M.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING FIRST YEAR SECOND SEMESTER - 2024

Adaptive and Optimal Control

Time: 3 Hours Full Marks: 100

Attempt any 4 Questions.

- 1. Given the error signal $E(s)=\frac{s+100K_1K_2}{s^2+100K_1K_2s+100K_1}$, the input signal $R(s)=\frac{1}{s}$ and the control signal $U(s)=\frac{sK_1}{s^2+100K_1K_2s+100K_1}$.
 - a) Determine the performance index $J_e=\int_0^\infty e^2(t)dt$ and $J_u=\int_0^\infty u^2(t)dt$, where e(t) and u(t) are the error and control signals respectively. The following integral, if needed, can be used

$$\frac{1}{2\pi j} \int_{-j\infty}^{j\infty} \frac{c(s)c(-s)}{d(s)d(-s)} ds = \frac{c_1^2 d_0 + c_0^2 d_2}{2d_0 d_1 d_2}$$

where $c(s) = c_1 s + c_0$ and $d(s) = d_2 s^2 + d_1 s + d_0$.

Construct a resulting performance index $J=J_e+\lambda J_u$ and hence show that the performance index is optimized, if $\lambda=0.25, K_1=2, K_2=0.1$.

- b) Also construct the Hessian matrix **H** and show that the Hessian is positive definite for $K_1 = 2$, $K_2 = 0.1$.
- c) What do J_e and J_u physically signify ?
- d) Also define the Parseval's theorem used in optimizing J_e , J_u . [10+5+5+5]

- 2. a) Given the plant dynamics $\dot{x}(t)=a(x(t),u(t),t)$ and the performance index given by $J=h\big(x\big(t_f\big),t_f\big)+\int_{t_0}^{t_f}g(x(\tau),u(\tau),\tau)d\tau$. Derive the Hamiltonian ${\cal H}$ and the Hamilton-Jacobi-Bellman equation.
 - b) A first order system is described by the differential equation $\dot{x}(t) = x(t) + u(t).$

The performance index is given by $J=\frac{1}{4}x^2(T)+\int_0^T\frac{1}{4}u^2(t)dt$, where T is the final time. Use Hamilton-Jacobi-Bellman equation to determine the time-varying optimal control law $u^*(t)$. [15+10]

3. a) Develop a recurrent relationship between the performance measures $J_{N-2,N}(\boldsymbol{x}(N-2),\boldsymbol{u}(N-2),\boldsymbol{u}(N-1))$ and $J_{N-1,N}(\boldsymbol{x}(N-1),\boldsymbol{u}(N-1))$ for the system described by the state equation $\dot{\boldsymbol{x}}(t)=\boldsymbol{a}(\boldsymbol{x}(t),\boldsymbol{u}(t)),$ whose performance index is given by

$$\mathbf{J} = h\left(\mathbf{x}(t_f)\right) + \int_0^{t_f} g(\mathbf{x}(t), \mathbf{u}(t)) dt.$$

- b) Obtain the general form of $J_{N-K,N}^*(x(N-K))$ in terms of $J_{N-K+1,N}^*(a_D(x(N-K),u(N-K)))$. [13+12]
- 4. a) Define the principle of optimality and illustrate the principle in the context of a routing problem.
 - b) Given x(k+1)=x(k)+u(k) for k=0,1, where u(0) and u(1) are to be selected to minimize the cost $J=x^2(2)+2u^2(0)+2u^2(1)$, satisfying $0 \le x(k) \le 1.5$, for k=0,1,2 and $-1 \le u(k) \le 1$, for k=0,1. Use the Dynamic Programming approach to obtain the optimal control applied at k=1, i.e., $u^*(x(1),1)$ for different possible values of u(1) and x(1).

5. a) Find an extremal for the functional

$$J(x) = \int_0^{\frac{\pi}{2}} [\dot{x^2}(t) - x^2(t)] dt$$

with boundary conditions x(0)=0 and $x\left(\frac{\pi}{2}\right)=1$. Use the Euler equation to find the extremal.

- b) Derive the Euler equation used to develop the above extremal. [10+15]
- 6. Write notes on the following:
 - a) Model Reference and Self-Tuning adaptive control.
 - b) Testing linearity of a functional by homogeneity and additivity checking.

[12+13]