B.E. POWER ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2024

Subject: Materials Science
Time: 3 Hr

Subject Code: PE/ES/B/T/222
Full Marks: 100

Chose the correct Answer (Any SIXTEEN)

Repeatable entity of a crystal structure is known as

(a) Crystal (b) Lattice (c) Unit cell (d) Miller indices

1.

i.	Repeatable entity of a crystal structure is known as						
	(a) Crystal	(b) Lattice	(c) Unit cell	(d) Miller indices			
ii.	α-Iron has bod	y-centered cubic crysta (b) 4	al structure. How many	Fe atoms are in each unit cell? (d) 2			
iii.	Usually materials with crystal structure, can be easily deformed at high temperature but difficult to deform at room temperature						
	(a) FCC	(b) BCC	(c) HCP	(d) SC			
iv.	Screw Dislocation is moved by stress						
			(c) Shear	(d) All of the above.			
v.	Creep rate in Primary stage						
			ate and rapids with tir	ne			
	(c) Increases	(d) starts at a rapid	rate and slows with t	ime			
vi.	Izod, Charpy	are the type of	Test.				
			(c) Hardness				
vii.	A solid phase cooling	produces two new so	olid phases during	reaction up on			
	(a) Eutectic	(b) Eutectoid	(c) Peritectic	(d) Peritectoid			
viii.	Deformation is easy at room temperature for metal						
	(a) BCC	(b) FCC	(c) HCP	(d) All of the above			
ix.	Solid-1 = Solid-2+Solid-3This type of reaction is known as reaction.						
			(c) Peritectoid				
х.	Usually materials with following crystal structure fail in ductile mode						
	(a) BCC	(b) FCC	(c) HCP	(d) All of the above			
xi.	Which one of	the following test is	used to determine Du	uctile to Brittle Transition			
	(b) Tensile	(b) Compressive	(c) Hardness	(d) Impact			

xii.	 Which one is not a Hume-Ruthery condition: (a) Crystal structure of each element of solid solution must be the same. (b) Size of atoms of each two elements must not differ by more than 15%. (c) Elements should form compounds with each other. (d) Elements should have the same valence. 							
xiii.	In a single-component condensed system, if degree of freedom is zero, maximum number of phases that can co-exist							
	(a) 0	(b) 1		(c) 2		(d) 3		
xiv.	wt.% of carbon in mild steels:							
	(a) <0.008	(b) 0.008-0.3	(c) 03-	0.8	(d) 0.8-2.1	1		
xv.	Strong hybridised bonds make Graphene mechanically strong (a) sp ¹ (b) sp ² (c) sp ³ (d) Hydrogen bond							
	(a) sp	(b) sp ²	(c) sp ³		(d) Hydrog	gen bond		
xvi.	silicon. a) Crushed s	is one of the most in ilicon b) Crystall			lso known as so			
xvii.	Electrical property of CNT can be define as a) Good Conductor b) Insulator c) Semi conductor d) Impure meta				mpure metal			
xviii.	Highest critic	Highest critical temp. (TC) of superconductor around						
	(a) 0 K	(b) 33K		(c) 133K	(d)	233K		
xix.	CNT is							
	a) Non toxic	b) Toxic	c) Very	Safe	d) Not havi	ng graphene		
xx.	Which of the following is not a Nanotube structure (a) zig-zag-type nanotube (b) armchair type nanotube (c) helical nanotube (d) Spiral nanotube							
xxi.	Which of the following is/are not a Solid Insulating Materials							
	(a) Polyvinyl	chloride	(b) Cera	amics	(c) Rubber	(d) None		
xxii.		following is/ are useride nanotubes raphene	(b) Silic	gen Storage on carbide of the above	nanotube			

2. Answer the following Questions (Any <u>FIFTEEN</u>)

- i. What is low angle grain boundary?
- ii. What is Burgers vector?
- iii. What is DBT temperature?
- iv. Explain, why tension test is not applicable for determining young modulus for small sample? Which test is preferable?
- v. Write down the ranges of Carbon (%) present in (a) Hypoeutectoid Steel,(b) Low Carbon Steel.
- vi. Why maximum 6.67% Carbon can be dissolved in Iron- Carbon system?
- vii. What is the Degree of Freedom (F) for two component (C) system? Only Temperature is variable in the system and three phases are present in the system.
- viii. Write two differences between screw and edge dislocation.
 - ix. Explain the significance of TTT diagram?
 - x. What is Magnetic hysteresis?
 - xi. Give definition with example of each type: (a) Soft-Magnet, (b) Ferri-Magnetic material.
- xii. What is Chiral Vector?
- xiii. Write down the limitations of Nanotubes.
- xiv. Mention the uses of Nano-fluid.
- xv. What is Amorphous Metal? Write the use of Amorphous Metal.
- xvi. How CNT can be used to handle Hydrogen storage problem?
- xvii. Write down the design consideration to avoid Creep.
- xviii. Explain the prospect of Superconductor in near future.
 - xix. Write the uses of EAP.
 - **xx.** Write down advantage of Hydrogen Fuel cell over fossil fuel.

3.	Answer the following Questions (Any SIX)	4X6=24			
i.	What is shore Scleroscope? Explain in brief.	2+2			
ii.	Explain Fracture Mechanism for Ductile Material with neat sketch.	. 4			
iii.	What is Yield point Phenomenon? Explain the reason behind it.	2+2			
iv.	Calculate Effective no and Packing Efficiency of FCC crystal system.	1+3			
v.	What is Frenkel defect and schottky defect? Explain in brief.	2+2			
vi.	What is Normalizing process? Write its importance.				
vii.	(i) Draw the Stress-Strain Diagram of Mild Steel material and illustrate the following				
	points:(a) Elastic Limit, (b) upper yield point, (c) lower yield point (d) ultimate	tensile			
	stress	1+3			
viii.	Explain how Lamination decreases Eddy Current Losses.	4			
ix.	What is Annealing process? What are the types of Annealing?	4			
х.	What is Super capacitor and Superconductor? Give examples of each.	4			
4.	Answer the following Questions (Any Five)	X5=30			
i.	(a) What is the Miller Indices of the point (-2, 3, 1); (2, 1, 1).				
	(b) Show the following plane and direction in a simple cubic system				
	(110), (111) [110], [111]	2+4			
ii.	(a) Which types of bond(s) is/are present in (a) Metal, (b) Ceramic and (c) Polymer.				
	(b) Calculate the lattice parameter of NaCl crystal, if its density is 2189 kg/m3 a	nd			
	Avogadro No.=6.023x10 ²³ . NaCl has FCC crystal structure.	3+3			
iii.	Why Fatigue Fracture occurred in materials? What are the precautions to avoi	d fatigue?			
	What is high cycle fatigue and what is low cycle fatigue?	2+2+2			

iv.	Write down the Material property required for selection of material to design the (a)					
	Superheater and (b) high pressure Rotor of Ultra-supercritical coal generation system.					
	Also mention the preferred material for the components.	2+2+2				
v.	Explain the procedure of production of CNT with sketch for Arc Method.	6				
vi.	How CNT can use for better efficiency of Lithium Ion Battery. 6					
vii.	What is Dielectric Breakdown? Where the following insulators are used? (a) Rubber, (b)					
	PVC, (c) Air, (d) Argon.	2+4				
viii.	low to produce single Crystalline doped Silicon semiconductor Material using					
	Czochralski method.	6				
ix.	Explain the working principle of Hydrogen Fuel cell with neat sketch and reactions.	6				
х.	Explain the working principle of Conventional Solar Cell.	6				