M.E. CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2024

Subject: BIOENERGETICS AND BIOPROCESS ENGINEERING

Time: 3 hr

Full Marks: 100

Part I (50 Marks)

Assume any missing data Answer any two questions

1. a.. Describe encapsulation immobilization process and its application

5

b. An enzyme has a K_m of $4.2 \times 10^{-5} M$. If the V_{max} of the preparation is 24 μ moles lt⁻¹ Mole⁻¹, what velocity would be observed in the presence of $2 \times 10^{-4} M$ substrate and 5.4×10^{-4} of a) a competitive inhibitor, b) a non competitive inhibitor c) an uncompetitive inhibitor. K_i in all three cases is $3 \times 10^{-4} M$. d) What is the degree of inhibition in all three cases.

2. A strain of mold was grown in a batch culture on glucose and the following data were obtained:

Time, hr	Cell concentration (g/L)	Glucose concentration, g/L				
0	1.25	100				
9 .	2.42	97				
14	5	90.4				
24	10.5	76.9				
30	22	48.1				
34	33	20.6				
36	37.5	9.38				
42	41	0.36				

Calculate the maximum net specific growth rate, apparent growth yield and maximum cell concentration could one expect if 120 gm of glucose were used with the same size inoculum.

9

Derive the expression for un-competitive inhibition.

8

Write the application of enzyme in Food and textile industry

4 + 4

3. The following data have been obtained two different initial enzyme concentration for an enzyme-catalyzed reaction.

v ([E ₀]=0.012 g/l) g/l-min	[S] (g/l)					
1.14	20 .					
0.86	10					
0.7	6.7					
0.59	5					
0.5 0.45	4					
0.45	3.0					

i) Find K_m ii) k_2 and iii) find V_m

Where V_m is maximum forward velocity of the reaction, K_m is dissociation constant of the ES (Enzyme – substrate) complex, k_2 is rate constant.

What is the difference between structured and unstructured models? What will be the Monod model equation for two limiting substrate 5

M.E. CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER - 2024 BIOENERGETICS AND BIOPROCESS ENGINEERING

Time: 3hrs Full Marks: 100

Part-II

Use Separate Answer scripts for each part

Answer any two questions

1	(a) What a							of dif	ferent	types	of coa	gulatio	on and	
	floccula									,				
	(b) Develop the expression to calculate the settling velocity of an algae biomass particle													
	of spherical shape in a fluid in the laminar flow region (Re<1)													
	(c) To produce a new algae in a location with low sunlight irradiance, halogen lamps are													
	planned to be installed to irradiate tubular photobioreactors (PBRs) in parallel													
	arrangement with floor area occupied by one PBR=18.6 m ² . The effective continuous													
		irradiance provided by these lamps is 500 µmol m ⁻² s ⁻¹ . The initial biomass												
	concentration in the feed is 1kg m ⁻³ . Calculate:									2	5+5+15			
(i) The algae biomass productivity in a tubular PBR with a volume of 1.7 m ³ for a liquid feed flow rate of 10 m ³ h ⁻¹ .														
	_													
	(ii) The					_		_	•					
					y-1 ass									
					operati									
	(iii) If C											-	-	
				hat wi	ll be the	e CO ₂ (capture	rate in	relati	on to tl	he CO	2 inpu	in the	
\downarrow		stream												
2	(a) Estim					_		_				•		
					d^{-1} , θ_{max}		_			_		-	,	
m ² g ⁻¹ chlorophyll]. The steady state concentration is 0.5 kg/m ³ and the pond depth										_				
	is $z = 0.3$ m. The actual water surface is 80% of the total area, $h = 0.8$. Assume alg									_				
cultivation at average pond water temperature and sunlight. Neglect the effect of														
	CO ₂ and variations in concentration with depth. The monthly average irradiation for the pond location and average pond water temperature is as follows:									ion ior				
lг	Month	Jan										Non	Daa	20.5
$\ \cdot\ $	Irradiation	Jan	reb	IVIAI	April	Iviay	June	July	Aug	Sept	Oct	Nov	Dec	20+5
	(W/m ²)	35	50	80	100	120	150	140	130	100	75	40	35	
\parallel	Water													
	Temp (°C)	3	5	8	12	15	20	21	18	16	13	11	3	
		ulate	the an	nual c	il yield	if the	avg. o	il cont	ent in	the alg	ae bi	omass	cell is	
					$T_{\rm d} = 35$		_			-				
	(b) What		-						-	_		v it?		
3	(a) Work			<u></u>									d two	
		ber se						` '		9				5+5+5+10