and to devise practical methods of modulating

this process in disease situations.
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Autophagy-dependent human diseases.

Adapted from Schneider, J. L., &Cuervo, A. M. (2014). Autophagy and human

disease: emerging themes. Current opinion in genetics & development, 26, 16-23.
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Our study concerned the impact of PTEN’s phosphorylation and sumoylation on
autophagy. We aimed to find out the change in autophagy that these PTM caused
and subsequently the reasons behind such change. Additionally, we wanted to
examine any differences in expression of autophagy according to its causal
processes — nutrient stress and endoplasmic reticulum stress. Also, to avoid any
results arising from cell-type-specific effects, we wanted to have our hypotheses

tested on multiple cell lines.
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Chapter 2

Results




2.1 PTEN-null PC3 cells fails to exhibit autophagy caused by EBSS
starvation, which is reversed by PTEN transfection.

We commenced our series of experiments with simply finding out whether
transfection of PTEN into PTEN-null PC3 cells can fulfil our objective, that is to
induce autophagy. We also had to check whether the induced autophagy was
increasing with time of starvation (as long as the cells didn’t die), because all our
later experiments were designed to undergo starvation for a longer period of time.
In untransfected PC3 cells, PC3 cells transfected with HA empty vector, and PC3
cells transfected with PTEN, autophagy by starvation was examined. Cells were
starved by incubating them in EBSS for 4 hours, 8 hours, 18 hours (EBSS was
used as it causes amino acid starvation). Autophagy was found to be limited in
untransfected and empty vector transfected cells (lacking PTEN). However,
autophagy was restored upon transfection of WT PTEN. First, all of these results
were seen utilising a fluorescence microscope to visualize autophagic vacuoles as
distinct puncta by MDC labelling (Figure 1A). After counting the percentage of
cells with these puncta, it was discovered that 2.29 + 0.13 %, 2.45 £0.16 % and
4.08 + 0.15 % corresponded to 4 hours, 8 hours and 18 hours respectively for
untransfected PC3 cells; 2.43 £ 0.13 %, 2.81 £ 0.06 % and 4.21 £ 0.16 %
corresponded to 4 hours, 8 hours and 18 hours respectively for HA empty vector
transfected PC3 cells and 16.06 = 0.76 %, 21.90 £ 1.99 % and 31.57 £ 1.90 %
corresponded to 4 hours, 8 hours and 18 hours respectively for PTEN transfected
PC3 cells (Figure 1B). Therefore, compared to PTEN transfected PC3 cells,
significantly lesser number of autophagic cells were observed in untransfected or
HA empty vector transfected PC3 cells. This result was consistent across all
examined time periods, where the number of autophagic cells showed an upward

trend with starvation duration.
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Figure 2.1

Detection of autophagy as a result of EBSS starvation in PC3 cells by MDC
staining.

(A) (B) Autophagic (LC3) puncta were expressed in PC3 cells and quantified
using MDC labelling. (A) Using a fluorescent microscope (100X magnification),
images were taken. Scale bar: 10 um. (B Percentage of cells that exhibit puncta at
4, 8, and 18 hours of starvation. Over 500 cells were counted. The statistical
differences between the recorded values at each time point of untransfected and
HA empty vector transfected cells and corresponding time point of PTEN
transfected cells were computed using the Student's t-test method. * p < 0.05, ** p

<0.01, *** p <0.001 Mean + SD, N=3.

As previously mentioned, the expression of endogenous LC3B, a critical
component of autophagosomes formed during autophagy, was next examined
using indirect immunolabelling. The autophagic cells exhibited a high
fluorescence that was directly related to the effective creation of autophagosomes,
indicating similar outcomes of EBSS-induced autophagy (Figure 2A). The results
were further consolidated by carrying out the immunoblotting of transfected cell
extracts, which contained specific marker proteins associated to autophagy.
Beclinl/GAPDH, ATG5/GAPDH, and ATG7/GAPDH band intensity ratios were
computed. The ratios of all these marker proteins got elevated which again proved
the existence of autophagy as a consequence of transfection of PTEN into PTEN-
null PC3 cells. The increase of autophagic flux with increase in time interval of

starvation was further proven by these blots (Figure 2B).
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Figure 2.2

Autophagy after EBSS starvation in PC3 cells was observed using Indirect
Immunolabeling and Western Blot.

(A) Indirect immunolabelling generated Anti-LC3B expression in PC3 cells. The
WT PTEN gene construct and HA empty vector transfected cells were starved for
18 hours. They were then examined under a fluorescent microscope (100X
magnification) after being immunolabelled with Anti-LC3B and DAPI mounting
medium. Scale bar: 10 um. (B) Total cellular extract from PC3 was collected to
estimate the expression of autophagy marker proteins Beclinl, ATGS, and ATG7
using Western Blot. As a loading control GAPDH was utilised. ImagelJ software
was used to calculate the ratios of band intensities between each marker protein

and GAPDH, which are represented by the specified values.

2.2 The induction of autophagy is attributed to PTEN's lipid phosphatase
activity. PTEN's phosphorylation prevents it from being able to induce
autophagy, but PTEN's sumoylation promotes autophagy induction.

Using Site-directed mutagenesis kit, we created distinct PTEN mutant clones from
WT PTEN in accordance with the instructions provided. Following the
transformation, a single colony was isolated, sequenced, and verified using a
sequencing primer. We were aware of the fact that PTEN’s phosphatase nature
renders its control over several physiological phenomenon. Also, as previously
mentioned, the fine tuning by a protein’s PTM alters its function and localization.
So, in our experiments, we used PTEN mutants that were either phosphatase
deficient (the fundamental nature of PTEN) and mutants bearing alterations in

PTEN’s phosphorylation as well as sumoylation capability. As it will be seen in
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the following discourse, autophagy is affected by both these two types of
mutations.
Utilizing the previously indicated techniques once more, we observed that

transfection of a phosphatase inactive mutant form of PTEN (C124S) did not

result in autophagy levels comparable to transfection of full-length WT PTEN.

MDC labelling of autophagic vacuoles in PC3 cells transfected with PTEN

(C124S) following EBSS-mediated starvation have 6.94 + 0.78 % puncta as

compared to 30.49 + 1.81 % cells transfected with WT PTEN (Figure 3A, 3B).
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Figure 2.3

The autophagic (L.C3) puncta expression of PC3 cells as a result of EBSS
starvation, after transfection with PTEN mutants.

(A) (B) Autophagic (LC3) puncta were expressed in PC3 cells and quantified
using MDC labelling. (A) Using a fluorescent microscope (100X magnification),
images were taken. Scale bar: 10 um. (B Percentage of cells that exhibit puncta at
18 hours of starvation with the respective PTEN gene constructs. Over 500 cells
were counted. The statistical differences between the values recorded for each
mutant and WT PTEN were computed using the Student's t-test method. * p <

0.05, ** p<0.01, *** p<0.001 Mean + SD, N=3.

The LC3B study from immunolabelling experiments produced identical results
(Figure 4). This showed lack of autophagosome production in mutated PTEN

(C124S) transfected PC3 cells.
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Figure 2.4
PC3 cells' generation of anti-LC3B immunofluorescence following

transfection with PTEN mutants and EBSS-mediated starvation.

