Ref. No.: Ex/Met/PC/H/T/426/2024

B.E. METALLURGICAL ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2024

SUBJECT: CREEP & FRACTURE MECHANICS OF MATERIALS (HONS.)

Time: Three hours Full marks: 100

(Answer Question No. 1 and any three from the rest)

1. Ansv	wer any eight from the following:	5x8 = 4	0
a)	Whether creep deformation can occur at ambient temperature? How would you creep strength of a material?	express ti	he
b)	Why is the extrapolation of short-time creep rupture data to long times at the san is extremely dangerous? Discuss.		ature
c)	Between single crystal and polycrystal which one would offer better creep resist and why?		erty
d)	What is 'residual strength diagram?' – discuss.	[CO3]	
e)	How does fracture toughness of a material depend on temperature? Give reason your answer.		ort of
f)	What is the need for studying 'fracture mechanics?'	[CO4]	
g)	What is the difference between 'stress concentration factor' and 'stress intensity	factor?'	
h)	Why is K_{IC} known as a material property? What condition needs to be satisfied material property?	for K _{/C} to b [CO4]	e a
i)	Justify whether the value of the K_{IC} will vary in presence of a corrosive medium to that in neutral environment?	as compa	red
j) k)	What is known as K_{ISCC} ? How does K_{ISCC} differ from K_{IC} ? How will you determine K_{ISCC} ?	[CO5] [CO5]	
2. (a) ⊢	low would you determine the 'activation energy' for creep deformation?	[CO1]	5
(b) Wh	at is 'Dorn' parameter? Find the LMP by using the 'Dorn' parameter. What is the [CO2]	utility of LI 2 + 5 + 3	
(c) Wr	ite a short note on 'equicohesive temperature.'	[CO2]	5
	Ifter deriving all the necessary steps find the equivalence in fracture stress obtain concentration point of view and that based on Griffith's criterion.	ed conside	ering 15
(b) Bet	ween Gray Cast Iron and Nodular Cast Iron which is more brittle and why?	[CO3]	5
4. (a) What is known as 'strain energy release rate?' What is its unit?		[CO4]	5
	ive the relationship used for expressing 'strain energy release rate' under constan condition.	t displacer [CO4]	nent 10
(c) Hov	v can this energy release rate be used as a material property for fracture? Discus	s. [CO4]	5

5. (a) What is known as 'R' curve? How is the R curve determined?

[CO4] 2+8=10

(b) Justify the nature of 'R' curve.

[CO4] 5

(c) Assume that a component in the form of a large sheet is to be fabricated from 0.5-Ni-Cr-Mo steel. It is required that the critical flaw size be greater than 3 mm, the resolution limit of available flaw detection procedures. A design strength of one-half the tensile strength is indicated. To save weight an increase in the tensile strength from 1520 to 2070 MPa is indicated. Is such a strength increment allowable? (Assume plane strain condition in all computations.) [CO4] 5

Given: K_{IC} = 66 MPa $m^{1/2}$ at 1520 MPa and 33 MPa $m^{1/2}$ at 2070 MPa.

- **6.** (a) State the law for 'fatigue crack growth rate' and present the law by schematic graph. How would you interpret this schematic graph? [CO4] 3+ 3 + 4 = 10
- (b) Discuss the concept of J integral. Show that this integral is related with potential energy difference? [CO4] 4 + 6 = 10