M.E.C.E. 1st YEAR EXAMINATION, 2024

(2nd Semester)

SUBJECT: Process Design in Environmental Engineering

Full Marks 100

Time: Three hours

Use a separate Answer-Script for each part

No. of Questions	Part I (60 Marks for This Part)	Marks
	Answer Question 1 (compulsory) and any two from the rest. Assume any relevant data if not provided. All the drawings should be in pencil.	
Q1. (A)	Discuss the mechanism of algae bacteria symbiosis with a neat sketch in wastewater treatment for a facultative stabilisation pond.	5+2
(B)	Draw labelled complete flowsheets of wastewater treatment using rotating biological disc for different flows and different feed systems.	3+4
(C)	Writing justification choose which type of reactor you will recommend for these situations:	1.5×4
	(i) Treatment of municipal waste water	1.5
	(ii) Treatment of industrial wastewater	
	(iii) Waste with high value of degradation coefficients and above zero-order kinetics	
	(iv) For treatment of wastewater with heterogeneous substrates	
Q2. (A)	Writing the basic mass balance equation derive the first order pollution removal kinetic equations for plug-flow reactor (PFR). Defining the dispersion number write the value of dispersion number for ideal CSTR. In a CSTR the chemical rate of reaction is given as r _C =-0.1[C]. K value is in d ⁻¹ . For 80% removal determine the volume of the reactor for a volumetric flow rate of 100L/s if initial concentration is 0.15mol/L for completely mixed stirred tank reactor (CSTR).	3×2+4
(B)	It has been found that the observed die off coefficient for E-coli in waste stabilization pond can be described adequately by first order kinetics. Assume that the bacteria die off rate is 1.5 per day at 20°C. Check whether the effluent obtained from the stabilization pond is suitable for irrigation (1000/100ml) with initial concentration 10 ⁶ /100ml at 25°C. The surface area of the pond is 4 ha, depth is 1.5m and daily flow rate is 6000 m³/day. Assume dispersion number is 0.5. Use the figure attached. If the coliform concentration is required to reduce further what measures you will recommend?	6+4
Q3. (A)	Design an earthen sedimentation basin for an aerated lagoon to separate solids for the given information: (i) Flow to the sedimentation basin = 3500 m³/day (ii) Suspended solids in the influent to the basin which are not degraded biologically = 200mg/L (iii) Volatile solids produced due to biological reactions in the reactor =100 mg/L (iv) Suspended solids produced is equal to volatile solids produced divided by 0.8 (v) Suspended solids in the effluent from the basin = 25mg/L	10

Ref No. -Ex/PG/CE/T/128E/2024

M.E.C.E. 1st YEAR EXAMINATION, 2024

(2nd Semester) ·
SUBJECT: Process Design in Environmental Engineering

Full Marks 100

Time: Three hours

Use a separate Answer-Script for each part

No. of Questions	Part I (60 Marks for This Part)				
	(vi) Volatile fraction of the total solids discharged to the sedimentation basin				
	=75%				
	(vii) The cleaning interval of the basin = 5years				
	(viii) The volatile solids available at the end of the t years of operation assuming				
	linear decomposition of the volatile solid and 70% reduction per year,				
	VSS _t =[0.7+(1-% of reduction per year)(t-1)]×VSS deposited per year	3			
	(ix) Hydraulic detention time = 2 days				
	(x) The liquid level above the sludge layer at its maximum layer of accumulation				
	= 1.5 m				
	Assuming the deposited solids will compact to an average value of 15%, with the specific				
	density of the accumulated solids 1.05, determine: Volume of the sedimentation basin				
	 Surface area of the sedimentation basin 				
	Total depth of the sedimentation basin along with depth required for				
	storage of sludge				
Q3.(B)	Determine the oxygenation capacity required for a cage rotor of an oxidation ditch in kg per				
	day with the following information:	10			
	(i) Population served = 50,000				
	(ii) Waste water flow = 200L/capita per day				
	(iii) Percapita BOD ₅ , 20°C contribution = 40g/capita per day				
	(iv) Desired effluent BOD ₅ , 20°C =20 mg/L				
	(v) TKN concentration in the influent = 45mg/L				
	(vi) Mixed liquor suspended solid concentration = 3500mg/L				
	(vii)Volatile fraction of MLSS = 0.6				
	(viii)Suspended solid in the effluent = 20mg/L				
	(ix) 65% of the suspended solid of the effluent is biodegradable				
	(x)Sludge yield coefficient = 0.6				
	(xi) Sludge decay coefficient = 0.12/day				
	(xii)Food to micro-organism ratio=0.25				
	(xiii) Liquid temperature in the lagoon =10°C				
	(xiv)Elevation of the area = 1000 m				
	$(xv) \alpha = 0.98; \beta = 1$				
	(xvi) $C_s = 9.17 \text{mg/L}$ at 20°C (xvii) C_w at 10°C = 11.27 mg/L				
	(xvii) C_w at $10^{\circ}C = 11.2 \text{ /mg/L}$ (xviii) $C_L = 1.5 \text{mg/L}$				
	(xix) Altitude correction factor for 1000m elevation = 0.95				
	(AIA) THILLIAGE COTTOCHOTH TACLOT TOT TOVOITH CICVATION — 0.75				

