Ref No.: Ex/PG/CSE/T/129B/2024

L 10111 0 , 01

M.E. Computer Science & Engineering, 1st Year, 2nd Semester Examination, 2024

Natural Language Processing

Ti	- 3 hours Full Marks - 100	
		Answer any five questions
1.	a.	Define the following terms with suitable examples: type, token, vocabulary, lemma and morpheme.
	b.	Discuss the difference between the Needleman-Wunsch algorithm and the Levenshtein Edit Distance algorithm.
	c.	Write some sophisticated features that you can use to build a classifier to decide whether a '.' (dot) in English text marks the end of a sentence or not.
	d.	Find out the edit distance and alignment between the two strings "pressure" and "supersede", considering the following costs for the edit operations. Highlight the alignment in the edit distance matrix.
		<pre>insertion cost = deletion cost = 1</pre>
		substitution cost = (your exam roll number % 2) + 1
2.	a. b.	Define and deduce perplexity. Discuss the notion of perplexity as a branching factor. $3+2$ Derive the trigram language model using maximum likelihood estimation, chain rule, Markov
	υ.	assumption and add-1 smoothing 5
	c.	What is MLE? Add-1 smoothing is a non MLE estimator. Explain this. 2+2
	d.	Discuss some efficiency related practical issues to deal with web-scale language models. 4
	e.	What is continuation probability of a word? How it is computed?
3.	a.	What are the main disadvantages of Boolean information retrieval?
	b.	Explain the inverted index data structure and how it is constructed. 5
	c.	Discuss how phrase queries are handled in Information Retrieval. 5
	d.	Compute the score assigned to the following query-document pair by the tf-idf model using the lnc.ltc weighing scheme. Assume that the document frequencies of the terms 'digital', 'best', 'DSLR', 'camera', 'lense' and 'zoom' are 5,000, 50,000, 10,000, 1,000, 25,000 and
		40,000 respectively, and the document collection size is 1,000,000.
		Document: camera DSLR camera digital camera DSLR lense zoom Query: best DSLR camera
4.	a.	Define homonym, homograph and homophone, with suitable examples. 2
	b.	Discuss the properties of hyponymy. 2
	c.	WordNet is much more than a thesaurus.
	d.	Discuss the main difference between Resnik similarity and Lin Similarity.
	e.	In semantic similarity, path-based methods have problems with recall, while distributional models

have problems with precision. Explain this.

Ref No.: Ex/PG/CSE/T/129B/2024

3

4

5

f. Given the following term-context matrix, compute which of the following word pairs - [lemon, orange] and [data, information], is more similar according to distributional similarity using add-n smoothing, where n = (your roll number % 2)+1.

context	computer	digital	boil	result	fry
term					
data	2	2	0	1	0
information	1	6	0	2	0
eggplant	0	0	1	0	1
potato	0	0	1	0	2

- 5. a. Naïve bayes classifier has an important similarity to language modeling. Explain this.
 - b. Discuss some positive and negative aspects of the Naïve Bayes Classifier with regard to performance issues.
 - c. How real word errors can be detected and corrected?

d. Given the following training documents and their membership to the two class – Cricket (C) and Football (F), compute which class the test document belongs to. Consider add-1 smoothing.

	Doc_ID	Words	Class
	1	wicket wicket run pitch	C (C)
Training	wicket run run bat ball		С
	3	score boundary ground	С
	4	score goal goal penalty	F
Test	5	score ball goal penalty	?

e. Define mean average precision (MAP). Compute Average Precision (AP₁₀) for the following search results. 2+2

Rank	1	2	3	4	5	6	7	8	9	10
Relevant	Y	Y	N	Y	Y	N	N	N	N	Y

- 6. a. Briefly discuss about the BLEU MT evaluation metric and its performance issues.
 - b. Write the Viterbi algorithm for finding the optimal sequence of tags for an observation sequence, given the model. Explain every step of the algorithm.
 - c. Compute the alignment probabilities and the translation probabilities according to the EM algorithm assuming no NULL token and only 1-to-1 alignments for the following toy parallel training corpus. Show the first 3 iterations.

Translation pair id	Source Language	Target Language
1	blue shirt	camisa Azul
2	the shirt	la camisa