All the respective gene constructs were used to transfect PC3 cells, and they were

starved for 18 hours. They were then examined under a fluorescent microscope
(100X magnification) after being immunolabelled with Anti-LC3B and DAPI

mounting medium. Scale bar: 10 pm.

Following EBSS starvation, immunoblotting experiments in WT PTEN
transfected PC3 cells revealed that the ratios of band intensities of
Beclinl/GAPDH; ATG5/GAPDH; ATG7/GAPDH; p62/GAPDH and phospho-
mTOR/mTOR were 0.76 +£0.010; 0.96 + 0.022; 1.14 £ 0.027; 0.89 = 0.031 and
0.46 = 0.019 respectively. Similarly, for PTEN (C124S) transfected cells, they

were 0.19 £ 0.046; 0.43 £0.019; 0.72 £0.031; 1.36 £ 0.052 and 0.95 + 0.020

respectively (Figure 5A, 5B, 6A, 6B). The expression of all the autophagic marker

proteins got reduced in PTEN (C124S) transfected PC3 cells. On the contrary the

phosphorylation of mTOR (negative regulator of autophagy) increased.
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Figure 2.5

The quantitative assessment of autophagic marker proteins from PC3 cells
transfected with PTEN mutants and treated with EBSS (18 h).

(A) Autophagy marker proteins Beclinl, ATGS5, ATG7, and p62 were detected by
Western Blot analysis of total cellular extracts from PC3 cells. As a loading
control, GAPDH was utilized. (B) The ratios of band intensities between
respective marker proteins and GAPDH were computed using ImagelJ software,
and were graphically represented. The statistical differences between the recorded
values of each mutant and PTEN were determined using the Student's t-test

method. * p <0.05, ** p <0.01, *** p <0.001 Mean + SD, N=3.
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Figure 2.6

The quantitative assessment of p-mTOR and mTOR from PC3 cells
transfected with PTEN mutants and treated with EBSS (18 h).

(A) Autophagy marker protein p-mTOR was detected by Western Blot analysis of
total cellular extracts from PC3 cells. As a loading control, GAPDH was utilized.
(B) The ratios of band intensities between p-mTOR and mTOR were computed
using ImagelJ software, and were graphically represented. The statistical
differences between the recorded values of each mutant and PTEN were
determined using the Student's t-test method. * p < 0.05, ** p <0.01, *** p <

0.001 Mean + SD, N=3.

Finally, after 18 hours of EBSS-induced autophagy, we captured images of
autophagic vacuoles using TEM (Figure 7). These further consolidated our
findings as the error-free image of a subcellular components’ ultrastructure is
always deemed reliable. As mentioned in the following figure legend, we
maintained utmost care in detecting autophagic vacuoles amongst other
subcellular structures. WT PTEN-transfected cells showed numerous autophagic
vacuoles, indicating the presence of autophagy. In contrast, autophagic vacuoles

were hardly noticeable in the transfected mutant PTEN (C124S) cells.
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Figure 2.7

Following transfection with PTEN mutants and subsequent EBSS starvation
in PC3 cells, imaging of autophagic vacuoles using TEM.

PC3 cells were starved for 18 hours after being transfected with PTEN gene
constructs. Sections were examined under TEM after cells were methodically
fixed. (A) TEM image of autophagic vacuoles. Scale bar: 500 nm. (B) Each field's
enlarged autophagic vacuole as specimen. Scale bar: 200 nm. The vacuoles were
examined for the presence of cristae along with double membranes since

autophagic vacuoles and mitochondria are sometimes mistaken for each other.

Now for our next series of experiments concerning PTEN’s sumoylation and
phosphorylation, we not only included another PTEN-null cell line US7MG but
also applied another causal agent of autophagy: tunicamycin-mediated ER stress.
This was done in order to have additional evidence to support our results and to
avoid any cell-specific erroneous results. Cells transfected with sumoylation-
deficient mutant form of PTEN (K254R) and WT PTEN transfected cells were
compared to inspect the differences in expression of PTEN-mediated autophagy.
It had been determined that this specific mutation negatively modulates the
sumoylation capability of PTEN. Autophagy was induced in PC3 cells by
incubating cells in EBSS for 18 hours and also in U§7MG cells by incubating
cells in EBSS for 18 hours as well as in Tunicamycin for 24 hours. Autophagic
vacuoles stained with MDC in PC3 cells after EBSS starvation displayed 14.88 +
1.58 % of cells with puncta after PTEN (K254R) transfection as compared to
30.49 £+ 1.81 % cells with WT PTEN transfection (Figure 3A, 3B). Similarly,

autophagic vacuoles stained with MDC in PTEN (K254R) transfected U§7MG
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cells after EBSS starvation displayed 22.79 + 2.32 % of cells with puncta as

compared to 45.58 + 1.07 % cells with WT PTEN transfection (Figure 8A, 8B).
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Figure 2.8

The autophagic (LC3) puncta expression of US7MG cells as a result of EBSS
starvation, after transfection with PTEN mutants.

(A) (B) Autophagic (LC3) puncta were expressed in US7MG cells and quantified
using MDC labelling. (A) Using a fluorescent microscope (100X magnification),
images were taken. Scale bar: 10 um. (B Percentage of cells that exhibit puncta at
18 hours of starvation with the respective PTEN gene constructs. Over 500 cells
were counted. The statistical differences between the values recorded for each
mutant and WT PTEN were computed using the Student's t-test method. * p <

0.05, ** p<0.01, *** p<0.001 Mean + SD, N=3.

Also, autophagic vacuoles stained with MDC in in PTEN (K254R) transfected
U87MG cells after Tunicamycin treatment showed 24.42 + 2.14 % of cells with as
compared to 54.05 + 1.08 % cells with WT PTEN transfection (Figure 9A, 9B).
This showed the significant decrease of autophagic flux in sumoylation deficient

mutated form of PTEN (K254R).
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Figure 2.9

The autophagic (LC3) puncta expression of US7MG cells as a result of
Tunicamycin mediated ER stress, after transfection with PTEN mutants.

(A) (B) Autophagic (LC3) puncta were expressed in US7MG cells and quantified
using MDC labelling. (A) Using a fluorescent microscope (100X magnification),
images were taken. Scale bar: 10 um. (B Percentage of cells that exhibit puncta at
18 hours of starvation with the respective PTEN gene constructs. Over 500 cells
were counted. The statistical differences between the values recorded for each
mutant and WT PTEN were computed using the Student's t-test method. * p <

0.05, ** p<0.01, *** p<0.001 Mean + SD, N=3.

Also, when compared to their WT PTEN transfected counterparts, PTEN

(K254R) transfected PC3 and US7MG cells displayed weak fluorescence in LC3B

analysis utilizing indirect immunolabelling (Figure 4, 10, 11).
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Figure 2.10
U87MG cells' generation of anti-LC3B immunofluorescence following

transfection with PTEN mutants and EBSS-mediated starvation.

All the respective gene constructs were used to transfect US7MG cells, and they

were starved for 18 hours. They were then examined under a fluorescent
microscope (100X magnification) after being immunolabelled with Anti-LC3B

and DAPI mounting medium. Scale bar: 10 pm.
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Figure 2.11

U87MG cells' generation of anti-LC3B immunofluorescence following
transfection with PTEN mutants and Tunicamycin mediated ER stress.

