B.E Power Engineering 3rd Year 1st Semester Examination – 2024 Subject: Non-conventional Power Generation

Time: Three hours Full Marks: 100

	Each question must be answered as per given instructions	Marks
[1]	Answer any ten from this module	[20]
(a)	What are the main constraints of renewable energy?	10×2
(b)	Define: Solar constant.	
(c)	Define: solar zenith angle.	
(d)	Classify solar thermal power generation scheme.	
(e)	Define Betz's limit of wind power extraction.	
(f)	Define pitch control & furl control of wind turbine.	
(g)	Classify solar cell.	
(h)	Define: Anaerobic Digestion process.	1
(i)	What is Hall current in MHD generation system?	
(j)	What are the different types of Fuel cell?	
(k)	Define Group velocity of ocean wave.	1
(1)	Classify Tide according to height & lunar phases.	
(m)	What is solar collector efficiency?	
(n)	Define Continental Drift of geothermal region.	
(o)	How do the salinity gradient & density gradient influence heat trapping in solar pond?	
[2]	Answer any one from this module	[10]
(a)	Briefly explain characteristics of perturbation factor Vs. power coefficient in wind turbine system with a	[8+2]
(4)	graphical representation.	[0,2]
(b)	Briefly explain with a neat sketch of any one solar thermal power generation scheme.	[8+2]
[3]	Answer any two from this module	
		[20]
(a)	Briefly explain any one type fuel cell with a neat sketch.	[8+2]
(b)	Classify Municipal Solid Waste (MSW). Briefly explain MSW management scheme with flow chart.	[2+8]
(c)	Classify energy storage methodology & briefly explain any one type.	[2+8]
[4]	Answer any two from this module	[20]
a)	Derive the expression of total wave power is carried forward per unit width across wave front of water surface	[10]
1-5	of natural ocean wave resource.	r
b)	Derive useful heat content per square Kilometer of dry rock granite & then time constant of useful heat	[4+3+3]
(-)	extraction using water flow & useful heat extraction rate.	50.53
(c)	Derive theoretical power can be generated in any Tidal power plant. Draw a neat sketch showing basic	[8+2]
F-3	components of Tidal power plant.	
[5]	Answer any three from this module	[30]
(a)	A horizontal axis wind turbine is installed at a location having wind speed of 18 m/s. The 30 m diameter rotor has two blades attached to the hub. Find the rotational speed of turbine for optimum energy extraction.	[10]
(b)	For any solar thermal collector assume the following data: optical efficiency $(\gamma)=0.85$, incident solar radiation(q_{in})=850W/m², ambient temperature(T_a)=27°C, heat loss co-efficient (U)=26 W/m²K, collector efficiency factor(F')=1, receiver effective temperature (T)=85°C, thermodynamic 1st law efficiency $\epsilon_1=\epsilon_2(1-T_a/T)$, & 2nd law efficiency $\epsilon_2=0.75$, where receiver thermal output $Q_{out}=F^*[\gamma.A_{in}.q_{in}-UA_{rec}(T-T_a)]$; $\gamma=[U.A_{rec}(T_{max}-T_a)/A_{in}.q_{in}]$; a) Find the stagnation temperature (T_{max}) & collector efficiency (ϵ_c) if concentration ratio (CR= A_{in}/A_{rec}) are 1 & 10; b) Find optimal temperature of receiver (T= T_{opt}) at which overall efficiency($\epsilon=\epsilon_c\epsilon_1$) is maximum along with maximum efficiency(ϵ_{max}) for CR=10.	[10]
(c)	Calculate the following of a dry rock granite to a depth of 7 Km. Take the Geothermal temperature gradient is at 30° K/Km, minimum useful temperature is 150° K above the surface temperature T_o , rock density(p_r)=2700 kg/m³, Specific heat capacity(p_r)=750 J/kg/°K. i) Useful heat content per square kilometer, ii) Time constant of heat extraction using water flow at a rate of 1.5 m³/sec/km², iii) Useful heat extraction rate at initially & after 10 years. Assume water density 1000 kg/m^3 specific heat capacity 4200 J/kg/^0 K.	[10]
(d)	Calculate the following for deep Atlantic Ocean wave having wave length 40 m & amplitude 1.5 m, water density1025kg/m³: i) Phase velocity, ii) Group velocity, iii) Total energy per unit area of wave surface, iv) Power develops per unit width across wave front.	[10]

EX/PE/PC/B/T/314/2024

(e)	A school in a remote place has the following energy requirements:- 25 lamps each of 100 CP that operate for 8	[10]
	hours daily, 8 computers each of 250 watt those operate for 5 hours daily by a duel fuel engine driven generator,	
	1 H.P water pump is driven by duel fuel engine for 2 hours daily. Calculate the volume of cow dung in a biogas	
	plant & also calculate the required number of cows to feed the plant. (Assume biogas required for each 100C.P	
	lamp is 0.126m ³ /hr., conversion efficiency for generator is 80%, thermal efficiency of engine is 20%, heating	
	value of biogas is 25 MJ/m ³ , cow dung production rate: 7kg/cow/day, cow dung having 17% solid mass	
	content, biogas yield of 0.34m ³ /kg of dry mass, slurry density: 1090kg/m ³ , 1 H.P=735.5 watts in S.I).	
		L