Ref No: EX/PG/CE/T/127E/2024

ME Civil Engineering First Year Second Semester Examination 2024

Air Pollution and Control

Time: Three Hours

Use separate answer script for each Part

Full Marks: 100

Part 1

(60 marks for Part 1 & 40 marks for Part 2)

Answer Question No. 1 and any Two from the rest. Turner's $\sigma_y \& \sigma_z$ curves and Pasquill's stability chart related with Gaussian Air Pollution Model (GAPM) may be used. Any relevant data may be assumed, if necessary.

- 1. i) What is a Gaussian Air Pollution Model (GAPM)?
 - ii) What is the significance of 'flat terrain' assumption in GAPM?
 - iii) Why is molecular diffusion neglected in GAPM?
 - iv) With a sketch define 'SW' wind.
 - v) With a sketch show how 'downwind' direction in GAPM is selected.
 - vi) With a sketch show the origin of the coordinate system of GAPM located.
 - vii) In which modified forms of GAPM σz is missing (give a sketch)?
 - viii) With a sketch show the roll of 'image source' in GAPM.
 - ix) Why is centerline modifications of GAPM important?
 - x) What is the full form and significance (with respect to GAPM) of 'insolation'?
 - xi) Holland's Plume Rise Model was developed imperially perhaps during neutral condition' explain.
 - xii) Comment about correction of 'p' used in wind profile power law.
 - xiii) Define 'night' as per Pasquill Stability Class Chart.
 - xiv) What are the vertical constraints with respect to GAPMs?
 - (xv) Define a plume.

 $2 \times 15 = 30$

Ref No: EX/PG/CE/T/127E/2024

ME Civil Engineering First Year Second Semester Examination 2024

Air Pollution and Control

Part 1 (60 marks for Part 1 & 40 marks for Part 2)

2. a) The general Gaussian expression is as follows:

 $C_{(x,y,z;H)} = Q/(2\pi \sigma_y \sigma_z U) \left[\text{Exp} \left\{ -y^2/2 \sigma_y^2 \right\} \right] \left[\text{Exp} \left\{ -(H-Z)^2/2 \sigma_z^2 \right\} + \text{Exp} \left\{ -(H+Z)^2/2 \sigma_z^2 \right\} \right]$

The notations have their usual meanings.

The second exponential term in the vertical factor is due to one modification. With a sketch explain that modification.

Now find expressions for following modifications

- (i) receptors on ground level (ii) maximum concentration
- b) A stack emitting 100 g/sec of NO has an effective stack height of 100m. The wind speed at stack tip is 4.5m/s and it is an overcast day. Estimate the ground level NO concentration at:
 - (i) directly downwind at a distance 500m ii) at a point (500,200,0), Comment on the result. 8+7=15
- a) A burning solid waste dump emits 20 g/s of oxides of nitrogen (NO_x). What may be the concentration of NO_x directly downwind from the source at a distance of 3 km on an overcast night with wind speed 6m/s? The background concentration of NO_x at the receptor location is 50µg/m³.
 - b) A stack with effective height 45m, emitting at the rate of 150 g/s. Winds are estimated at 5 m/s at the stack height, the stability class C, and there is an inversion at 100 m. Estimate the ground-level concentration at the point where reflections begin to occur from the inversion and at a point twice the distance downwind. What may be the type of inversion? What may be the probable plume pattern?
 - c) What are the significance of following coordinates with respect to Gaussian Coordinate System?

 (i) (0, 0, -H) (ii) (x, 0, H) (iii) (x, 0, 0) (iv) (0, 0, h) and (v) (0, 0, 0) 4+6+5=15

Ref No: EX/PG/CE/T/127E/2024

ME Civil Engineering First Year Second Semester Examination 2024

Air Pollution and Control

(60 marks for Part 1 & 40 marks for Part 2)

Part 1

Time: Three Hours Full Marks: 100

- 4. a) What is a line source model? Why is σ_{y} missing in the expression of a line source model?
 - b) What is a source appointment study? Why is it very relevant for controlling NO?
 - c) Explain the role of GAPM in an EIA study.
 - d) If you are given some fund for betterment of air quality of your locality, how will you spend the fund?
 - e) What may be the roll of air quality models in management of area sources?

3x5 = 15

Some of the following equations may be required (notations have their usual meanings):

1)
$$\Delta h=2.6 (F/uS)^{1/3}$$

$$F=gr^2v_s(1-T_a/T_s)$$

3)
$$S=(g/T_a)(\Delta T_a/\Delta z + 0.01^{\circ}C/m)$$

4)
$$\Delta h = [1.6F^{1/3}(x_f)^{2/3}]/u$$

5)
$$x_f = 120 F^{0.4}$$
, if $F \ge 55 m^4/s^3$ 6) $x_f = 50 (F)^{5/8}$ if $F \le 55 m^4/s^3$

6)
$$x_f = 50 (F)^{5/8}$$
 if $F \le 55 m^4 / s^3$

7)
$$C = Q / [(2\pi)^{1/2} u \sigma_y L]$$

8)
$$\Delta h = [v_s d/u][1.5 + 2.68x10^{-3}p (1-T_a/T_s)d]$$

9)
$$C_{(x,y,0:H)} = [2q/(2\pi)^{1/2} \sigma_z u Sin\theta] [Exp(-H^2/2 \sigma_z^2)]_{\text{total}}$$

[Turn over

Ref. No.: Ex/PG/CE/T/127E/2024

M.E. CIVIL ENGINEERING FIRST YEAR SECOND SEMESTER - 2024

SUBJECT: AIR POLLUTION AND CONTROL (EE)

Full Marks 100 (40 marks for part II)

Time: Three hours

Use a separate Answer-Script for each part

Part-II

Answer all question (Assume any data, if required, reasonably) (Lapple's Efficiency Curve is allowed during examination)

1. Explain the significance of isokinetic sampling for SPM and SO₂ monitoring.

Describe one post-combustion non-regenerable wet system of flue gas desulfurisation.

Describe one treatment process in which SOx and NOx can be removed simultaneously.

5+5+5

- 2. An air stream with a flow rate of 7m³/s is passed through a cyclone of standard properties. The diameter of the cyclone is 2 m. and the viscosity of air is 2.1×10^{-5} kg/m.s. Determine the amount of removal/m³ of flue gas, for particles with a density of 1.55 g/cm³ and diameter of 5μm and 10μm 9 (30:70 w/w) when their total concentration is 300 μg/m³ of flue gas.
- 3. Design a parallel plate single-stage electro static precipitator (ESP) from the following data:

Required efficiency = 99.9%; Gas flow rate = 175000 m³/hr

Particle drift velocity = 0.15 m/s; Collectrode spacing = 0.28 m °/c

Depth of collectrode = 3.5m; Height of collectrode = 6m; Gas flow velocity = 1.8 m/s

9

4. In a test for measuring k_0 and k_d (with usual notations) following data are obtained:

Pressure drop after cleaning = 550 N/m^2

Pressure drop before cleaning = 2300 N/m^2

Flow rate = $0.6 \text{ m}^3/\text{s}$; Mass collected = 65 kg; and Filter area = 50 m^2

Determine k_o and k_d .

7