All the respective gene constructs were used to transfect US7MG cells, and they
were starved for 18 hours. They were then examined under a fluorescent
microscope (100X magnification) after being immunolabelled with Anti-LC3B

and DAPI mounting medium. Scale bar: 10 pm.

Following EBSS starvation, immunoblotting experiments in WT PTEN
transfected PC3 cells revealed that the ratios of band intensities of
Beclinl/GAPDH; ATG5/GAPDH; ATG7/GAPDH; p62/GAPDH and phospho-
mTOR/mTOR were 0.76 +£0.010; 0.96 + 0.022; 1.14 £ 0.027; 0.89 = 0.031 and
0.46 + 0.019 respectively. For PTEN (K254R) transfected PC3 cells, they were
0.35+0.030; 0.55+0.034; 0.86 = 0.036; 1.24 = 0.051 and 0.77 £ 0.021
respectively (Figure 5A, 5B). Similarly, following EBSS starvation,
immunoblotting experiments in WT PTEN transfected U87MG cells revealed th
the ratios of band intensities of Beclinl/GAPDH; ATG5/GAPDH; p62/GAPDH

and phospho-Akt/Akt were 0.92 + 0.033; 0.70 + 0.048; 0.80 = 0.081 and 0.71 +

at

0.032 respectively. For PTEN (K254R) transfected U87MG cells, they were 0.48

+0.010; 0.35+0.053; 1.57 £ 0.074 and 1.35 + 0.042 respectively (Figure 12A,

12B).
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Figure 2.12

The quantitative assessment of autophagic marker proteins from US7MG
cells transfected with PTEN mutants and treated with EBSS (18 h).

(A) Autophagy marker proteins Beclinl, ATGS, p62 and p-Akt were detected by
Western Blot analysis of total cellular extracts from U87MG cells. As a loading
control, GAPDH was utilized. (B) The ratios of band intensities between
respective marker proteins and GAPDH as well as between p-Akt and Akt, were
computed using ImageJ software, and were graphically represented. The statistical
differences between the recorded values of each mutant and PTEN were
determined using the Student's t-test method. * p < 0.05, ** p <0.01, *** p <

0.001 Mean + SD, N=3.

Also, after Tunicamycin treatment, immunoblotting experiments in WT PTEN
transfected U87MG cells revealed that the ratios of band intensities of
Beclinl/GAPDH; ATG5/GAPDH; p62/GAPDH and phospho-Akt/Akt were 1.72
+0.096; 0.94 £ 0.061; 0.19 £ 0.019 and 0.47 £ 0.016 respectively. For PTEN
(K254R) transfected U87MG cells, they were 0.81 + 0.037; 0.44 + 0.036; 0.62 +

0.039 and 1.10 £+ 0.057 respectively (Figure 13A, 13B).
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Figure 2.13

The quantitative assessment of autophagic marker proteins from US7MG
cells transfected with PTEN mutants and treated with Tunicamycin (24 h).
(A) Autophagy marker proteins Beclinl, ATGS, p62 and p-Akt were detected by
Western Blot analysis of total cellular extracts from U87MG cells. As a loading
control, GAPDH was utilized. (B) The ratios of band intensities between
respective marker proteins and GAPDH as well as between p-Akt and Akt, were
computed using ImageJ software, and were graphically represented. The statistical
differences between the recorded values of each mutant and PTEN were
determined using the Student's t-test method. * p < 0.05, ** p <0.01, *** p <

0.001 Mean + SD, N=3.

TEM images, which showed fewer autophagic vacuoles in PTEN (K254R)
transfected cells, further supported these findings (Figure 7).

WT PTEN transfected cells were compared to phosphorylation-deficient mutant
(A4-S380A, T382A, T383A, S385A) and phosphorylation-mimicking mutant
(E4-S380E, T382E, T383E, S385E) transfected cells in order to examine the
effects of PTEN-mediated autophagy. It is known that phosphorylation controlled
the stability and phosphatase activity of PTEN. PC3 cells were incubated in EBSS
for 18 hours, whereas US7MG cells were incubated in EBSS for 18 hours as well
as in Tunicamycin for 24 hours to induce autophagy. Autophagic vacuoles stained
with MDC in PC3 cells after EBSS starvation displayed 35.46 + 1.67 % and 26.66
+.99 % of cells containing puncta after transfection of A4 PTEN and E4 PTEN
respectively, as compared to 30.49 + 1.81 % cells transfected with WT PTEN
(Figure 3A, 3B). Similarly, autophagic vacuoles stained with MDC in U§7MG

cells after EBSS starvation displayed 52.30 + 1.55 % and 36.94 + 2.64 % of cells
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containing puncta after transfection of A4 PTEN and E4 PTEN respectively, as
compared to 45.58 + 1.07 % cells transfected with WT PTEN (Figure 8A, §B).
Also, autophagic vacuoles stained with MDC in U87MG cells after Tunicamycin
treatment displayed 61.54 = 2.07 % and 41.42 + 1.31 % of cells containing puncta
after transfection of A4 PTEN and E4 PTEN respectively, as compared to 54.04 +
1.08 % cells transfected with WT PTEN (Figure 9A, 9B). When comparing A4
PTEN and E4 PTEN-transfected (PC3 as well as U87MG) cells to WT PTEN-
transfected cells, LC3B analysis using indirect immunolabelling displayed strong
fluorescence in all three types of tested cells, but with perceptible higher and
lower intensity in A4 PTEN and E4 PTEN-transfected cells respectively when
compared to WT PTEN-transfected cells (Figure 4, 10, 11). As mentioned earlier,
following EBSS starvation, immunoblotting experiments in WT PTEN transfected
PC3 cells revealed that the ratios of band intensities of Beclinl/GAPDH;
ATGS5/GAPDH; ATG7/GAPDH; p62/GAPDH and phospho-mTOR/mTOR were
0.76 £ 0.010; 0.96 + 0.022; 1.14 + 0.027; 0.89 + 0.031 and 0.46 + 0.019
respectively. Similarly, for A4 PTEN-transfected cells they were 0.97 & 0.043;
1.16 £0.049; 1.32 £0.029; 0.56 = 0.055 and 0.34 & 0.015 respectively and for E4
PTEN-transfected cells, 0.62 + 0.022; 0.81 £0.030; 1.03 £ 0.017; 1.07 = 0.058
and 0.60 £ 0.035 respectively (Figure 5A, 5B, 6A, 6B). Similarly, following
EBSS starvation, immunoblotting experiments in WT PTEN transfected U§7MG
revealed that the ratios of band intensities of Beclinl/ GAPDH; ATG5/GAPDH;
p62/GAPDH and phospho-Akt/Akt were 0.92 + 0.033; 0.70 & 0.048; 0.80 = 0.081
and 0.71 £ 0.032 respectively. Similarly, for A4 PTEN-transfected cells they
were 1.14 £ 0.070; 0.80 £ 0.037; 0.56 + 0.010 and 0.53 + 0.016 respectively and
for E4 PTEN-transfected cells, 0.78 £ 0.032; 0.59 +£ 0.035; 1.14 £ 0.012 and 0.87

+ 0.039 respectively (Figure 12A, 12B). Also, in WT PTEN transfected U§7MG
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cells after Tunicamycin treatment, the ratios of band intensities of
Beclinl/GAPDH; ATG5/GAPDH; p62/GAPDH and phospho-Akt/Akt were 1.72
+0.096; 0.94 £ 0.061; 0.19 £ 0.019 and 0.47 £+ 0.016 respectively. Similarly, for
A4 PTEN-transfected cells they were 2.01 + 0.093; 1.12 £0.042; 0.15 £ 0.015
and 0.35 £ 0.014 respectively and for E4 PTEN-transfected cells, 1.28 £ 0.077;
0.73 £0.032; 0.24 £ 0.015 and 0.53 £ 0.020 respectively (Figure 13A, 13B). The
results were corroborated by TEM images, which showed that the transfected cells
with A4 PTEN and WT PTEN had more autophagic vacuoles than the transfected

cells with E4 PTEN (Figure 7).

