M.Prod.E 1st Year 1st Semester 2024

Ref. No.: Ex/PG/ProdE/T/113B/2024

Subject: Quantitative Methods & Decision Theories in Management

Time: 3 hours

Use separate answer script for each Part

Marks:100

PART I (60 Marks)

Answer any three questions

The following table is the cost matrix for travel among a particular set of locations.
 Determine a minimum cost & travelling salesman itinerary: (20)

States	1	2	3	4	5
1	-	1	8	3	4
2	1		8	2	3
3	. 1	3	-	5	1
4	2	5	6	-	5
5	5	3	· 7	6	-

2. a) Differentiate between MADM and MODM.

(4)

b) Outline different forecast errors.

(2)

c) Discuss different methods of forecasting with examples.

- (14)
- 3. How is ELECTRE approach used in decision theory? Expound with illustration.
- (20)
- 4. A country has decided to purchase a fleet of jet fighters from another country. The AirForce analyst team agreed to consider the following four characteristics(attributes):

Maximum speed(x_1); ferry range(x_2); maximum payload(x_3); and purchasing cost(x_4). The values of four attributes for each model(alternatives) are given below:

	X ₁	X ₂	Х3	X4
A ₁	2.0	1500	20000	5.5
A ₂	2.5	2700	18000	6.5
A ₃	1.8	2000	21000	4.5
A4	2.2	1800	20000	5.5
A ₅	2.4	2100	25000	4.9

Unit of each alternative is shown below:

Attribute	Unit		
Maximum speed (x ₁)	Mach		
Ferry range (x₂)	. Km		
Maximum payloads (x₃)	Pounds		
Purchasing cost (x ₄)	Ro. 10 ⁶		

Make an eclectic decision.

(20)

- 5. Write short notes on any four:
- a) Tracking speed
- b) Shadow price
- c) Aggregate production planning
- d) MRP- II
- e) Capacity planning
- f) Kruskal algorithm
- g) Ford Fulkerson algorithm

(5x4=20)

Ref. No.: Ex/PG/ProdE/T/113B/2024

M.E. PRODUCTION ENGINEERING FIRST YEAR FIRST SEMESTER – 2024 Subject : QUANTITATIVE METHODS & DECISION THEORIES IN MANAGEMENT (PM) Time : Three Hours (Part I & Part II) Full Marks : 100

Part II (40 Marks)

Use Separate Answer scripts for each part.

Answer any Two questions from Part II.

(Graph Paper to be provided)

- 1. (a) Why post-optimal sensitivity analysis is important? Explain binding and non-binding constraints.
- (b) StyleHats produces two types of cowboy hats. A type 1 hat requires twice as much labour time as a type 2. If the all-available labour time is dedicated to Type 2 alone, the company can produce a total of 400 Type 2 hats a day. The respective market limits for the two types are 150 and 200 hats per day. The profit is Rs. 8 per Type 1 hat and Rs. 5 per Type 2 hat.

Determine the number of hats of each type that would maximize profit. (Formulate the problem as LPP and Solve.)

Also, determine Scarce and Abundant resources.

5+(5+5+5)

- 2. (a) How would you define a Transportation Model? How would you solve a transportation problem using (i) North –West Corner Method and (ii). Multiplier Method / Modified Distribution Method (MODI).
 - (b) Using the following cost matrix determine the optimal job assignment and the cost of the assignments.

Machinist	Job					
	1	2	3	4	5	
Α	10	3	3	2	8	
В	9	7	8	2	7	
C	7	5	6	2	4	
D	3	5	8	2	4	
Е	9	10	9	6	10	

(12+8)

3. Write Short Notes on the following (any four): (a) Degeneracy and Alternative Optima (b) Properties of Linear Programming (c) Balanced Transportation (d) Vogel's Approximation Method (VAM) (e) Elements of Decision Models (4 × 5)

..... END