M.E. MECHANICAL ENGINEERING - FIRST YEAR - SECOND SEMESTER EXAMINATION, 2024

COMBUSTION ENGINEERING

Time: Three hours Full Marks 100

i iiiie.	rife nours Full Marks 100	·
	All parts of the same question must be answered together. Assume any	
	unfurnished data suitably	
	Use of Thermodynamic Tables and Charts permitted	
0.1	Answer any five questions	
Q:1.	(a) What is enthalpy of formation? (b) Stoichiometric H ₂ -O ₂ mixture at 298 K, 1 bar is burned at constant pressure. Water is added as spray and evaporates completely. If the mass of water added is 0.1% of the mass of	5
	hydrogen, find the final temperature.	
Q:2	(a) What is equilibrium flame temperature? (b) Consider the combustion of methane in air with an equivalence ratio of 0.85. If the	5
	composition products exit at 1800 K, what is the composition of the products if the only dissociation reaction involved is the carbon dioxide dissociation reaction?	15
Q:3	(a) In their survey of experimental determinations of rate coefficients for the N-H-O system, Hanson and Salimian recommend the following rate coefficient for the reaction NO + O → N + O2:	12
	$k_f = 3.80 \cdot 109 \text{ T}^{1.0} \exp(-20, 820/\text{T}) [=] \text{ cm} 3 / \text{gmol-s}.$	
	Determine the rate coefficient k_r for the reverse reaction, i.e., N + O2 \rightarrow NO + O, at 2000 K.	
	(b) Derive the half-life of a second-order reaction with identical reactants $A+A \rightarrow P$	8
Q: 4	(a) Derive the species conservation equation in rectangular coordinate system.(b) How the quenching diameter is estimated?	12 8
Q: 5	(a) Draw the typical structure of a premixed flame.(b) How an estimate of flame speed is obtained by Mallard and Le Chatelier?	8 12
Q: 6	(a) Derive the relationship between equilibrium constant based on partial pressures and concentrations.	14
	(b) Find the difference between the adiabatic flame temperature for methane - air reaction occurring in constant pressure and constant volume chambers.	6
Q:7	(a) Define flammability limits.(b) What experimental methods are used to measure flame speed, and how does each method function?	4
	(c) Develop a transient mixture fraction conservation equation in one dimension.	10