2.3 When autophagy is induced, PTEN's phosphorylation declines and its
sumoylation gets elevated.

In this phase, we investigated PTEN-positive cancer cells A549, HelLa, and
normal human lung fibroblast cell WI-38 in addition to WT PTEN transfected
PC3. The cells were subjected to an 18-hour EBSS-mediated starvation before
being compared to their untreated counterparts. Using phospho-PTEN antibody,
both starved and unstarved cells were immunoblotted to measure the
phosphorylation status of PTEN during EBSS-induced autophagy. The ratios of
band intensities of Phospho-PTEN/Total PTEN for starved cells were 0.53 +
0.009; 0.93 £+ 0.029; 0.50 + 0.046 and 0.44 + 0.050 for PTEN transfected PC3,
WI-38, A549 and HeLa respectively. Similarly, the ratios of unstarved cells were
0.90 £ 0.033; 1.15 + 0.047; 1.08 + 0.036 and 0.69 + 0.043 for PTEN transfected

PC3, WI-38, A549 and HeLa cells respectively (Figure 14A, 14B).
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Figure 2.14

The level of PTEN phosphorylation in WI-38, A549, HelLa, and PTEN
transfected PC3 cells as a result of autophagy during starvation (18 h).

(A) Total cell extracts from WI-38, A549, HeLa and PTEN transfected PC3 were
collected, and using Western blot the levels of p-PTEN following starvation were
compared. (B) The ratios between p-PTEN and PTEN band intensities as a result
of autophagy are shown graphically. PTEN served as a loading control. ImageJ
software was used to calculate the band intensities. The statistical differences
between the calculated values of EBSS-treated starved cells and their unstarved
counterparts were computed using the Student's t-test method. * p <0.05, ** p <

0.01, *** p <0.001 Mean + SD, N=3.

Similarly, PTEN transfected US7MG cells were starved with EBSS for 18 h. The
ratio of band intensities of Phospho-PTEN/Total PTEN for starved cells were 1.06
+ 0.017 whereas the ratio of unstarved cells were 1.32 = 0.067 (Figure 15A).
Also, PTEN transfected US7MG cells and WI-38 cells were treated with
Tunicamycin for 24 h. The ratio of band intensities of Phospho-PTEN/Total
PTEN for treated cells were 0.90 + 0.035 and 0.82 + 0.054 for US7MG cells and
WI-38 respectively whereas the ratio of unstarved cells were 1.53 £ 0.031 and

1.28 + 0.026 (Figure 15B 15C).
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Figure 2.15

The level of PTEN phosphorylation as a result of autophagy in WI-38 after
Tunicamycin mediated ER stress (24 h) and PTEN transfected US7MG cells
after EBSS-mediated starvation (18 h) as well as Tunicamycin mediated ER
stress (24 h).

(A) (B) (C) Total cell extracts from WI-38 and PTEN transfected US7MG were
collected, and using Western blot the levels of p-PTEN following autophagy
induction were compared. The ratios between p-PTEN and PTEN band intensities
as a result of autophagy are shown graphically. PTEN served as a loading control.
Imagel software was used to calculate the band intensities. The statistical
differences between the calculated values of treated cells and their untreated
counterparts were computed using the Student's t-test method. * p <0.05, ** p <

0.01, *** p <0.001 Mean + SD, N=3.

Total PTEN was immunoprecipitated from the cell extract and subsequently
immunoblotted with SUMO2/3 antibody in order to measure the sumoylation
status of PTEN under EBSS-induced autophagy. The ratios of band intensities of
SUMOylated PTEN/Total PTEN for starved cells were 0.62 + 0.037; 0.45 +
0.025; 0.63 +£0.042 and 0.52 + 0.023 for PTEN transfected PC3, WI-38, A549
and HeLa cells respectively. Similarly, the ratios of unstarved cells were 0.48 +
0.021; 0.37 £0.020; 0.41 £ 0.016 and 0.43 = 0.013 for PTEN transfected PC3,

WI-38, A549 and HeLa cells respectively (Figure 16A, 16B).
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Figure 2.16.

The level of PTEN sumoylation in WI-38, A549, HeLa and PTEN transfected

PC3 cells as a result of autophagy during starvation (18 h).

(A) Using Immunoprecipitation, total PTEN was collected from WI-38, A549 and

HeLa and PTEN transfected PC3, and by using Western blot the levels of

SUMOylated PTEN were compared between EBSS-treated and untreated cells.

(B) The ratios between SUMOylated PTEN and PTEN band intensities as a result

of autophagy are shown graphically. ImagelJ software was used to calculate the

band intensities. The statistical differences between the calculated values of EBSS

treated starved cells with their unstarved counterparts were computed using the

Student's t-test method. * p < 0.05, ** p <0.01, *** p <0.001 Mean + SD, N=3.

Additionally, the ratios of band intensities of SUMOylated PTEN/Total PTEN
were measured for PTEN transfected U87MG cells treated with both EBSS as
well as Tunicamycin and WI-38 cells treated with Tunicamycin (Figure 17A,

17B, 17C).

86




54 kDa

54 kDa

54 kDa

54 kDa

54 kDa

54 kDa

0.45 1.32

Sumoylated PTEN

PTEN

Sumoylated PTEN

PTEN

Sumoylated PTEN

PTEN

87




Figure 2.17

The level of PTEN sumoylation as a result of autophagy in WI-38 after
Tunicamycin mediated ER stress (24 h) and PTEN transfected US7MG cells
after EBSS-mediated starvation (18 h) as well as Tunicamycin mediated ER
stress (24 h).

(A) (B) (C) Using Immunoprecipitation, total PTEN was collected from WI-38
and PTEN transfected US87MG, and by using Western blot the levels of
SUMOylated PTEN were compared between treated and untreated cells. The
ratios between SUMOylated PTEN and PTEN band intensities as a result of
autophagy are mentioned. Imagel software was used to calculate the band

intensities.

