M.Tech (I.E.E.) 2nd Semester Examination, 2024 SUBJECT: Dynamic System Control and Optimization

Time: Three hours

Full Marks 100

Answer <u>all</u> questions. Q1, Q2 for CO1, Q3, Q4 for CO2 and Q5, Q6 for CO3. Marks are allotted for detailed work out.

Q.No.	Warks are anotted for detailed work out.	Marks
1.	For a system described by $x(k+1)=Fx(k)+Gu(k)$, $x(k_0)=x^0$, find a) the	10
	eigenvalues, b) generalized eigenvectors c) Vandermonde matrix and d) the	
	exponential F^k using Cayley Hamilton technique, modal matrix or Inverse z-	
	transform for $F = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$.	
2.	a) Find state model for the following:	10
	$\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = u$	
	OR	
	ii) $y(k+2) + 3y(k+1) + 2y(k) = 5u(k+1) + 3u(k)$	
	b) Obtain a controllable companion form representation and initial condition	5
	vector of the differential equation $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = \dot{u} + 4u$.	
	c) Find the Jordan canonical realization of the pulse transfer function $z\!+\!6$	5
	z^3+5z^2+7z+3 and draw the state diagram.	
3.	(i) a) For the system below, find 1) control sequence {u(0),u(1)} to drive the	10
	system from $x(0)^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ to $x(2)^{T} = \begin{bmatrix} -1 & 0 \end{bmatrix}$,	
	2) the state $x(0)$ when $y(0)=1$, $y(1)=0$, $y(2)=-1$, $y(3)=2$ for $u(k)=(-1)^k$, $k \ge 0$.	
	$x(k+1) = \begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k); y(k) = \begin{bmatrix} 1 & -1 \end{bmatrix} x(k) \text{ OR}$	
	b) Comment on the controllability of the continuous time system with $A(t) = \begin{bmatrix} 1 & e^{-t} \\ 0 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ at $t = 0$. If the system is controllable, then find the minimum energy control to drive it from $x(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ to $x(1) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ at $t = 1$.	
	(ii) For the system with a) $A = \begin{bmatrix} 0 & 1 \\ 0 & -5 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ OR	10
·	b) $A = \begin{bmatrix} -0.01 & 0 \\ 0 & -0.02 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ -0.004 & 0.002 \end{bmatrix}$, determine the corresponding discrete- time matrices F and G. Using these matrices, determine the controllability matrix and the minimum time control sequence for the discrete-time system.	

Q.No.		Marks
4.	(i) a) Find the Lyapunov function V(x) that ensures asymptotic stability of the	10
	system $A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$. Determine the upper bound on the time it takes this	
	system to go from the initial state $x(0)=[1 \ 1]^T$ to within the area defined by	
	$x_1^2 + x_2^2 = (0.25)^2$.	
	OR	
	b) For the unity feedback system with open loop TF $5/[s(s+1)(s+2)]$, show that the closed loop system is asymptotically stable using R-H criterion. Further, using bilinear transformation, show that the use of a sampler and ZOH in the forward path destabilizes the sampled-data system.	
	(ii) a) Consider the continuous time state space system with $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	10
	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $u = \pm 1$. Determine the phase plane trajectories for both inputs.	
	OR	
	b) Consider the continuous time state space system with $A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$	
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Determine the equation of the isocline corresponding to trajectory slope m	
	= 1. Also determine the equations of the asymptotes, if any.	
5.	Consider the continuous time state space system with $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. In order to transfer the system with any initial state to the origin, determine the optimal control	10
	a) which minimizes $J = \int_0^\infty (x_1^2 + u^2) dt$.	
	OR	
	b) which minimizes $J = \int_0^\infty x_1^2 dt$ when $k_1 = 1$ in $u = -[k_1 \ k_2]x$.	
	OR	
	c) satisfies $ u(t) \leq 1$.	

Q.No.		Marks
6.	(i) a) Formulate the two point boundary value problem, which yields the	10
	optimal control u*(t) for the system $\dot{x}_1 = x_2$; $\dot{x}_2 = x_1 + (1 - x_1^2)x_2 + u$;	
	$x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \text{ and the performance index } J = \frac{1}{2} \int_{0}^{2} (2x_1^2 + x_2^2 + u^2) dt$	
	when (i) u(t) is not bounded and (ii) $ u(t) \le 1$.	
	OR	
	b) Find the optimal control $u^*(t)$ for the system $\dot{x}(t) = 2x(t) + u(t)$;	
	which minimizes the performance index $J = \frac{1}{2} \int_{0}^{t_1} (3x^2 + \frac{1}{4}u^2) dt$,	
	where t ₁ is specified.	
	(ii) a) Design a feedback controller with state feedback for a linear	10
	system described by the system matrices	
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} $ so that the eigenvalues	
	of the closed loop system are at -1,-2, -3.	
	OR	
	b) For a position servo system described by	
	$F = \begin{bmatrix} 1 & 0.0787 \\ 0 &6065 \end{bmatrix}, g = \begin{bmatrix} 0.0043 \\ 0.0787 \end{bmatrix}, \text{ determine a deadbeat control law.}$	
	Further, assuming that only the angular position measurement is	
	available, design a deadbeat observer for the system.	