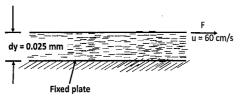
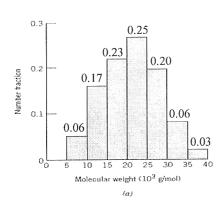
Ref. No. Ex/PRN/BS/B/T/216/2024

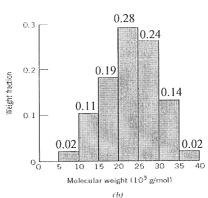
B.E. PRINTING ENGINEERING EXAMINATION 2024


(SECOND YEAR FIRST SEMESTER 2024)

SUBJECT: MATERIAL SCIENCE

Time: Three Hours Full Marks: 100


Answer any five (5) questions.


Q1.	Answer any 4 (four).	4x5 = 20
(a)	Draw a BCC crystal structure and compute its Atomic Packing Factor	[5]
(b)	What is doping in a semiconductor? Explain p-type and n-type semiconductor.	[5]
(c)	What is surface hardening? Explain briefly Carburizing with a sketch.	[5]
(d)	What are the differences between colloids and suspensions?	[5]
(e)	What is composite material? What are differences between Cast Iron and Steel	[5]
(f)	What is the difference between Dyes and Pigments?	[5]
Q2.(a)	Explain Bragg's Law with a simple sketch.	[6]
(b)	For FCC Nickel (Ni) compute	[6]
	(i) the interplanar spacing and	
	(ii) the diffraction angle	
	for the (220) set of planes. The lattice parameter for Ni is 0.35295 nm. Assume, that monochromatic radiation having a wavelength of 0.1790 nm is	
	used. The order of reflection is 1.	
(c)	Nickel (Ni) has an atomic radius of 0.1248 nm, an FCC crystal structure.	[8]
	Atomic weight of Nickel is 58.69 g/mol. Compute its theoretical density.	
	Consider Avogadro's number as 6.023 X 10 ²³ atoms/mol.	
Q3.(a)	Explain briefly Fick's First law of Diffusion with a sketch.	[6]
(b)	The diffusion coefficients for copper in aluminium at 500°C and 600°C are 4.8	[6]
	X 10 ⁻¹⁴ and 5.3 X 10 ⁻¹³ m ² /s, respectively. Determine the approximate time at	
	500°C that will produce the same diffusion result (in terms of concentration of	
	Cu at some specific point in Al) as a 15-hour heat treatment at 600°C.	
(c)	(i) Explain Newton's law of viscosity.	[8]
	(ii) A plate of 0.025 mm distant from a fixed plate, moves at 60 cm/s and	
	requires a force of 2 N per unit area i.e., 2 N/m ² to maintain this speed.	
	Determine the fluid viscosity between the plates.	

- Q4.(a) Why additives are included in polymer products? Discuss various types of additives for polymer products. [10]
 - (b) Assume that the molecular weight distribution shown in the figure below are for a hypothetical polymer molecule size distributions of number and weight fractions of molecule poly(vinyl chloride). Atomic weights of Carbon, Hydrogen and Chlorine are 12.01, 1.01 and 35.45 g/mol respectively.

Molecular structure of PVC is $\begin{array}{ccc}
H & H \\
C & C & C \\
H & C & C
\end{array}$

[8]

For this material, compute

- (a) the number-average molecular weight
- (b) the weight-average molecular weight
- (c) the degree of polymerisation
- Q5.(a) Discuss briefly synthetic adhesives. [6]
 - (b) Discuss briefly primary, secondary and tertiary alcohols. [6]
 - (c) Calculate the capillary rise in a glass tube of 3 mm diameter when immersed vertically in (i) water and (ii) mercury. Take surface tensions $\sigma = 0.0725$ N/m for water and $\sigma = 0.52$ N/m for mercury in contact with air. The specific gravity for mercury is given as 13.6 and angle of contact for mercury is 130°.
- Q6.(a) Discuss Amines [6]
 - (b) Discuss various applications of oils. [6]
 - (c) What are various forms of corrosion? Explain cathodic protection with a sketch. [8]
- Q7. Write short notes on any four 4x5=20
 - (a) Amino Resins(b) Thermoplastic and Thermosetting Plastics[5]
 - (b) Thermoplastic and Thermosetting Plastics(c) Surfactants[5]
 - (d) Copper and its alloys [5]
 - (e) Degradation of polymers [5]