2.4 PTEN's cell membrane localization is aided and hindered by PTEN's
sumoylation and phosphorylation respectively.

PTEN negatively regulates the PI3K/Akt signaling pathway, which consequently
leads to its positive regulation of autophagy. The cell membrane is primarily
where this downregulation takes place. PIP2 is catalysed to become PIP3 after
PI3K is activated. Akt attaches itself to PIP3 at the cell membrane where PDK1
can interact with it, in order to phosphorylate and consequently activate it. The
primary downstream target of Akt which plays an active role in reducing
autophagy is mTOR which in turn gets phosphorylated. This inhibition of
autophagy is reversed when PTEN suppresses the PI3K/AKT pathway by
dephosphorylating PIP3 to PIP2. Hence, we tagged both PC3 as well as U87Mg
cells with an anti-PTEN antibody and observed them under a confocal
microscope. This was done following autophagy induction in order to identify the

presence of PTEN in terms of subcellular localization. In transfected WT PTEN
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and A4 PTEN cells, we observed strong fluorescence intensity along the cell
membranes, in E4 PTEN it was comparatively weaker, and in PTEN (K254R)
cells it was completely scattered in the cytoplasm (Figure 18, 19). This is
indicative of the previously mentioned fine tuning of PTEN by its
phosphorylation and sumoylation in terms of localization and accordingly its

function.
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Figure 2.18

Following transfection of PTEN mutants in PC3 cells, visualization of
PTEN's cell membrane localization using confocal microscopy.

Indirect immunolabelling was used to detect PTEN in transfected PC3 cells. After
transfecting cells with PTEN gene constructs, they were starved for 18 hours.
Finally, they were examined under a confocal microscope (63X magnification)
after being immunolabelled with Anti-PTEN and DAPI mounting medium. Scale

bar: 20 pm.
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Figure 2.19

Following transfection of PTEN mutants in U87MG cells, visualization of
PTEN's cell membrane localization using confocal microscopy.

Indirect immunolabelling was used to detect PTEN in transfected US7MG cells.
After transfecting cells with PTEN gene constructs, they were put under
Tunicamycin treatment for 24 h. Finally, they were examined under a confocal
microscope (63X magnification) after being immunolabelled with Anti-PTEN and

DAPI mounting medium. Scale bar: 20 pm.
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Chapter 3

Discussion




Our whole study is centred around the regulation of autophagy by PTEN via
PI3K/AKT/mTOR pathway. As have been mentioned previously, PI3K with the
help of PIP3 switches on Akt, which in turn activates mTOR [80][81][82][83]. As
mTOR plays a major role in curtailing autophagy, PTEN’s dephosphorylating
PIP3 to PIP2 will induce autophagy [84][85]. So, it goes without saying that
autophagy will be almost non-existent in PTEN null cells.

PC3 cells are isolated from bone metastasis of prostatic adenocarcinoma while
U87MG cells are isolated from malignant glioblastoma, and they both have
inactivated PTEN [157]. We had transfected WT PTEN gene construct along with
designated mutants of PTEN constructs into PC3 and U87MG cells and recorded
alteration in autophagy levels. This was carried out by several methods such as
cell staining by MDC, immunolabelling, immunoblot and visualisation of cells
under TEM. Cells with HA empty vector constructs’ transfection or cells without
any transfection were used as control setup. We had induced autophagy via two
distinct approaches namely nutrient deprivation as well as ER stress by EBSS and
tunicamycin respectively. Autophagy can be effectively triggered in cells when
they are deprived of nutrients. When starved of nutrients like amino acids,
autophagy is activated to provide the cell with energy and essential building
blocks [158]. EBSS is a saline solution having physiological pH and it induces
autophagy by amino acid starvation (we used it because withdrawal of amino
acids is seen to be more potent in inducing autophagy than glucose starvation in
vitro) [159][160]. ER stress is a condition where the accumulation of unfolded or
misfolded proteins in the ER triggers a cellular response to restore homeostasis,

thereby going ahead with autophagy [121]. Tunicamycin is an antibiotic that

95




specifically aggravates ER stress by multiple ways like inhibiting N-glycosylation
[138]. Using different activators of autophagy serves both fundamental research
purposes as well as potential therapeutic motives.

We observed in our study that transfection of WT PTEN activated autophagy, and
a continuous increase in the number of autophagic cells was observed as the time
of starvation increased. The untransfected cells and HA empty vector cells
showed similar levels of autophagy implying that they can be both used as a
control set for further experiments. When PTEN mutant (C124S) were transfected
inside the cells, the induction of autophagy was seen to be lowered. This mutant is
phosphatase deficient, which failed to negatively regulate the AKT pathway due
to its inability to convert PIP3 to PIP2, as previously described. Also, this
observed lack of catalysis coincides with the fact that dysregulated PTEN is often
coincident with elevated PIP3 levels in the cell membrane [80][81][82][83]. Thus,
we can conclude that for autophagy initiation, lipid phosphatase activity, being the
canonical function of PTEN, is primarily needed.

Out of several markers used in the quantification of autophagic flux, we naturally
selected the ones that are deemed to be the most crucial in the whole process.
Beclinl is integral in the initial nucleation process and the subsequent
autophagosome maturation, being part of signalling complexes that recruit
indispensable effector proteins [91]. ATGS is the component of the ATGS5 ATG12
ATG16 complex that is required for both phagophore formation and elongation
[88][95]. LC3B is necessary for both hemifusion of the autophagosome
membrane as well as detection of the cargo [88][95]. ATG7 acts as an E1 enzyme
in the formation of both ATG5 ATG12 ATG16 complex as well as LC3 PE

conjugation [88][95]. p62 acts like an adaptor protein in cherry-picking desirable
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cargo while getting degraded in the process [88][95]. So, it is generally observed
that barring p62 which decreases with increase in autophagy, all of the mentioned
markers increase with increase in autophagic flux [162][163]. Additionally, both
Akt as well as mTOR negatively regulates autophagy [83][84]. So, expression of
p-Akt and p-mTOR can be gauged to determine autophagy, where their levels are
seen to be decreasing with increase in autophagic flux [164]. Our observations
had also been similar to these established molecular markers.

Our principal investigation was then pursued, which was to look for a connection
between the two most pertinent PTM and the change in autophagic flux.

As we previously discussed, PTEN's substrate PIP3 is found on the inner leaflet of
the cell membrane, and its subsequent dephosphorylation by PTEN causes the
PI3K/AKT pathway to be downregulated [80][81][82][83]. Hence, this regulatory
node dictates the overall activation of autophagy by PTEN [84][85]. PTEN
typically exhibits higher selectivity for the plasma membrane compared to the
nuclear membrane because the inner leaflet of plasma membrane is composed of a
larger amount of lipids [162]. PTEN’s C2 domain is made up of clustered cationic
residues that naturally interacts non-specifically with the membrane
[28][29][30][165][166]. According to molecular study, PTEN undergoes a
necessary realignment after the subsequent electrostatic association with the
membrane [85]. This reorientation is regulated by the C2 domain as well [85]. So,
to cut a long story short, C2 domain not only assists in PTEN’s recruitment to the
cell membrane but also in orientation of the catalytic phosphatase domain
[166][167][168][169]. Functionally, this is of utmost importance as the exactness
of PTEN’s orientation as well as penetration within the membrane determines its

