M. E. ELECTRONICS & TELE-COMMUNICATION ENGINEERING 1ST YEAR 1ST SEMESTER EXAMINATION, 224

Subject: Microwave & Millimeter Wave Devices & Applications

Time: 3.0 Hours Full Marks: 100

No. of questions	Answer any Four (4) questions from the followings: 4×25	Marks
1.	a) Give the microwave equivalent circuits of BJT. How the cut-off frequency	(3+3) +10+ 4+5
	of BJT is determined?	
	b) Explain the current-frequency, power-frequency and gain-frequency	
	limitations of a high frequency Bipolar Junction Transistor.	
	c) Mention some of the applications of a microwave Bipolar Transistors.	
	c) A Si microwave transistor has reactance of 1 ohm, transit time cut-off	
	frequency of 4 GHz, maximum E field 1.6×10 ⁵ V/m and saturation drift	
	velocity of 4×10 ⁵ m/s. Determine the maximum allowable power.	
2.	a) Give the doping profile, typical structure and equivalent circuit for this	8+ (8+3)+6
	diode. Mention the applications of Varactor diode.	
	b) Derive the expression for junction capacitance of a Varactor diode when it	
	is reverse biased. Proof that this junction capacitance has the time varying	
	property.	
	c) Explain with suitable circuit diagram how the Varactor diode can be used	
	as a parametric amplifier	·
3.	a) Write down the special feature of the MESFET.	5+5+5+10
	b) Give the cross-sectional view and equivalent circuit of a MESFET.	
	c) Explain the pinch-off phenomena of this device.	
	d) A typical n-channel GaAs MESFET has the parameters as $N_d = 7 \times 10^{17}$	
	cm ⁻³ , $a = 0.12 \mu \text{m}$, $\varepsilon_r = 13.25$, $L = 15 \mu \text{m}$, $Z = 40 \mu \text{m}$, $\mu = 0.08 \text{ m}^2/\text{V.s} = 800$	
	cm ² /V.s, $V_d = 5.5$ V, $V_g = -2$ V and $v_s = 2.1 \times 10^5$ m/s. Calculate the (i) Pinch-	
	off voltage, (ii) velocity ratio, (iii) saturation current at $V_g = 0$ and (iv) drain	
	current I _d . Derive the necessary relation you use.	
4.	a) Give the equivalent circuit of a tunnel diode.	4+6+(5+4)+6
	b) Draw the characteristic curve of a tunnel diode and explain the nature of	

Ref No. Ex/PG/ETCE/T/113D/2024

Full Marks: 100

M. E. ELECTRONICS & TELE-COMMUNICATION ENGINEERING 1ST YEAR 1ST SEMESTER EXAMINATION, ZO24 Subject: Microwave & Millimeter Wave Devices & Applications

Time: 3.0 Hours

	this curve with suitable energy band diagram.	
	c) Derive the expression for input impedance and resistive cut-frequency and	
	self resonance frequency of this device.	
	e) How a tunnel diode can be used as a negative resistance oscillator?	
	Explain clearly with suitable circuit diagram.	
5.	a) Give the cross-sectional view, field distribution and doping profile of a	6+7+12
	read diode.	
	b) Explain how the avalanche multiplication is occurred for this device?	·
	c) Derive the expression for input impedance of drift region of this device.	
6.	a) Summarized the Ridley, Watkinson and Hilsum theory for two valley	8+7+10
	model of n-type GaAs.	
	b) Why Si and Ge are not used to fabricate a Gunn diode?	
	c) i) For a GaAs Gunn diode derive the condition for negative resistance.	
	From this condition what are concluded?	
7.	a) Give the impurity distribution, space charge density and electric field	6+(3+2)+4+5+5
	distribution of a PIN diode.	
	b) What do you meant by conductivity modulation? Why ordinary p-n	
	junction diode does no exhibit this phenomena.	
	c) Give the equivalent circuit of PIN diode under forward and reverse bias	
	condition.	
	d) Derive the expression for impedance of this diode under forward and	
	reverse bias condition.	
	e) How a PIN diode used as a switch? Explain the operation of a switch.	
		I