B.E. POWER ENGINEERING FOURTH YEAR SECOND SEMESTER EXAMINATION 2024

DESIGN OF HYBRID ENERGY SYSTEMS

Time: 3 Hrs. Full Marks: 100

Question Number		Marks
	Unit-I (Answer any <u>two;</u> Marks: 20) (Q1-Q3 must be answered consecutively)	
1.	a) What is hybrid energy system and state its merits?b) Model battery storage system used in Hybrid renewable energy systems.	2+3 5
2.	a) Explain the wind speed variation with height.b) What is wind power curve? Explain wind power curve with proper expressions and graph.	4 2+4
3.	a) Write down the flow chart for Incremental Conductance based MPPT algorithm.b) Briefly describe the Inverter Hysteresis Current Control with neat schematic.	5 5
	Unit-II (Answer any <u>two;</u> Marks: 20) (Q4-Q6 must be answered consecutively)	
4.	What are the different types of ocean energy system? Enumerate the advantages and disadvantages of tidal energy.	3+7
5.	Explain the operating cycle of a single barrage tidal power plant with neat schematic.	10
6.	Derive the expression of power in waves.	10
	Unit-III (Answer any <u>two;</u> Marks: 40) (Q7-Q9 must be answered consecutively)	
7.	 a) Define following terms: i) CRF ii) LOLP b) A wind turbine has an initial capital cost of \$165,000, a replacement cost of \$95,000, a lifetime of 20 years, and an operation and maintenance (O&M) cost of \$5,000/yr. What is its annualized cost over a 25year project lifetime at an annual real interest rate of 6%? 	5 15
8.	 a) Derive the expression for total solar cells area required to supply the load demand b) A solar PV has a capital cost of \$4000 a replacement cost of \$3500, and a lifetime of 14 years. At the end of a 30-year project lifetime, what is its salvage value? c) Find total PV power and numbers of Series and parallel connected PV panels for a 12V DC 	5
9.	bus PV system designed for 5000Wh/day energy requirement. Consider followings: η _{bal} =95%; η _{el} =90%; η _{dc} =80%; V _{oc} =18V, Energy produced (worst) =300Wh/day/Panel and P _{pv} =150W. A diesel generator has an initial capital cost of \$80,000, a replacement cost of \$60,000, and a lifetime of 6 years. Its cost of operation and maintenance (Q&M) is \$2,471/yr, and its fuel cost is	20

	\$34,969/yr. What is the net present cost of this generator? What will be the cost of energy for 25000-unit energy? Consider project lifetime of 25-year and an annual real interest rate of 6%.	
	Unit-IV	
	(Answer any <i>two</i> ; Marks: 20)	
	(Q10-Q12 must be answered consecutively)	
10.	a) What are the different deterministic features of energy storage systems (ESS)?b) Compare the power and energy density of Li-ion batteries, fuel cell and super capacitors?	5 5
11.	a) Compare lithium-ion battery with solid-state batteryb) Briefly illustrate Superconducting Magnetic Energy Storage system	5 5
12.	Briefly demonstrate the power Management strategy for grid connected Photovoltaic/Wind Turbine/ Batteries based hybrid energy system.	10