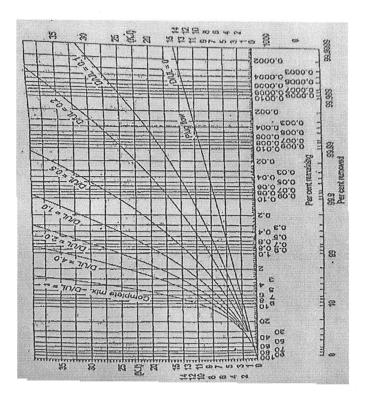
Ref No. -Ex/PG/CE/T/128E/2024

M.E.C.E. 1st YEAR EXAMINATION, 2024 (2nd Semester)

SUBJECT: Process Design in Environmental Engineering

Full Marks 100

Time: Three hours


Use a separate Answer-Script for each part

No. of Questions

Part I (60 Marks for This Part)

Marks

4. (A)	With the following data de	evelop the process	design of a stage	d rotating biological	10
	contactractor system and check for organic and hydraulic loadings.				
	Parameter	Unit	Primary Effluent	Target Effluent	
	Flow rate	m³/d	6000		
	Total BOD₅	g/m ³	250 .	30	
	SBOD ₅	g/m ³	100	15	
	TSS	g/m ³	80	30	
	Assume 1st stage sBOI				
(B)	Design a septic tank for a re	esidential building [as per code IS 2470	(Part-I):1985] of 20	10
	persons having following fixt				
	baths and 1 drinking fountain				
	simultaneously. Each unit is as	sumed to flow 9 LPN	M. Cleaning interval 2	years.	

Ref. No.: Ex/PG/CE/T/128E/2024

M.E. CIVIL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2024 Subject: PROCESS DESIGN IN ENVIRONMENTAL ENGINEERING (EE) Part - II (40)

Use a separate Answer-Script for each part

No. of Questions	Answer Question No. 1 and any Two from the rest	Marks
1	Design a Trickling Filter (TF) and rotary distributors for the following data:	[20]
2	Laboratory test data shows that 99% kill of organisms in a sample of water could be obtained at a chlorine concentration of 6mg/L with a contact time 25 min. Assuming coefficient of dilution = 1.2, find out: (i) Contact time at 6mg/L concentration for 99.95% kill (ii) Concentration for 99% kill at 20 min contact time (iii) Chlorine concentration for 99.95% kill at 20 min contact time.	[10]
3 (a)	What are the different pressure-driven membrane processes? Describe any one.	[5]
(b)	Describe the process of Electrodialysis with a neat sketch.	[5]

Ref. No.: Ex/PG/CE/T/128E/2024

M.E. CIVIL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2024 Subject: PROCESS DESIGN IN ENVIRONMENTAL ENGINEERING (EE) Part - II (40)

4	Determine the area and power required to demineralize 4500 m ³ /d of treated wastewater to be used for industrial cooling water using an	[10]
	electrodialysis unit comprised of 280 cells. Assume the following	
	data apply:	
	TDS concentration = 2600 mg/L^2 .	
	Cation and anion concentration = 0.012 g-eq/L	
	Efficiency of salt removal = 65 %	
	Current efficiency= 80 %	
	CD/N ratio = 400	
	Resistance = 4Ω	
	Faraday's constant= 96,485 Amp-s/gram equivalent	