M.E. (Water Resources & Hydraulic Engineering) Examination, 2024

AQUATIC ECOLOGY AND ENVIRONMENT

(Paper - I)

Time: Three Hours Full Marks: 100

Answer any four questions.

1. (a) A wastewater treatment plant disposes off its effluent in a surface stream. Characteristics of the stream and effluent are shown below:

Assume Sat. $DO = 9.17 \text{ mg/L} (20^{\circ}C)$

The sewage discharge of a town is 1.72 m³/s. If the sewage is discharged into a river, whose minimum discharge is 7240 l/s. If the minimum dissolved oxygen to be maintained in the river is 4.4 mg/l, determine the degree of sewage treatment to be done with the following data

Temperature of sewage = temperature of river = 20° C, value of K_d=0.12/day and K_r=0.35/d, BOD₅ at 20° C of sewage = 260 mg/l, BOD₅ at 20° C of river= 1.5 mg/l, dissolved oxygen in sewage =0, dissolved oxygen at saturation in river =85%

(b) The rate of change of oxygen deficit in a river can be expressed using standard notation as

$$\frac{dD}{dt} = K_d \times L - Kr \times D$$

Deduce the mathematically to establish the value of t_c and D_c for oxygen sag curve equation (13+12=25)

- 2. (a) What is DBU? Classify the different types of streams sanitation and quality criteria.
 - (b) Explain briefly different types of waste products. What is self-purification of stream? Classify different types of self-purification and describe them in brief.
 - (c) The concentration of CO in a street intersection reaches the federal ambient standard of 120 ppm_v. Supervisor from the department of public works are repairing a break in the water line. Estimate the CO concentration in their blood after 1hr of work and make conclusion as to their work performance. Assume (α=2)
 - (d) Write shot note on Carbon cycle.

(6+8+8+3=25)

- 3. (a) Estimate the quantity of carbon and oxygen (in gigatonne) in the atmosphere corresponding to a concentration of CO_2 of 1.2 ppm_v. Assume the total mass of air equals to 5.78 x10²¹ gm. Density of air at 28° C and 860 mm of Hg pressure is 2.82 kg/m³.
 - (b) National Ambient Air Quality Standard (NAAQS) for Carbon Monoxide and Ammonia (CO and NH₃) are 50 mg/m³ and 500 μg/m³ respectively at a temperature of 28°C and 1.5 atmosphere of pressure. Express the concentration in ppm_v for both. (13+12)
- 4. Design a WSP System having future population of 80000 with a supply of water 135 lpcd to treat wastewater generating from a town which has a BOD of 250 mg/L. The expected treated effluent has to be maintained as per the norms prescribed by the NGT as given below. The design temperature is 25°C. Following information are available for the design:

Characteristics of wastewater:

$$pH = 7.7$$
, $SS = 240$ mg/l, $COD = 390$ mg/l, $FC = 4x10^6/100$ ml

Solar radiation:

Winter: $Maximum = 170 \text{ cal/cm}^2 \text{ day}$

 $Minimum = 110 cal/cm^2 day$

Sky clearance factor = 0.7

Wastewater temp = 25° C

Average ambient temperature = 20° C

 K_p for pond at 25^0 C = 0.15/day

Expected treated effluent characteristics:

 $pH = 6.5 \text{ to } 8, BOD \le 10 \text{ mg/l}, FC \le 230 \text{ MPN/100 ml}$

Assume any other value for the design, if required.

Table Design values of permissible volumetric BOD loadings on and percentage BOD removal in anaerobic ponds at various temperatures

Temperature (°C)	Volumetric loading (g/m ³ d)	BOD removal (%)	
<10	100	40	
10-20	20 <i>T</i> -100	2T + 20	
20-25	10T + 100	2T + 20	
>25	350	70	

 $T = \text{temperature}, \, {}^{\circ}\text{C}.$

Table Variation of design BOD loading on facultative ponds in India with latitude

Latitude (°N)	Design BOD loading (kg/ha day)
36	150
32	175
28	200
24	225
20	250
16	275
12	300
8	325

Table Values of the first order rate constant for faecal collform removal at various temperatures (calculated from equation 4.15)

T(°C)	k _T (day-1)	T(°C)	k _T (day ⁻¹)
11	0.54	21	3.09
12	0.65	22	3.68
13	0.77	23	4.38
14	0.92	24	5.21
15	0.09	25	6.20
16	1.30	26	7.38
17	1.54	27	8.77
18	1.84	28	10.46
19	2.18	29	12.44
20	2.60	30	14.81

(25)

5. (a) What are the important steps in the EIA with EMP Process to be followed?

- (b) In a BOD determination, 6mL of waste water containing no dissolved oxygen is mixed with 294 mL of dilution water containing 8.6 mg/L of dissolved oxygen. After a 5day incubation at 20°C, the dissolved oxygen content of the mixture is 5.4 mg/L. Calculate the BOD of the waste water.
- (c) The 5-day 20°C BOD of waste water is 210mg/L. What will be the ultimate BOD? What will be the 10day BOD? If the sample had been incubated at 30°C. What would be the 5-day BOD have been $(k_d = 0.23d \cdot 1)$?

(8+8+9=25)

Ex/PG/DB/SWRE/01/2024

- 6.(a) What is the importance of Chemical Composition of solid waste, and what do you mean by Proximate analysis?
 - (b) What do you mean by hazardous wastes? Based on what characteristics a waste can be termed as hazardous?
 - (c) Write down two classifications of materials comprising municipal solid waste and two general sources of municipal solid waste?
 - (d) Determine the moisture content of a 120 kg solid waste sample. Composition given in Table.
 - (e) Determine the total and unit energy content in a 160 kg solid waste sample with the composition given in Table 1. What is the content on a dry basis and on an ash-free dry basis?

Assume moisture content of the waste is 21.5%, and ash content is equal to 5%. Energy content of municipal solid wastes is given in Table.

- (f) What is modified Dulong formula.
- (g) Explain the 'landfill' land disposal technique of hazardous Waste.

(4+3+2+5+5+2+4=25)

Table

2	•						
	Component	Food	Paper	Cardboard	Plastics	Garden	
		wastes				Trimming	
	Percent by	28	28 22	22	15	30	5
	mass		44	13	30		