M.E. Electronics and Tele-Communication Engineering, 2024 First Year First Semester

PHYSICAL ELECTRONICS

Time: 3 Hours Full M		arks: 100	
Answe	r any FIVE questions		
Q1.a)	Define <i>Unit Cell</i> and mention how it is useful in analyzing crystalline solids.	6	
b)	Show that in a cubic lattice, a body diagonal and a plane normal to it, both can be represented by the similar set of Miller indices.	6	
c)	Determine the Packing Factor for a FCC lattice.	4	
d)	Describe the Sphalerite or Zinc Blende crystal structure.	4	
Q2.	Establish that — Free electron energy spectrum gets converted into a set of allowed bands separated by forbidden zones in a crystalline solid. Use a chain of equi-spaced, identical atoms as the model for 1D crystal.	20	
Q3.a)	Define Crystal Momentum and explain its significance.	5	
b)	Derive two different expressions for <i>carrier effective mass</i> . Which one is more useful for semiconductors characterized by parabolic <i>E-k</i> dispersion relation, and why?	5+2	
c)	Comment on the conduction band structure of semiconductors for which the Conductivity effective mass and <i>DOS</i> effective mass are (i) equal and (ii) unequal. Give an example of each category.	8	
Q4.a)	Determine the eigen functions and energy eigen values for an electron confined in an infinitely deep square quantum well (QW) of thickness d . Also determine the average location of an electron occupying the ground energy state in the above well.	12+3	
b)	State and explain Bloch Theorem.	5	

Q5.a)	Determine the range of energy over which the Fermi-Dirac distribution function varies significantly.	6
b)	Define Quasi Fermi Levels and mention their features. Draw and explain the energy band diagram of a forward biased <i>p-n</i> junction.	4+4
c)	Determine the difference between two quasi Fermi levels in an n - Si sample doped with $N_D = 10^{16} \ cm^{-3}$ and subjected to optical illumination causing 1% rise in majority carrier concentration. Take, for Si $n_i = 10^{10} \ cm^{-3}$ at 300 K .	6
Q6.a)	Define <i>Phonon</i> and explain its origin.	7
b)	Make a list of various lattice scatterings occurring in each of the following crystals: (i) Silver (Ag) (ii) Silicon (Si) (iii) Gallium Arsenide (GaAs).	6
c)	Explain the energy transfer mechanism in an <i>n</i> -type semiconductor subjected to (i) a weak and (ii) a strong electric field.	7
Q7.a)	Derive the <i>Boltzmann Transport equation</i> for electrons undergoing scattering at non-equilibrium conditions.	15
b)	Define Debye Screening length in context of Ionized Impurity scattering. How does it influence carrier mobility?	3+2
Q8.	Write notes on any Two:	2x10
a) b) c) d)	Reduced Brillouin zone, Experimental determination of Diffusivity of minority carrier, Shockley-Read-Hall (SRH) Recombination and Surface Recombination, Temperature dependence of carrier mobility.	