MASTER OF ENGINEERING IN CIVIL ENGINEERING EXAMINATION 2024

(First Year, Second Semester)

COASTAL AND OFFSHORE GEOTECHNOLOGY

Time: Three Hours

Full Marks: 100

PART I: 60 Marks PART II: 40 Marks

Use a separate Answer-Script for each part

No. c		PART I (60 Marks)														Marks
questic	uestions															
				Λοσ	Answe sume sui			questio				ad .				
1 (a	1)	What is littoral drift	in ocea													2+4=6
(b		Define: Point source	e and	sink, Lir	ne sourc	e and	sink, Lit	ttoral ce	l, Balan	ced litto						4x1= 4
(c		Draw a schematic														4
(d		What are the steps involved for coastal sediment budgeting? Explain briefly.														2+4= 6
2 (a		What is littoral drift in ocean? What are the parameters on which littoral drift depends? Define: Point source and sink, Line source and sink, Littoral cell, Balanced littoral cell.														
(b														4x1= 4		
(d			s involved for coastal sediment budgeting? Explain briefly.													
3 (a		What is called the					-	•	•	•	vhich a	re gene	erally ac	dopted?	Explain	2+6=8
	briefly there functions with neat sketches.															
(b))	Design a seawall in three layers, having the cross sectional compound slope, at the lower end 1(V):12(H) and upper												12		
		end 1(V):6(H), for HTL=3.25m RL and wave height=1.85m. Provide a detail sketch of the designed section. Assume minimum freeboard 2.0m and combined value of composite slope factor and friction factor 0.75.														
4 (a	,							•		•						2+3 =5
1	 (a) What is called wave motion? How many types of wave motions can be seen in the ocean? Ex (b) Define: (i) Group wave celerity; (ii) Wave steepness; (iii) Significant wave height 											vpiairi b	ilony.	3x1= 3		
(c))		ements	progra	amme, t	he wa	wave height and period was measured at a water depth of 9.0m as									
		follows:														
		Wave Height (m) Wave period		1.69	1.68	1.62	1.57	1.60	1.63	1.69	1.59	1.48	1.60	1.62	-	
		(sec)	12	11	11	12	10	10	10	11	10	9	10	11		
		Find the following:														
		(i) Significant wave height; (ii) Wave celerity and group wave celerity; (iii) Wave power and energy; (iv) Wave length; (v) Breaker height and length, if breaker depth is 2.0m.														
F (5)		• •		•		•		حاجاً عاماً	l (Fec.	- 41	-4-1-1	l		!4_ (C	-ee - 44	2+3+3= 8
5 (a)	'	Define 'Freeboard' for coastal structures. Also define 'Fetch' and 'Effective Fetch'. How do you estimate 'Effective Fetch'? Explain Briefly.														
(b))	Compute 'Freeboard and the top elevation of the armoured coastal structure having life of 20 years for the following														12
	details:															
		Mean high tide level = 2.750m RL; Maximum high tide level = 3.270m RL Effective fetch: For normal freeboard = 10.0km & minimum freeboard = 13.0km														
		Wind velocity over										n/hr				
		U/s slope of the str											g coeff	icients:		
		The upstream fa	ice surf	ace rou	ighness	= 0.75			. ,							
		The ratio of wind	d veloc	ity over	water s	urface	to the	wind ve	locity o	ver land	surfac	e for ef	fective f	etch ≥	10km is	
	 1.31 Variation of the Relative Run-up (R/H₀) against Embankment Slope is as follows: 															
	Embankment slope 0.1 0.2 0.3 0.4 0.5 0.6															
		Relative Run-u)	0.368		752	1.200	1.60		1.968	2.272	2			
		Assume sea level r	ise 2.0r	nm per	year an	d aver	age set	tlement	of said	structur	e 30mn	per 10	years			

Ref. No.: Ex/PG/CE/T/1210D/2024

M.E. CIVIL ENGINEERING FIRST YEAR SECOND SEMESTER – 2024 SUBJECT : COASTAL AND OFFSHORE GEOTECHNOLOGY (SMFE)

Time: 3 HOURS Full Marks: 100

PART II (40 Marks)

Use Separate Answer scripts for each PART Assume reasonable values of data not supplied

- 1(a) What are the possible mechanism of over consolidation and incomplete mechanism of marine deposits. 4+4=8
- (b) Write down the expressions for normalized undrained shear strength in terms of effective stress parameters, coefficient of earth pressure at rest, pore water pressure parameter, A, at failure for both normally consolidated and overconsolidated clay deposit and also other soil parameters. Discuss the purpose of using these expressions.

 5+2=7
- 2. Using the following equation for pore pressure generation plot the increase in normalised undrained pore water pressure (u_N / σ_0') with normalised increase in number of load cycles (N/N_I) for a typical sandy deposit

 $u_N / \sigma_0' = (2/\pi) \sin^{-1}(N/N_I)^{1/2\theta}$, where θ is a soil parameter, take, 0.70.

 N_1 = number of stress cycles to produce a pore water pressure ratio of 100% = 40

Prepare a Table of (u_N / σ_0') vs. (N/N_I) and plot the same.

7

3. Use the following equation to determine residual pore water pressure ratio (u_r / σ_c') for the soil parameters given below.

$$u_r / \sigma_c' = \beta [\log (\gamma_c / (A_1 (OCR-1) + B_1))]$$

Where, y_c = single amplitude maximum cyclic shear strain = $\pm 1\%$

$$\beta$$
= 0.45, OCR = 5, A_1 = 0.4 x 10⁻³, B_1 = 0.6 x 10⁻³

Use the above value of residual pore pressure ratio determine post cyclic shear strength (cohesion) of a soil deposit with initial cohesion of 50kPa. 4+4 = 8

4. Determine ultimate bearing capacity of a spud can foundation with the following data.

Cohesion = 25kPa

Diameter = 16m

Volume below seafloor = 570 cum

Depth of foundation = 4.0m

What will be the ultimate bearing capacity if eccentricity of foundation loading is 2m?

10