consequent dephosphorylation action [166][167][168][169].
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The PTM sumoylation dictates the position of cellular substrates inside the cell as
mentioned before [77]. PTEN is accordingly directed to the cytoplasm by
decreased sumoylation, as observed in sumoylation mutants [78][170][171].
PTEN is sumoylated at the K254 location in the C2 domain, among other places
[78][170][172]. PTEN's association with the plasma membrane is facilitated by
sumoylation according to the principle of electrostatic interaction [170][173]. This
is due to the fact that PTEN's net positive charge on the C2 domain has increased
due to its covalent modification from sumoylation and is consequently drawn
towards the existing negatively charged inner layer of the cell membrane
[170][174]. These covalent modifications may additionally keep PTEN in an open
conformation and further enhance membrane attachment by negatively regulating
PTEN's interaction with its C-terminal tail [78][170]. According to reports, PTEN
(K254R) is less prevalent in cell membrane fractions than transfected WT PTEN
[170]. PTEN (K254R) transfected cells thus show decreased phosphatase activity
and prolonged AKT phosphorylation, both of which are essential for the negative
control of autophagy [170]. This was consistent with our finding that, as
compared to WT PTEN, PTEN (K254R) transfected cells had lower quantity of
autophagic vacuoles as well as reduced levels of autophagic molecular markers.
Through an intricate system of phosphorylation and dephosphorylation, the 380—
385 Ser/Thr cluster and other phosphorylation sites function as a spontaneous
electrostatic switch of membrane association [74][165][175][176][177]. The C-
terminal phosphorylation acts as a molecular clamp on the C2 domain, resulting in
PTEN to adopt a compact and condensed shape [177]. Its membrane binding
surface is unable to effectively make contact with the cell membrane due to this

particular "closed" shape [175][177][178]. When it is dephosphorylated, the tail's
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tight binding is reversed, making space for its "open" conformation and the
subsequent membrane recruitment of its surface cationic residues
[175][177][178]. This is comparable to the idea of an enzyme, in which the
"closed" shape functions as a stable proenzyme that is prepared for subsequent
activity [178]. Additionally, the phosphorylated C-terminal tail functions as a
pseudosubstrate and engages in competition with the cell membrane's
phospholipids for binding to the C2 domain [74][178]. Another theory is that the
C-terminal tail in general interacts with PDZ domain-containing proteins, whereas
its phosphorylation masks the PDZ domain binding site [74][175]. As a result of
this, protein-protein interactions with the membrane, that are dependent on the
PDZ domain and are required for membrane recruitment, is further intercepted.
[74][175]. While PTEN (E4) transfected cells showed decreased membrane
affinity, PTEN (A4) transfected cells showed WT PTEN like affinity for
POPC/POPS (8:2) vesicles (which imitate the inner lipid leaflet of the cell
membrane) [165]. The dianionic phosphoryl groups produced by phosphorylation
are replaced by single anions in this phospho-mimicking mutant due to glutamic
acid alterations. It suggests that there is a further elevation of electrostatic
shielding in actual situations [165]. Our results were similarly consistent with
these reported findings. PTEN (E4) and PTEN (A4) transfected PC3 as well as
US7MG cells, showed a decrease and an increase in autophagy respectively, in
response to the phosphorylation dephosphorylation switch.

Also, we wanted to check whether the converse nature of these experiments is
affirmative or not. This means whether there is a significant difference in the
sumoylation and phosphorylation status of PTEN positive cells on induction of

autophagy, are visible or not. For this, we studied normal (WI-38) and cancer
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(A549, HeLa) cells which are not PTEN null by nature, alongside PTEN
transfected PC3 and U87MG cells. Sumoylation and phosphorylation of PTEN
were found to be elevated and reduced respectively on autophagy induction,
which further supported our earlier experiments.

The above mentioned sumoylation and phosphorylation mediated alteration in
autophagy was seen to be similar in cases of both EBSS and tunicamycin
treatment, signifying nutrient deprivation and dysregulated proteostasis
converging to a similar line of regulatory action.

This whole work was influenced by several of our previous research which all
suggested the importance of PTEN’s PTM and its relation to the PI3K/Akt
pathway in cell physiology. We had earlier observed how PTEN’s
phosphorylation and hyperactivation of Akt was implicated in Hep G2 cells’
resistance towards etoposide-induced toxicity where they influenced
multinucleation [179][180]. Similarly, how they acted in sync to affect genomic
stability by downregulation of Rad51 in HEK 293T cells [181]. We had also
observed how PTEN’s phosphorylation negatively affected PTEN’s DNA repair
activity and the role it played in replication fork progression [182][183]. Also, we
had found out that loss of PTEN’s sumoylation and phosphorylation resulted in
elevated chromosomal damage [184][185]. The current discourse linking PTEN’s
PTM to autophagy is a further step in understanding the intrinsic value of this

tumour suppressor gene.
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Figure 3.1

Conformational regulation of PTEN.

018-0015-0

Phosphorylation of PTEN's C-terminal enhances contact between the tail and C2
domain, resulting in a closed conformation that conceals membrane binding.
Dephosphorylating PTEN converts it from a closed to an open conformation,
allowing it to bind to membrane and PDZ domain proteins.

Adapted from Lee, Y. R., Chen, M., & Pandolfi, P. P. (2018). The functions and
regulation of the PTEN tumour suppressor: new modes and prospects. Nature

reviews. Molecular cell biology, 19(9), 547-562. https://doi.org/10.1038/s41580-
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Figure 3.2

Membrane localization of PTEN.

The CBR3 loop and the pp2-pal loop (Arginine loop) are the major motifs
involved in the association of PTEN with the cell membrane. Our results were
also in line with this established theory where dephosphorylated as well as
sumoylated PTEN helped to maintain C-terminal tail in this released state,
allowing proper attachment to the membrane and reorientation, which
consequently elevated autophagy.

Adapted from Jang, H., Smith, I. N., Eng, C., & Nussinov, R. (2021). The
mechanism of full activation of tumor suppressor PTEN at the phosphoinositide-
enriched membrane. iScience, 24(5), 102438.

https://doi.org/10.1016/1.is¢1.2021.102438
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4.1 Plasmids

Gene-constructs pSGS5L-HA-WT-PTEN (WT PTEN) encodes hemagglutinin
tagged wild type PTEN protein. pSG5L-HA-A4-PTEN (Ser380Ala, Thr382Ala,
Thr383Ala, Ser385Ala) (PTEN A4) encodes dephosphorylation mimicking
PTEN. pSG5L-HA-E4-PTEN (Ser380Glu, Thr382Glu, Thr383Glu, Ser385Glu)
(PTEN E4) encodes phosphorylation mimicking PTEN. These were gifts from Dr.
William R. Sellers, Harvard Medical School. pSG5L-HA-C124S-PTEN
(Cys124Ser) (PTEN Pd) encodes phosphatase deficient PTEN. pSG5SL-HA-
K254R-PTEN (Lys289Arg) (PTEN Sd) encodes sumoylation deficient PTEN.
These were generated by Site-directed Mutagenesis according to “Stratagene Kit”
and confirmed by sequencing. pSG5L-HA, used as a control empty vector was

purchased from “Bio Bharati Life Science Pvt. Ltd.”.

pSGS5L-HA-A4-PTEN
Dephosphorylation-mimicking mutant

. Ser380Ala, Thr382Ala, Thr383Ala, Ser385Ala
\‘ .

