Ref. No.: Ex/Met/BS/B/T/224/2024

B.E Metallurgical Engineering Second Year, Second Semester Examination 2024 Subject: Materials Science

Time: Three hours Full Marks: 100

Answers of Questions of any Group must be written in a common palce

Another of Queening of any oreas macros wi	10011 111 4 001111	mon parce	
GROUP – A (<u>Answer any two from the following</u>	g)		
Q1. (a) Draw a (111) plane and a (222) plane in the unit cell of a cubi	ic lattice with lattic	e parameter a.	
Determine their distance from a parallel plane through the origin.	[CO1]		8
(b) Find the family of crystal directions represented by the cube edges	s, face diagonals a	and body diago	nals
of a unit cube. Give the number of members in each family. Also write	the Miller indices	of each member	er of
the three families.	[CO1]	3+3+6:	= 12
2. (a) Calculate the atomic density (number of atoms per unit area) in	(111), (110) and ((100) planes of	
copper (FCC) with lattice parameter 3.61 Å.	[CO1]		10
(b) Find the Miller indices of a plane that makes intercepts on $_a$, $_b$ and	d c axes equal to 3	3 Å, 4 Å and 3 <i>i</i>	Å in
a tetragonal cell with cla ratio 1.5.	[CO1]		10
3. (a) Find the Miller indices of the line of intersection of a (-1 -1 1) an both geometrically and analytically?	nd (-1 -1 -1) plane i [CO1]	in a cubic crysta	al 12
(b) X-rays of wavelength 1.54 Å are used to calculate the spacing of ((200) planes of in	aluminium. The	;
Bragg angle for this refection is 22.4°. What is the size of the unit cell of	of the aluminium o	crystal. [CO1]	8
GROUP – B			
(Answer any one from the following	<u>g</u>)		
6. (a) Give an account for "bond energy", "bond length" and "bond thermal expansion behaviour in terms of bond length.	type" for chemica [CO2]	al bonding. Exp 10 + 5 =	
(b) If the potential energy ${\cal W}$ of a system of two atoms varies as a fun	iction of their dista	nce of separati	on r

- as follows find the equilibrium separation distance between two atoms.

$$W = -\frac{A}{r^n} + \frac{B}{r^m}$$
 [CO2]

- 7. (a) What is known as crystal symmetry? Name five different symmetry operations and show with figure how these symmetry operations are performed. 4 + 8 = 12[CO2]
- (b) Define the following terms:

8

- (i) Centre of symmetry
- (ii) Rotoinversion axis of symmetry
- (iii) 3 axis of symmetry
- (iv) Screw axis of symmetry

[Turn over

GROUP - C

(Answer any one from the following)

4. (a) Give the definition of 'Phase" and "Degree of freedom."	[CO2]	2 + 2 = 4			
(b) Draw a phase diagram with components A and B and where A has	limited solid solubilit	y in B, and B			
has no solid solubility in A. Label all the regions and write down the invariant reaction and find the "degree					
of freedom" of this invariant reaction, if present.	[CO2]	5 + 3 = 8			
5. (a) A steel microstructure contains 35 wt pct pearlite and rest ferrite. steel.	Find the amount of [CO2]	carbon in the			
(b) What is a peritectectic reaction? Show that the reaction is invariant.	Why is the reaction	incomplete in			
nature?	[CO2]	2 + 2 + 4 = 8			
GROUP – D					
(Answer any one from the following)					
6. (a) According to Drude model find the relationship for thermal Condu	ctivity in metals und	ler conductive			
heat transfer condition.	[CO3]	8			
(b) A uniform silver wire has a resistivity of 1.54×10 ⁻¹⁸ ohm/m at room temperature. For an electric field					
along the wire of 1 volt/cm. Compute the mobility, assuming that					
electrons/m ³ . 7. (a) After deriving all the passagery relationship draw the E. K. plat in tele	[CO3]	6 theory			
7. (a) After deriving all the necessary relationship draw the E-K plot in terms of Free electron theory. [CO3] 9					
(b) A marble weighing 10 gm is confined in a rectangular box of width 10 cm. Find the permitted energies.					
	[CO3]	5			
GROUP – E (Answer any one from the following)					
8.(a) Discuss the origin of First Brillouin Zone.	[CO4]	8			
Or	[004]	· ·			
(b) Discuss the origin of magnetic property of a material and the basis d	epending on which t	he magnetic			
property of different materials are classified.	[CO5]	8			
(c) What is the magnetic domain? How do these domains behave with app	olied magnetic field?	[CO5] 6			
Or					
(d) Discuss the B-H loop and relate the loop shape with different types o	f magnetism in mate	rials. [CO5] 6			