M.E. PRODUCTION ENGINEERING FIRST YEAR SECOND SEMESTER – 2024 Subject: ADVANCED TOPICS OF OPERATIONS RESEARCH (PM)

Time: Three Hours Full Marks: 100

Answer any Five Questions

- 1. a) Explain Constraint Surface and Objective Function Surfaces.
 - b) State the necessary and sufficient conditions for the maximum of a multivariable function f(X).
 - c) Explain Saddle Point.

(8+8+4)

- 2. a) Explain the Working Principles of Genetic Algorithms with one flow chart.
 - b) Explain the following terms: fitness function, GA operators.
 - c) Differentiate Cross over & Mutation.
 - d) Differentiate binary & real coded GA.

(5+5+5+5)

- 3. (a) Compare bracketing and region-elimination search methods.
 - (b) Find the minimum of $f(x) = x^2 (3/2)x$ in the interval of (0.0, 1.0) and $\varepsilon = 10^{-1}$ using interval halving method.

(5 + 15)

- 4. (a) How do we get golden ratio?
 - (b) Use three iterations of the golden-section search method in order to maximize the function $f(x) = 10 + x^3 2x 5\exp(x)$ in the interval (-5, 5).

(5+15)

- 5. (a) Elucidate the multistage decision processes in a dynamic programming problem.
 - (b) Explain the role of Boltzmann Constant in Simulated Annealing briefly.

(15+5)

6. (a) Solve the following LP problem using the branch-and-bound method:

$$Maximize f(x) = 4x_1 + 8x_2$$

Subject to:

$$4x_1 + 5x_2 \le 40$$

 $x_1 + 2x_2 \le 12$
 $x_1, x_2 \ge 0$, integers.

(b) What are the salient features of Gomory's cutting plane method?

(15+5)

- 7. (a) Explain with suitable diagrams the general structure of Queuing System.
 - (b) Find the extreme points of the following function.

$$f(x_1, x_2) = x_1^3 + x_2^3 + 4x_1^2 + 2x_2^2 + 8.$$

(10 + 10)