pSG5L-HA e o
Empty Vector

pSGS5L-HA-E4-PTEN

‘ Phosphorylation-mimicking mutant " oSt e ]
/) Ser380Glu, Thr382Glu, Thr383Glu, Ser385Glu N

/ //

pSGS5L-HA-Wt-PTEN
Wildtype PTEN

pSGSL-HA-PTEN

pSG5L-HA-C124S-PTEN “
Phosphatase deficient ™
Cys124Ser

pSG5L-HA-K254R-PTEN
Sumoylation-deficient
Lys254Arg

Figure 4.1

Various types of plasmids used in the experiment.
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4.2 Cell Culture

Prostate adenocarcinoma (PC3), Glioblastoma (U87MG), Lung carcinoma
(A549), Cervical adenocarcinoma (HeLa) and Lung normal fibroblast (WI-38)
cells were cultured (COz incubator-Thermo Fisher Scientific). The temperature
was maintained at 37°C, CO; concentration at 5% and Relative Humidity at 95%.
Different culture media (HiMedia) RPMI 1640, DMEM and MEM were used for
different cells with 10% Fetal Bovine Serum FBS) (Gibco). The antibiotic and
antifungal used were Penicillin/Streptomycin (HiMedia), Amphotericin-B

(HiMedia) respectively.

4.3 MDC staining

PC3 cells were cultured on 18 mm coverslips rested on 35 mm plates overnight.
Cells were transfected (Lipofectamine 3000 (Thermo Fisher Scientific)) with HA
empty vector, WT PTEN and incubated overnight. Untransfected PC3 cells were
also used as control. The following day after transfection, cells were treated with
EBSS (Gibco) for different time points (4 hours, 8 h, 18 h) and subsequently
washed with 1X PBS (HiMedia) followed by incubation with 50 mmole/LL MDC
(Sigma-Aldrich) for 15 min at 37°C. After subsequent steps of washing with 1X
PBS, cells were mounted with glycerol on slides (Merck) and observed under
fluorescence microscope (Leica).

PC3 cells were cultured and transfected with HA empty vector, WT PTEN, PTEN
A4, PTEN E4, PTEN Pd, PTEN Sd. The following day, cells were treated with

EBSS for 18 h and according to the aforementioned protocol, incubated with
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MDC. Cells were mounted with glycerol on slides and observed under
fluorescence microscope.

U87MG cells were seeded and transfected with gene constructs HA empty vector,
WT PTEN, PTEN A4, PTEN E4, PTEN Pd, PTEN Sd. Next day cells were
starved with EBSS for 18 hours as well as treated with 1 pg/ml Tunicamycin
(Sigma-Aldrich) for 24 hours in separate experiments. Cells were mounted with

glycerol on slides and observed under fluorescence microscope.

4.4 Indirect immunolabeling

PC3 cells were cultured on 18 mm coverslips rested on 35 mm plates overnight.
Cells were transfected with HA empty vector, WT PTEN. Next day, cells were
treated with EBSS for 18h. Next day, cells were fixed and permeabilized in 4%
paraformaldehyde (HiMedia) (15 min) and 0.2% Triton X-100 (MP Biomedicals)
(10 min) respectively. For the blocking step, 5% FBS in 1X PBS was used where
cells were incubated for 60 min. Finally, they were kept overnight with Anti-
LC3B tagged antibodies (Abcam) in wash buffer (0.05% Tween 20 (Amresco)
and 0.5% FBS in 1X PBS) at 4°C. Cells were subsequently treated with FITC
conjugated antibody (Cell Signaling Technology) for 1 hour at RT, after washing
with wash buffer. Again, after washing, coverslips were mounted with DAPI
(Vector laboratories) and seen under fluorescence microscope.

PC3 cells were cultured and transfected with HA empty vector, WT PTEN, PTEN
A4, PTEN E4, PTEN Pd, PTEN Sd. Next day, cells were treated with EBSS for
18 h. The following day, cells were put through the same steps of fixation,
permeabilization, incubation in blocking solution and ultimately incubation with

Anti-LC3B antibodies overnight. They were subsequently treated with FITC
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conjugated anti-rabbit antibody. DAPI was used as mounting medium to visualise
cells under fluorescence microscope.

U87MG cells were cultured and transfected with HA empty vector, WT PTEN,
PTEN A4, PTEN E4, PTEN Pd, PTEN Sd. Next day, cells were treated with
EBSS for 18 h as well as treated with 1 pg/ml Tunicamycin for 24 h in separate
experiments. The following day, cells were put through the same steps of fixation,
permeabilization, incubation in blocking solution and ultimately incubation with
Anti-LC3B antibodies overnight. They were subsequently treated with FITC
conjugated anti-rabbit antibody. DAPI was used as mounting medium to visualise
cells under fluorescence microscope.

PC3 and U87MG cells were cultured and transfected with WT PTEN, PTEN A4,
PTEN E4, PTEN Sd along with untransfected cells as control. Next day, PC3 cells
were treated with EBSS for 18 h and U87MG cells were treated with 1 pg/ml
Tunicamycin for 24 h. The following day, cells were put through the same steps
of fixation, permeabilization, incubation in blocking solution and ultimately
incubation with Anti-PTEN tagged antibodies (Santa Cruz Biotechnology)
overnight. They were subsequently treated with FITC conjugated anti-rabbit
antibody. DAPI was used as mounting medium to visualise cells under confocal

microscope (Zeiss).

4.5 Western Blot

PC3 cells were cultured on 60 mm plates overnight and subsequently transfected
with HA empty vector, WT PTEN. The following day, cells were treated with
EBSS for 4 h, 8 h, 18 h. Whole-cell lysates were generated from cells through

steps of centrifugation and using lysis buffer (150 mM NaCl (Merck), 0.1% SDS
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(HiMedia), 1% NP-40 (Sigma), ]| mM EDTA (HiMedia), 50 mM Tris (pH 8.0)
(HiMedia), 0.5% Sodium deoxycholate (HiMedia), (phosphatase and protease
inhibitors) (Genetix Biotech). The lysates were further incubated in protein
loading dye (BioBharati LifeScience) and were boiled. Bradford assay (Sigma)
was used to ascertain protein concentrations of respective whole-cell lysates and
accordingly they were run on 10% SDS-PAGE gel (Bio-Rad Laboratories). This
was followed by transferring the proteins from the gel to methanol activated
PVDF membranes (Merck). TBS comprising of 5% skim milk (Himedia) and
0.1% Tween-20 was used to ‘block’ the membranes (TBST). The membranes
were ultimately incubated overnight with Anti-GAPDH (BioBharati LifeScience),
Anti-PTEN, Anti-Beclinl, Anti-ATGS, Anti-ATG7 (Cell Signaling Technology)
antibodies in BSA (Sisco Research Laboratories) at 4°C. The following day,
subsequent treatment with HRP conjugated antibodies (Sisco Research
Laboratories) was carried out. The resulting protein bands were seen with the help
of ECL Substrate Kit (Advansta).

