M.E. ELECTRICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2024

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time:Three hours

Full Marks 100 (50 marks for each part)

Use a senarate	Answer-Script for each part	
USE a SEDALALE	Aliswei-Scribt for each bart	

No. of	No. of PART I Marks				
Questions	IANII	MAINS			
	Answer any two questions.				
	* * *				
1. (a)	For a system defined as $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$	08			
	where, $\mathbf{x} = \text{state vector} (n \times 1 \text{-vector})$				
	$\mathbf{u} = \text{control vector} (r \times 1 \text{-vector})$				
	$\mathbf{A} = n \times n \text{ matrix}$				
	$\mathbf{B} = n \times r \text{ matrix}$				
	state and justify the conditions for complete state controllability of the system, when (i) the eigenvectors of matrix A are distinct and (ii) the				
	eigenvectors of matrix A are non-distinct.				
(1-)	What is the condition for complete output controllability of a system?				
(b)	When a system is said to be stabilizable?	05			
(c)	Give a detailed, step by step procedure of determining state feedback gain matrix K in pole placement control, using Ackermann's formula.	12			
2. (a)	In designing predictive controllers, how can model following design help in overcoming the drawbacks of direct single-step design?	12 ⁻			
	Derive the block-diagram realization of the model following design				
	based predictive controller in z-domain. How can a more general				
	closed loop characteristic be accommodated in this design?				
(h)	A two-input-one-output fuzzy system has been developed using				
(b)	Sugeno-type inferencing and first-order Sugeno models. Both input	08			
	variables x_1 and x_2 can vary over a universe of discourse of 0 to 10.				
	Each input variable is fuzzified using three triangular MEst denoted				
	Each input variable is fuzzified using three triangular MFs: denoted by A_1 , A_2 , and A_3 for x_1 and B_1 , B_2 , and B_3 for x_2 . These MFs are				
¥	represented by the sets $(x_1(\text{or } x_2); \text{ left base, vertex, right base)}$ and				
	these sets are given as (0, 2.5, 5.0), (2.5, 5.0, 7.5), and (5.0, 7.5, 10.0),				
5	respectively.				
	· · · · · · · · · · · · · · · · · · ·				

Ref No: Ex/PG/EE/T/128B/2024

M.E. ELECTRICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION, 2024

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time:Three hours

Full Marks 100 (50 marks for each part)

NI - C	Use a separate Answer-Script for each part	24 1			
No. of Questions	PARTÍ	Marks			
Questions	The system has three governing fuzzy rules given as:				
	Rule 1: If x_1 is A_1 and x_2 is B_1 ,				
	Then $f_1 = 0.7x_1 + 0.5x_2 + 0.3$,				
	Rule 2: If x_1 is A_2 and x_2 is B_2 ,				
	Then $f_2 = 0.4x_1 + 0.6x_2 + 0.8$,				
	Rule 3: If x_1 is A_3 and x_2 is B_3 ,				
	Then $f_3 = 0.8x_1 + 0.7x_2 + 0.25$.				
	Determine the crisp output of the system, when the crisp inputs of				
	the system are $x_1 = 5.5$ and $x_2 = 6.8$.				
2. (c)	Draw the block diagram of a PD-type, two-input-one-output fuzzy	05			
	controller based continuous-type system and mention the				
	characteristic features of the PDFLC designed.				
3. (a)	Differentiate between "reaching mode" and "sliding mode" in	12			
	sliding mode control. What are the basic strengths of sliding mode				
	control? Why the sliding surface is also called the switching				
	surface? In sliding mode control, is it always guaranteed that a				
`	sliding mode will exist? Describe in detail, how, in the method of				
	equivalent control, the system motion is determined on the				
	switching surface?				
(b)	In diagonalization method based controller design for SMC, how	09			
	can the sufficient conditions for existence and reachability of a	0)			
	sliding mode be satisfied?				
		0 i			
(c)	What are the causes of chattering in sliding mode control? How can	04			
	the detrimental effects of chattering be reduced?				
_	White the standard and the Call of the Call	121 2			
4.	Write short notes on <i>any two</i> of the following:	$12\frac{1}{2}\times2$			
(<i>i</i>)	Effects of the addition of an observer on a closed loop system and	= 25			
	the transfer function of the observe-based controller.	- 23			
(ii)	Defuzzification strategies in fuzzy systems.				
(iii)	Incremental form of the predictor in predictive controllers.				

Ex/PG/EE/T/128B/2024

M.E. ELECTRICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2024

SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

		PART-II	,	Marks	
Questions		Answer any two	•	2X25=50	
1. a)	What is "Gain Scheduling Control" in the context of Adaptive control? Explain with a block diagram.				
b)	A process, whose dynamics are not well known, is initially at steady state. An input signal is introduced to the system. The sampled values of the input as well as the output response at different time instants are as follows:				
	Sampling instant	Input variable (units)	Output variable (units)		
	0	1.0	0.0		
	1	0.8	0.4		
	2	0.4	0.6		
	3	0.1	0.85		
b)	technique.				
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr dimension. Show the modi	significance of each dimen incipal component for the	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the fied reduced data in tabular	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the field reduced data in tabular x y	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the field reduced data in tabular	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the field reduced data in tabular	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the field reduced data in tabular	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the field reduced data in tabular	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	x	sion is not disclosed. Find e data set to reduce its	15	
b)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	significance of each dimen incipal component for the fied reduced data in tabular	sion is not disclosed. Find e data set to reduce its	15	
b) 3. a)	A two dimensional data is taken as x and y. Physical s and choose a suitable pr	x y 4 6 8 11 10 28 24 33 45 65 55 22 22 40 10 13	sion is not disclosed. Find e data set to reduce its r form.	15 1+4	

Ex/PG/EE/T/128B/2024 M.E. ELECTRICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2024 SUBJECT: - COMPUTER APPLICATION IN INSTRUMENTATION (MS)

Time: Three hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

b)	Explain the terms "scale" and "translation" in Continuous Wavelet Transform (CWT).	4
c)	How can you the use wavelet transform for denoising a signal.	5
d)	Samples of a signal is shown as $f = \{2, 5, 7, 6, 1, 0, 1, 2\}$. Find Wavelet coefficients after Haar Transform for the above signal. Show that energy does not change after Haar transform.	5
4. a) b) c)	Write notes on following topics (any two) The algorithm for computing Continuous Wavelet Transform of a time series. Direct Digital Synthesis (DDS) based Frequency synthesizer. Different levels of Sensor Fusion	$(2X12\frac{1}{2} \\ =25)$