M.E. Electronics & Telecommunication Engineering Examination-2024 1st Year 2nd Semester Coding Theory

Time: Three hours Full Marks: 100

Answer any <u>seven</u> questions from Part-I and any <u>three</u> questions from Part-II Answer all the parts of a question in the same place

Part - I

- 1. a) For a linear block code, show that the minimum Hamming distance (d_{min}) required to correct t-error is equal to 2t+1.
 - b) What do you mean by repetition code? Write its advantage.
 - c) A (7, 1) repetition code used to encode information sent through a channel with a bit error probability of 0.01. Find the probability that an information bit will be received erroneously after decoding.

(4+2+4)

- 2. a) What do you mean by primitive element?
 - b) If $A = (a_3 \ a_2 \ a_1 \ a_0)$ and $B = (1 \ 1 \ 0 \ 0)$ are the 4-tuple representation two elements of $GF(2^4)$ then derive a simplified expression of AB for a given reduction polynomial $r(x) = x^4 + x^3 + 1$
 - c) Simplify following two expressions

i) $\alpha^7 + \alpha^3 + \alpha$

ii) $(x + \alpha^3)^5(x + \alpha^{10})$

where α is a primitive element over GF(2⁴), such that $\alpha^4 + \alpha^3 + 1 = 0$.

(2+4+4)

- 3. a) Show that the syndrome polynomial in a cyclic code solely depends on error polynomial.
 - b) What do you mean by maximum distance separable code?
 - c) Derive the relationship between syndromes and error location numbers of a t-error correcting RS Codes. Briefly explain the working principle of Chien search algorithm.

(2+2+6)

- 4. a) Consider (7, 4) cyclic code with generator polynomial $g(x) = 1+x+x^3$. Find the codewords for the messages 1010 and 1100 using corresponding generator matrix.
 - b) A (15, 5) linear cyclic code has a generator polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$. Find the nonsystematic codeword polynomial for the message polynomial

 $d(x) = 1 + x^2 + x^4.$

(6+4)

5. a) If the generator matrix G of a (7, 4) Hamming code is given by

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

then construct corresponding generator matrix of a (8, 4) Hamming code. Also determine the outcome of the decoder when the received codeword is $v = (0\ 0\ 1\ 0\ 1\ 0\ 1\ 0)$.

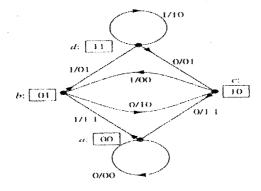
b) For an (n, k) block code derive the expression for Hamming bound.

$$((2+4)+4)$$

- 6. a) What is minimal polynomial? Find the minimal polynomial of α^7 , where α is a primitive element over $GF(2^4)$, such that $\alpha^4+\alpha+1=0$.
 - b) If the minimal polynomials of α , α^3 and α^5 are $\phi_1(x) = x^4 + x + 1$, $\phi_3(x) = x^4 + x^3 + x^2 + x + 1$, and $\phi_5(x) = x^2 + x + 1$ respectively, then determine the generator polynomial of a BCH code of $d_{min} \ge 7$. (5+5)
- 7. a) What types of codes are used for correcting both random as well as burst errors? Explain the basic principle of interleaved codes.
 - b) Draw the basic block diagram of Turbo encoder and explain its operation briefly.
 - c) Write the advantages of Trellis diagram over tree and state diagrams.

(4+4+2)

- 8. a) Explain the concept of Maximum Likelihood decoding.
 - b) For the state transition diagram of a convolutional encoder shown below suppose the first eight received bits are 01101100. Explain the process of decoding using Viterbi's



algorithm.

Part - II

9. Derive the expression of the Generating Function of a maximal length sequence (m-sequence) generator as a ratio of two polynomials. Hence, discuss the significance of these polynomials.

(7+3)

10. Consider a sequence given as 110001001101011. Does it represent a maximal length sequence? Justify your answer.

(10)

11. Discuss, how will you generate 2^{n/2} numbers of Small Set Kasami binary sequences staring from an m-sequence using decimation, where n is an even number. Compare the performance of this sequence with the m-sequence of comparable length.

(8+2)

12. What is the necessity of generating orthogonal codes of variable length in W-CDMA system? Draw a code tree structure to generate variable length orthogonal codes. Hence, discuss the special features of this code tree.

(1+6+3)