M.E. CIVIL ENGINEERING FIRST YEAR FIRST SEMESTER EXAM 2024

SUBJECT: WASTEWATER TREATMENT AND DISPOSAL (EE) (PG/CE/T/112E)

Time: 3 hours Full Marks: 60

Instructions: Use Separate Answer scripts for each part.

Part - I

Sl. No.	Question								CO	Marks
1	A) Determine the value of k, K_s , μ_{max} , Y, K_d using data from a bench scale activated sludge reactor w/o recycling. In each case initial BOD is 350 mg/l.									[14 + 6]
		1	2	3	4	5	6			
	Final BOD	10	20	24	46	39	53			
	HRT (days)	3.2	2.4	1.7	1.2	1.3	1			
	MLVSS (mg/ltr)	130	125	135	122	135	130			
	B) Derive the	Michaelis-	Menten equ	ation in con	nection with	enzyme kin	etics.			
2	Design a two stage Trickling filter to treat a domestic sewage of flow 18 MLD having influent BOD ₅ is 300 mg/l and desired effluent BOD strength is as per Indian standard. Also design the distribution system for the first stage TF. No need to design the under-drainage system. Assume any relevant data if needed.								6.	[20]
3	Design a conventional activated sludge process with a flow of 40000 m³/day, influent BOD ₅ is 300 mg/l, TSS is 450 mg/l, Minimum and maximum temperature is 18°C and 32°C respectively. Primary sedimentation tank BOD and SS removal efficiency is 40% and 70% respectively. Suspended Solid concentration in primary and secondary sludge is 35 Kg/m³ and 10 kg/m³. Total BOD ₅ and SS in the treated effluent should be \leq 25									[20]
	mg/l and \leq 20 mg/l respectively. Assume Y = 0.5 and Kd = 0.06 day^{-1} . Assume sludge age is 7 day. Assume any relevant data if needed.									1. 1.

[Turn over

Ref No.: Ex/PG/CE/T/112E/2024

M.E. CIVIL ENGINEERING 1st YEAR 1st SEMESTER EXAMINATION, 2024 (1st /-2nd Semester / Repeat / Supplementary / Annual /-Biannual) SUBJECT: WASTEWATER TREATMENT AND DISPOSAL

Full Marks: 100

Time: Two hours/Three hours/Four hours/ Six hours-

(40 marks for this part)

Use a separate Answer-Script for each part

No. of		Marks				
Question	Part-IL					
	Answer Question-1 and any two from the rest					
Q.1) a)	Draw a flowchart for a municipal sewage treatment plant showing all	7				
	mandatory unit processes and operations including sludge treatment					
	facilities.					
b)	What are the significances behind the treatment of wastewater?	3				
c)	Justify the statement with necessary mathematical expressions -"The	5				
	cross-section should be parabolic if a rectangular weir is placed at					
	the end of the grit channel to maintain constant flow velocity."					
d)	Discuss on the significance of "Overflow Rate" in the context of design of	5				
	a continuous flow primary clarifier.					
Q. 2)	Design a screen chamber on the basis of following data: i) Peak Design	10				
	Wet Weather Flow =1.279m³/sec ii) Velocity through screen at peak design					
	wet weather flow =0.9m/sec iii) Population of the township= $2,45,000$ iv)					
	Depth of flow in the incoming conduit at peak flow = $1.16m$. v) Diameter of					
	the incoming conduit= 1.52m vi) Slope of the incoming conduit= 0.00046					
	vii) Velocity at peak design flow= 0.88m/sec.					
	Assume any necessary data.					

Ref No.: Ex/PG/CE/T/112E/2024

M.E. CIVIL ENGINEERING 1st YEAR 1st SEMESTER EXAMINATION, 2024 (1st /-2nd Semester / Repeat-/ Supplementary / Annual /-Biannual) SUBJECT: WASTEWATER TREATMENT AND DISPOSAL

Full Marks: 100

Time: Two hours/Three hours/Four hours/ Six hours-

(40 marks for this part)

Use a separate Answer-Script for each part

No. of	70. , 300	
Question	Part- I L	Marks
Q.3) a)	A grit chamber is to be designed to remove particles having mean	5
b)	diameter of 0.2mm and specific gravity of 2.65. The mean temperature of operation is assumed to be 25°C. A flow through velocity of 0.3 m/sec will be maintained by proportional flow weir. Determine the channel dimensions for a peak sewage flow of 13,500 m³/day. Design a proportional flow weir receiving a flow of 0.69 m³/sec. Consider a symmetrical sharp-edged weir and depth of flow under peak flow condition as 1.67 m. Assume the dimension of weir between 25 and 50 mm.	5
Q.4) a)	What do you mean by Grit Particles? What are the significances of velocity control sections in the design of Grit Chambers?	2+2
b)	Design a suitable rectangular primary clarifier for treating municipal wastewater emanating from a city. The primary clarifier will comprise mechanical cleaning equipment. Assume a maximum daily water demand for the city as 12.5 MLD. Assume any other relevant data.	6