Ref No.: Ex/PG/CE/T/129E/2024

M.E. CIVIL ENGG. 1ST YEAR, 2ND SEMESTER EXAMINATION, 2024

(1st / 2nd Semester / Repeat-/ Supplementary / Annual /-Biannual)

SUBJECT: INDUSTRIAL WASTEWATER TREATMENT

(Name in full)

Full Marks: 100

Time: Two hours/Three hours/Four hours/ Six hours

(60 marks for this part)

Use a separate answer-script for each part

No. of Question	Part-I	Marks
	Answer Question I and any three from the rest	
Q.1) a)	State the basic steps associated with chemical pulping process of pulp	6
b)	manufacturing? What do you mean by "Pasteurization of Milk"? How is it carried out in modern dairy plants?	(2+3)
c)	Describe in brief the "Reduction Method" for demercurization of wastewater emanating from a chlor-alkali industry.	4
Q.2) a)	Draw a neat process flow chart for a typical small-scale bovine slaughter house and mark the potential points of effluent generation.	6
b)	Discuss in brief on the following operations involved in bovine slaughtering process.	(2+2)
c)	ii)Antemortem ii) Dressing State the pollution abatement measures recommended for small scale bovine slaughter houses.	5
Q.3) a)	Describe with the help of neat diagram and pertinent reactions the basic process involved in a typical mercury cell chlor-alkali unit.	7
b)	What do you mean by "Brine Mud"? How can we perform "Debrining" and "Demercurization" of the "Brine Mud" in mercury cell chlor-alkali unit?	(2+3+3)
Q.4) a)	Discuss in brief on the following activities involved in market milk production unit.	(3+3+3)
	ii) Clarification ii) Cleaning-in-process system iii) Standardization	
b)	Discuss in brief on different treatment alternatives recommended by CPCB for modern dairy plants.	6

Form A: Paper -Setting Blank

Ref No.: Ex/PG/CE/T/129E/2024

M.E. CIVIL ENGG. 1ST YEAR, 2ND SEMESTER EXAMINATION, 2024

(1st / 2nd Semester / Repeat / Supplementary / Annual / Biannual)

SUBJECT: INDUSTRIAL WASTEWATER TREATMENT

(Name in full)

Full Marks: 100

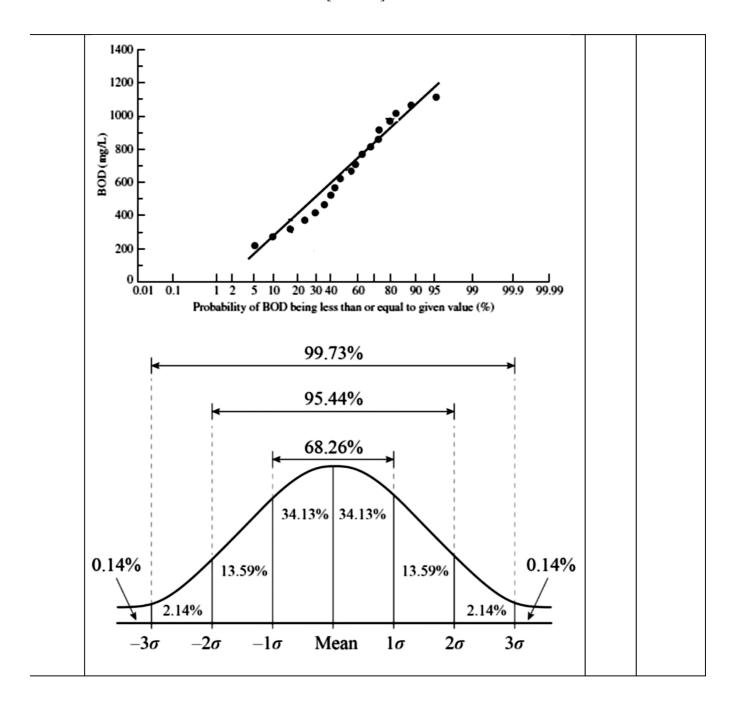
Time: Two hours/Three hours/Four hours/ Six hours-

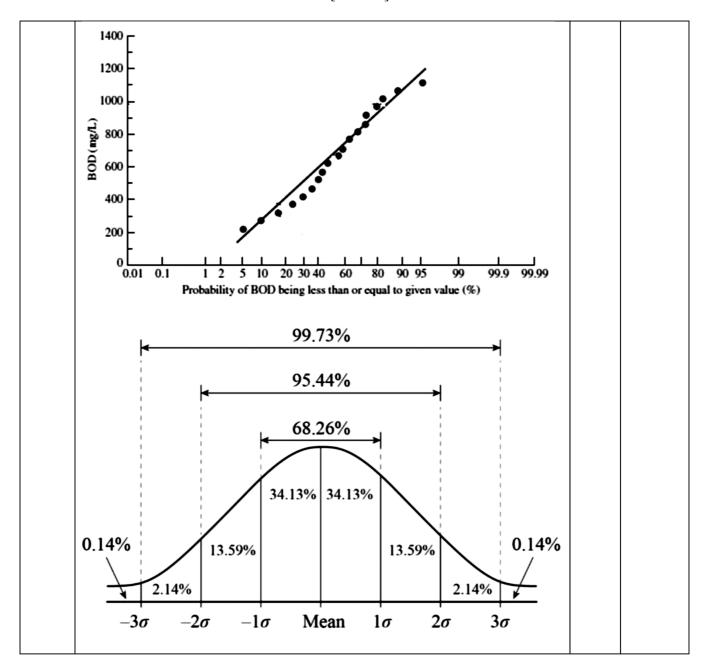
(60 marks for this part)

Use a separate answer-script for each part

No. of Question	Part-I	Marks
Q.5) a) b)	State the major environmental issues related to Indian textile industries. What are the characteristic parameters for typical textile industry wastewater?	3
c)	Discuss with the help of a neat treatment flow chart the significances of different unit operations and processes provided in a typical textile industry.	9

M.E. CIVIL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM - 2024


SUBJECT: INDUSTRIAL WASTEWATER TREATMENT (PG/CE/T/129E/2024)


Time: 3 hours Full Marks: 40

Instructions: Use Separate Answer scripts for each part.

Part - II

Sl. No.	Question	CO	Marks
1	A wastestream of 0.57 m³/min and a temperature of 103°F (39.4°C) contains significant quantities of non-emulsified oil and non-settleable suspended solids. The concentration of oil is 120 mg/L. Reduce the oil to less than 20 mg/L. Laboratory studies showed: Alum dose = 50 mg/L Pressure = 515 kPa absolute or 4.1 relative atm pressure Sludge production = 0.64 mg/mg alum Sludge = 3 percent by weight Calculate: (a) The recycle rate		[12]
	(b) Surface area of the flotation unit		
	(c) Sludge quantities generated		
	0.08		
	0.06		
	Air/solids ratio		
	0.02		
	0 10 20 30 40 50 60 Effluent oil and grease (mg/L)		
	Fig -1: Effects on A/S on effluent quality.		
	At 103°F (39.4°C) the weight solubility of air is 18.6 mg/L. The value of f is assumed to be 0.85.		
2	Write down the basic equations for different types of precipitation process for removing heavy metal.		[4]

