MASTER OF TELE-COMMUNICATION ENGINEERING EXAMINATION, 2024 (1st year, 2nd Semester)

DISTRIBUTED PROCESSING & NETWORKING

Time: Three Hours Full Marks: 100

Answer any five questions.

- 1. a) Consider a matrix multiplication problem $\mathbf{A}\mathbf{x} = \mathbf{b}$ in which \mathbf{A} is a 4x4 matrix and \mathbf{x} and \mathbf{b} are both 4x1 matrices. Obtain the dependency graph for the problem and map the problem onto a parallel architecture. Estimate the overall speedup also.
 - b) A multicomputer with 256 CPUs is organized as a hypercube. What is the worst-case delay (in hops) that a message might have to take?
 - c) Due to bugs, an experimental file server is up ¾ of the time and down ¼ of the time. How many times does this file server have to be replicated to give availability of at least 99 percent?

 4
 - d) Write short notes on Clos networks.
- 2. a) Discuss with an example, a sender initiated distributed heuristic algorithm for processor allocation in a distributed system.
 - b) Discuss the up-down algorithm for processor allocation in a distributed system. 10
- 3. a) What do you mean by a physical clock? What is UTC? What is resynchronization interval? Obtain an expression for resynchronization interval. 2+2+2+4

[Turn over

4

b) What is a vector clock? Calculate the vector times of the ten events $\mathbf{a} - \mathbf{j}$ shown in Fig. 1. Use the vector times to demonstrate that (\mathbf{d}, \mathbf{h}) are concurrent events, but event \mathbf{f} is causally ordered before \mathbf{e} .

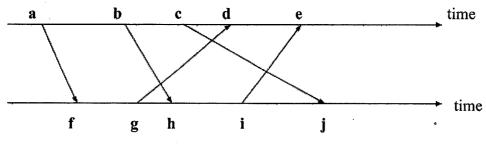


Fig. 1

- 4. a) What is a real-time system? Write the characteristics of different types of real-time systems.
 - b) Discuss the Earliest Deadline First (EDF) algorithm for real-time systems. Schedule the following processes using the EDF algorithm.

Process	Exec	cution Time	Period	l (Deadline)
P1		1		3
P2		1		4
Р3		1		12

- 5. a) Discuss Ricart and Agrawal's algorithm for the implementation of critical sections in a distributed system.
 - b) Discuss the Chang and Roberts algorithm for coordinator election in a distributed system.
 - 6. Discuss in detail how distributed algorithms can be represented.