Full Marks: 100

B.E. OF METALLURGICAL AND MATERIAL ENGINEERING 3RD YEAR FIRST SEMESTER , SESSION 2024

CHEMICAL KINETICS AND MASS TRANSFER

Assume any missing data

Notations have usual significance

Time: 3 hours

Q. No.	PART A (answer question 1 and any two from the rest)	Marks
	CHEMICAL KINETICS	
Q1	Identify the correct answer	2x10=20
1(a)	Limiting reactant of a chemical reaction decides	
	(i) Conversion	
	(ii) rate constant	
	(iii) time of reaction	
	(iv) equilibrium constant	
1(b)	A space velocity of 4h-1 means	
	(i) 4 reactor volume of feed is processed per hour (ii) After every 4 hour reactor is filled with feed	
	(iii) After every 4 hour reactor is filled with feed (iii) Hundred percent conversion takes place after 4 hours	
	(iii) Trundled percent conversion takes place after 4 hours (iv) none of the above	
1(c)	If rate of a reaction $A \rightarrow B$ is doubled when the reactant concentration	<u> </u>
1(0)	is doubled. Order of reaction is	
	(i) 0	
	i) (ii) 1	
	(iii) 2	
	(iv) 3	
1(d)	For a first order reaction, if 50% of the initial concentration is	
	consumed in 23 minutes, rate constant of the reaction is	
	(i) 0.03 s (ii) 0.03 m	
	(iii) 0.03 h	
	(iv) infinite	
1(e)	A plug flow reactor is characterised by	
` '	(i) Eddy motion	
	(ii) Length of the reactor	
	(iii) Flat velocity profile	
	(iv) Laminar flow	
1 (f)	For a first order reaction, if 50% of the initial concentration is consumed in 23	
	minutes, rate constant of the reaction is	
	(i) 0.03 s ⁻¹	
	(ii) 0.03 m ⁻¹ (iii) 0.03 h ⁻¹	
	(iii) 0.03 ii (iv) infinite	
	, (14) mining	
1(g)	If order and molecularity are same, the reaction must be	
-10/	(i) Nonelementary	
	(ii) Liquid phase	-
	(iii) Gas phase	
	(iv) elementary	

Q. No.	PART A (continued)	Marks
Q1	Identify the correct answer (continued)	2x10=20
1(h)	The time derivative of rate equation is written in terms of	
	(i) Most reactive Reactant	
	(ii) Stoichiometrically present reactant (iii) Most costly reactant	
1/;\	, ,	
1(i)	The rate equation $-\frac{dC_A}{dt} = kC_A^{1.2}C_B^{0.8}$ represents	
	(i) The Chemical reaction reaction is of order of 2 and elementary	
	(ii) The chemical reaction is of order of two and non elementary	
1/:\	(iii) The chemical reaction is of order of two and reversible	
1(j)	The rate equation $-\frac{dC_A}{dt} = kC_A^{1.2}C_B^{0.8}$ represents a chemical reaction of	
	stoichiometry aA+bB = Product where a, and b are	
	(i) 1.2 and 0.8 respectively	
	(ii) 1 and 1 respectively	
	(iii) a and b can have any value	
2	Derive working formula for a CSTR carrying out second order liquid phase	10+10
	reaction. Give schematic diagram.	
	If an elementary liquid phase reaction $2A \rightarrow B$ is carried out in the reactor having k=10 s ⁻¹ , F_{A0} =2 mole/s, C_{A0} =1 mol/cc, final conversion = 80%,	
	Calculate the volume of the reactor.	
3	A constant density first order reaction is carried out in a batch reactor	5+15
	and data obtained as follows	
	Time (s) 0 30 60 90 120 150 180 600	
	C _A mol/ cc 1.0 0.74 0.55 0.42 0.29 0.24 0.16 0.0025	
	Calculate the rate constant and time required for 50% conversion. Use differential method of analysis.	
	method of analysis.	
4(a)	Derive the volume ratio of CSTR and PFR for same degree of conversion	5
	For liquid phase 1 st order reaction.	
4(b)	Write the procedure for designing an isothermal CSTR Cascade to	15
	achieve certain final conversion. The procedure to be explained with	
	proper diagram. Define selectivity and yield for parallel reaction.	1+16
5	Consider the following type of parallel reaction	4+16
	A +B → P (DESIRED) (rate const k1)	
	$A + B \rightarrow S$ (UNDESIRED) (rate const k2)	
	Show the different situations in tabular form with proper explanation to	
	obtain high selectivity.	
N.		

Q. NO.	PART B (ANSWER TWO QUESTIONS)	MARKS
	MASS TRANSFER	
6.	In a binary system derive the expression for molar flux of A in X direction.	10 +10
	Consider two rectangular chambers of same volume are connected by a one meter long tube. one chamber contains Gas A And the other chamber contain	
	gas B. Both gases Start to diffuse Into each other. The gasses are at 60 degrees centigrade, And one atmospheric pressure. The binary diffusivity is 1x10 ⁻⁵ m ² /s. Universal gas law constant is 82.057x10 ⁻³ . Calculate molar flux of A.	
7.	Gaseous reactant A is reacting on the solid surface B to produce gaseous product C and D according to the Following reaction. 2A(g) + B(s) = 3C(g) + D(g) + E(s)	20
	Derive an expression for molar flux of a at the solid surface. Draw suitable schematic Necessary to solve the problem.	
8. (a)	Explain molecular diffusion and convective diffusion.	5
8. (b)	What are the advantages and Limitation of film theory	5
8. (c)	Imagine a cube of dimension one meter in a multi component flow system containing three moles of A and 5 moles of B and 10 moles of C at Steady state. Molecular weight of A, B and C are one, two, and three respectively. Diffusion rate of A and B in X direction are one mole per second and minus two moles per second respectively. The cube is convicted at a velocity one meter per second in X direction. Calculate molar average velocity and fluxes relative to molar average velocity. Draw schematic necessary for the problem.	10