Ref No: Ex/PG/EE/T/127A/2024

M.E. Electrical Engineering - First Year - Second Semester

SUBJECT: - Modeling and Analysis of Electrical Machines and Drives

Full Marks 100

Time: Two hours/Three hours/ Four hours/ Six hours

(50 marks for each part)

Use a separate Answer-Script for each part

PART I

Answer any Three Questions

ALL questions carry equal marks

Two marks are for neat and systematic answers

- Q1. Develop the H-G diagram of an induction motor from its equivalent circuit
- Q2. What do you understand by FEM? Derive the shape function of a first order triangular element for a two dimensional FEM analysis. State all the assumptions.
- Q3. Describe a lumped parameter thermal circuit of an IM. How the 16 thermal parameters are determined?
- Q4. Describe the different steps to analysis any electric machine by FEM 16
- Q5. A pair of buried pipes is being used to transmit electrical signals, determine the distribution of voltage signal along the line by using FEM. States the assumptions clearly.

[Turn over

Ex/PG/EE/T/127A/2024

M.E. Electrical Engineering

First Year 2024 EXAM

Second Semester

SUBJECT: Modeling and Analysis of Electrical Machines & Drives

No. of questions	Answer for 50 marks for Part II	Marks
questions	Answer any three questions and 2 mark for neatness. All symbols have their usual significance.	
1.	A 3-phase induction motor is started by applying 3-phase AC balanced voltages and then describe with a drawing of construction of stator and rotor coils for 3-phases, how space currents vectors for 2-poles are produced in a 3-phase Induction Motor. Also show the method of coordinate transformation and stator voltage vector of Induction machine to rotor plat-form and vice-versa.	16
2.	Using space vectors for flux, voltage and currents $(\overline{\psi_s}, \overline{u_s} \text{ and } \overline{i_s})$ in a stator of 3-phase induction motor derive stator vector voltage equation $\overline{u_s} = \overline{i_s} R_s + \frac{d\overline{\psi_s}}{dt}$	16
	Also derive the transformed rotor vector voltage equation of a 3-phase induction motor if the stator voltage equation is $\overline{u_s} = \overline{i_s} R_s + \frac{d\overline{\psi_s}}{dt}$.	
3.	Using space vectors for flux, voltage and currents $(\psi, u \text{ and } i)$ in a 3-phase induction motor, develop the equivalent circuit having resistances and inductances of the windings, which is valid during transient process.	16
4.	Using Lyon's method of instantaneous symmetrical components, derive the expression for total torque on the rotor of a 3-phase induction motor.	16
5.	Write short notes on:	
a)	Instantaneous Symmetrical components of voltage and current of Induction machines by Lyon's Method.	8+8=16
b)	Transient currents in a 3-phase Induction Motor until rotor starts rotating.	