M. E. CIVIL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM – 2024 ANALYTICAL GEO MECHANICS

TIME: Three Hours FULL MARKS: 100

Answer all the questions Assume any data if needed, reasonably

1.	(a)	Split the following stress tensor into hydrostatic stress tensor and deviatoric stress tensor.	2
		$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 18 & 0 & 24 \\ 0 & -50 & 0 \\ 24 & 0 & 32 \end{bmatrix} \text{kPa}$	
	(b)	Determine the I-invariants and J-invariants of the deviatoric stress tensor.	6
	(c)	Find the equivalent uniaxial stress for the above stress tensor.	2
2.	(a)	What is Haigh-Westergaard stress space? What are the significances of different stress invariants in Haigh-Westergaard stress space?	8
	(b)	What is Bauschinger effect? Draw a typical stress-strain curve reflecting the Bauschinger effect.	4
	(c)	In case of elastoplastic loading explain the process of finding the total strain.	8
3.	(a)	Explain the effect of hardening modulus on the stress strain curve.	4
	(b)	What is flow rule? Write down the loading-unloading condition and consistency condition for the following cases: i) Elastoplastic Elastic Unloading, ii) Elastoplastic Neutral Loading, and iii) Elastoplastic Loading	8
	(c)	For the following stress state derive the expression for Von Mises and Tresca yield citeria $ [\sigma] = \begin{bmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	8
4.	(a)	What is critical state soil mechanics (CSSM)? What are the two 2D spaces relevant to CSSM?	4
	(b)	What is the difference between over consolidation ratio and yield stress ratio?	2
	(c)	Show the NCL, CSL, COCRL, LOC, HOC in a $v - \ln p'$ diagram.	6
	(d)	Prove that $C_c = 2.303\lambda$ and $m_v = \frac{\lambda}{v_o p'}$	8
5	(a)	Draw and explain the $e - \tau - \sigma'$ plot in case of OC soil for CU and CD test.	7
	(b)	Write a short note on tensile failure zone.	3
	(c)	"Critical state: the ultimate state" – with proper diagram prove the statement.	10
6	(a)	Draw the yield curve, ESP, CSL in $v - q - p'$ space for drained loading and LOC soil.	3
	(b)	Define SBS. Write the equation of SBS for Cam Clay Model. Express this equation in terms of independent paramaters.	7