Ref. No. Ex/PG/LST/T/113A/2024 M.Tech. in Laser Tech. Examination, 2024 (1st Semester) SUBJECT: Laser Mook.

Time: Three hours

Full Marks 100

No. of questions		Marks
	Answer any FIFTY Marks from Part-I. Use Separate Answer Script	
	<u>Part-I</u>	
1.	What are the different aspects to inspect the quality of laser cutting?	4
2.	What are the different mechanisms for laser cutting of non-metals?	9
3.	Compare different kerf cross sections produced by Nd:YAG Laser Cutting, Plasma –arc cutting, Abrasive water Jet cutting and Oxgen-Flame cutting with schematic diagram.	4
4.	Compare laser cutting, water jet cutting and sawing/router operation for cutting plastic material.	3
5.	What are the functions of the assist gas in laser cutting?	5
6.	Compare briefly EDM, Chemical Milling and Laser drilling process for generating small diameter holes (<0.025mm dia).	6
7.	Explain Eximer laser Drilling process very briefly with suitable figure	7
8.	Write short notes on a) Nanomaterials; b) Shape memory alloys; c) Zirconia; d) Silica; e) Ceramic-Matrix Composites (CMC)	4 4 4 4

Ref. No. Ex/PG/LST/T/113A/2024 Master of Laser Science and Technology Examination, 2024 (1st Semester) SUBJECT: Lason Mandalia

Time: Three hours

Full Marks 100

Part II

Answer any *Two* question

	and wer day I we question	
1. a)	A 2.5 mm thick stainless steel plate is cut using a 3.0 kW laser. If the resulting kerf width is 0.75 mm; the ambient temperature is 26 °C; and 60% of the incident laser beam is absorbed by the plate, determine the cutting speed. You may assume that there are no energy losses by conduction, convection, or radiation.	10
	Average density, $\rho = 7830 \text{ kg/m}^3$; Specific Heat (liquid), cp = 837 J/kg.K; Specific Heat (vapor), cp = 371 J/kg.K; Latent heat of fusion, Lm = 243 kJ/kg; Melting temperature, $T_m = 1723 \text{ K}$; Vaporization temperature, $T_v = 3135 \text{ K}$; Latent heat of evaporation, Lv = 6289 kJ/kg.	
b)	Explain the material removal mechanisms in laser fusion cutting and sublimation cutting.	10
c)	Explain the effect of laser parameters on the laser cutting process.	5
2. a)	Explain the mechanisms and advantages of ultrafast laser material processing with neat sketch.	15
b)	Discuss the theory of evaporation flow from melt surface into air during the laser ablation.	10
3. a)	What is laser beam stability?	2
b)	An Nd:YAG laser generates pulses of intensity 40 MW/cm ² for drilling 200 μ m diameter holes in a aluminium plate. Estimate the drilling speed that can be achieved for this operation. Assume ambient temperature and pressure of 25°C, and 0.1×10^6 Pa, respectively, and that the diameter of the hole is the same as the beam diameter.	14
	Average density, ρ = 2600 kg/m³; Specific heat, cp = 945 J/kg.K; Latent heat of fusion, Lm = 397 kJ/kg; Melting temperature, Tm = 945 K; Vaporization temperature, Tv = 2600 K; Latent heat of evaporation, Lv = 10530 kJ/kg; Thermal conductivity, k = 95 W/m.K; Boltzmann's constant, k _B = 1.38 × 10 ⁻²³ J/K; Avogadro's number, N ₀ = 6.023 × 10 ²³ molecules; Atomic weight, Wa = 26.98 g/mol	
c)	Write short notes on the following: (a) Recast layer, (b) Laser trepanning drilling, (c) Microcracking	9