Ref. No.: Ex/PG/PE/T/129F/2024

MASTER OF POWER ENGG. EXAMINATION, 2024 (2nd SEMESTER)

POWER SYSTEM PLANNING AND OPERATION

TIME: THREE HOURS FULL MARKS: 100

Answer any five questions

 a) Describe briefly about spinning reserve. b) Explain the following terms: (i) valve-point effect (ii) ramp rate limit constraints (iii) transitional cost (iv) m time and minimum down time 	6 inimum up 4+4+3+3
2) Explain the following terms:(i) pumped storage hydro plants (ii) run-of-river plants (iii) controllable hydro julio (iv) hydro system	olants 5+5+5+5
3. a) What is load forecasting?b) Describe short-term load forecasting and long-term load forecasting.	4 16
4) Describe different objective functions and constraints of optimal power flow	v. 20
5) describe briefly about power system planning.	20
6) Given the following steam-plant and hydro plant characteristics:	20
Steam plant:	
Incremental fuel cost = $2.0 + 0.002P_S$ Rs/MWh and $100MW \le P_S \le 500MW$	
Hydro plant:	
Incremental water rate = $50 + 0.02P_H$ ft ² /sec/MW and $0 \le P_H \le 500$ MW	

[Turn over

Table: Load demand:

Time period	P _{Load} (MW)
1400-0900	350
0900-1800	700
1800-2400	350

Assume (i) The water input for $P_H = 0$ may also be assumed to be zero, that is $q(P_H) = 0$ for $P_H = 0$, (ii) Neglect losses (iii) Thermal plant remains on-line for 24-h period.

Find the optimum schedule of P_s and P_H over the 24-h period that meets the restriction that the total water used is 1250 million ft^3 of water that is

$$q_{Total} = 1.25 \times 10^9 \text{ ft}^3$$