PC3 cells were cultured and were transfected with HA empty vector, WT PTEN,
PTEN A4, PTEN E4, PTEN Pd, PTEN Sd. The cells were starved with EBSS (18
h). The generation of whole-cell lysates was completed and the aforementioned
process on SDS-PAGE gel was carried out. The proteins were then transferred to
PVDF membranes and were ultimately incubated overnight with Anti-GAPDH,
Anti-PTEN, Anti-ATGS, Anti p62, Anti-Beclinl, Anti-ATG7, Anti-mTOR, Anti-
Phospho-mTOR antibodies. The following day, membranes were incubated with
antibodies conjugated to HRP. Finally, the resulting protein bands were seen.
US7MG cells were cultured and were transfected with HA empty vector, WT

PTEN, PTEN A4, PTEN E4, PTEN Sd. Transfected cells were starved with EBSS
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(18 h) as well as treated with 1 pg/ml Tunicamycin (24 h) in separate
experiments. The generation of whole-cell lysates was completed and the
aforementioned process on SDS-PAGE gel was carried out. The proteins were
then transferred to PVDF membranes and were ultimately incubated overnight
with Anti-GAPDH, Anti-PTEN, Anti-ATGS, Anti p62, Anti-Beclinl, Anti-Akt,
Anti-Phospho-Akt antibodies. The next day, membranes were incubated with
antibodies conjugated to HRP. Finally, the resulting protein bands were seen.
PC3, WI-38, HeLa, A549 cells were cultured and only PC3 cells were transfected
with WT PTEN. Next day, one group of each cell line was treated with EBSS for
18 h and the other half was kept untreated. The generation of whole-cell lysates
was completed and the aforementioned process on SDS-PAGE gel was carried
out. The proteins were then transferred to PVDF membranes and were ultimately
incubated overnight with Anti GAPDH, Anti-Phospho-PTEN
(Ser380/Thr382/Thr383) (Cell Signaling Technology), Anti-PTEN antibodies.
The following day, membranes were incubated with antibodies conjugated to
HRP. Finally, the resulting protein bands were seen.

U87MG and WI-38 cells were cultured and US7MG cells were transfected with
WT PTEN. One group of US7MG was treated with EBSS for 18 h as well as
treated with 1 pg/ml Tunicamycin for 24 h in separate experiments. Their
counterpart groups were kept untreated. Similarly, one group of WI-38 cells was
treated with 1 pg/ml Tunicamycin for 24 h and its counterpart group was kept
untreated. The generation of whole-cell lysates was completed and the
aforementioned process on SDS-PAGE gel was carried out. The proteins were
then transferred to PVDF membranes and were ultimately incubated overnight

with Anti GAPDH, Anti-Phospho-PTEN, Anti-PTEN antibodies The following
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day, membranes were incubated with antibodies conjugated to HRP. Finally, the
resulting protein bands were seen.
For loading control in all immunoblot experiments, anti-GAPDH antibody was

used. ImageJ software was used to estimate the resulting band intensities.

4.6 Immunoprecipitation

PC3, U87MG, WI-38, HeLa and A549 cells were cultured on 60 mm sterile plates
overnight. PC3 and U887MG cells were transfected with WT PTEN. Transfected
cells were incubated overnight and the next day, one group of each cell type was
treated with EBSS for 18 h and other half was kept without any treatment. Also,
one batch of US7MG and WI-38 cells was treated with 1 pg/ml Tunicamycin for
24 hours and other half was left untreated. Lysis buffer (150 mM NaCl, 0.1%
SDS, 50 mM Tris (pH 8.0), | mM EDTA, 0.5% Sodium deoxycholate, 1% NP-40,
phosphatase and protease inhibitors) was used to produce whole-cell lysates.
Protein A/G agarose bead was used to clear the generated lysates and the
following incubation was done overnight at 4°C with Anti-PTEN antibody (Cell
Signaling Technology). The subsequent incubation was done for another 2 h at
4°C after a repeated addition of the protein A/G agarose bead. This is followed by
a series of steps comprising of centrifugation as well as washing with lysis buffer.
2X protein loading dye was used for the elution of the protein with subsequent
boiling. Finally, western blot was performed according to the previously
mentioned protocol using Anti-PTEN, Anti-SUMO1, Anti-SUMO2/3 antibody

(Cell Signaling Technology). IgG (Genei) was used as a negative control.
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4.7 Transmission Electron Microscopy

PC3 cells were cultured on 60 mm sterile plates overnight. Cells were transfected
with gene constructs WT PTEN, PTEN A4, PTEN E4, PTEN Pd, PTEN Sd along
with untransfected cells as control. Cells were treated with EBSS for 18 h. 3 % 0.1
M sodium cacodylate buffered glutaraldehyde was used for primary fixation (4 h).
1 % osmium tetroxide was used for secondary fixation. Subsequently, a series of
gradations of acetone was used for dehydration. Agar 100 resin was used for the
embedding which was thereupon polymerised at 60°C. Ultramicrotome was used
for generating ultrathin sections. 0.2 % lead citrate and 2 % aq. uranyl acetate
were used for staining the sections. Sections were then observed under TEM

(Jeol)

4.8 Statistical analyses

For ascertaining the statistical differences between data groups, two-tailed
Student’s t-test method was utilised. P-value (p < 0.05, p <0.01, p <0.001) were
adjudged statistically significant. The p-value, standard deviation (SD) and mean
were calculated from Microsoft Excel software. Error bars depict the mean + SD

for all plots.
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Conclusion




PTEN, the tumour suppressor protein, is a classical regulator of the
PI3K/AKT/mTOR signalling pathway which in turn modulates autophagy. So, it
goes without saying that PTEN null cells like PC3 and U87MG will fail to express
autophagy. In our study, we have showed that transfection of wildtype PTEN in
such cells can rescue autophagy, stemming from both nutrient deprivation as well
as endoplasmic reticulum stress. Now exploring further, we tried to rescue
autophagy using a phosphatase deficient mutant of PTEN and we failed to fully
recover it. This indicated the importance of PTEN’s lipid phosphatase activity in
the regulation of autophagy. Similarly, using other relevant mutants we
demonstrated that sumoylation and phosphorylation of PTEN positively and
negatively regulates autophagy respectively. These post-translational
modifications mediated tuning of autophagy was also found to be existent in
PTEN positive normal (WI-38) as well as cancer (A549, HeLa) cells. While
searching for a reason behind such observed occurrences, we found out that it was
all related to PTEN’s association with the cell membrane where it acts on the
PI3K/AKT/mTOR pathway. A comprehensive database of PTM disease
associations with respect to PTEN would be extremely beneficial for fundamental
and clinical research. For example, it could help us to categorize each PTM of
PTEN with its associated tumour phenotype, similar to a disease-gene network.
This would help us to gauge the actual prominence of each PTM of PTEN in
relation to a particular disease. Additionally, it would open a window towards
understanding the varied crosstalk between the PTM which are implicated in a
disease. Ours results along can aid in this entire procedure. On a similar note, our

work can be extended to repurpose existing drugs (both autophagy inducing or
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blocking drugs in cancer, as previously mentioned). Also, as PTEN can be
delivered via exosomes for therapeutic purpose (we are currently working on
that), we can study the effects of mutated PTEN delivery on distant target cells
after by differential expression of PTEN.

Out of hundreds post-translational modifications and thousands tumour suppressor
proteins, we have selected such representatives for our research, that are most
pursued and pivotal in protein biology. Alongside, we linked autophagy, a

phenomenon that is considered as the pillar of homeostasis maintenance.
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