Bachelor of Engg(MechanicalEngg). 3rd yr. 2ndSemester Exam 2024

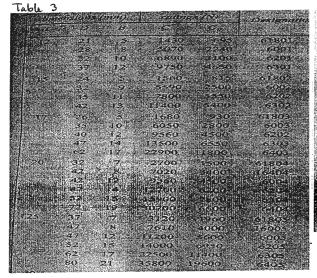
Subject: Machine Design III Time: Three hours// Full marks: 100

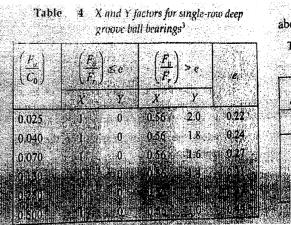
Answer any five questions

All questions carry equal marks

- 1. It is required to design a chain drive to connect a 12 kW, 1600 RPM electric motor to a transmission shaft running at 400 RPM. The operation involved in moderate shocks.
 - i. Specify the number of teeth on the driving and driven sprocket.
 - ii. Select at proper roller chain.
 - iii. Calculate the PCDs of the driving and the driven sprockets.
 - iv. Determine the number of chain links.
 - v. Specify the correct center distance.
 - Assume center distance is 40 times the pitch of the chain.
- 2. A ball bearing operates on the following work cycle:

Element No.	Radial (N)	Load	Speed (RPM)	Element (%)	Time
1	3000		720	30	
2	7000		1440	50	
3-:	5000		900	20	


The dynamic load carrying capacity of the bearing is 25kN. Calculate the average speed of rotation, the equivalent radial load and the bearing life.


- 3. i). Select a radial ball bearing to fit a portion of a shaft where the design diameter may be from 15 mm to 25mm, according to bearing selected. It must withstand a radial load of 839.5 N and a thrust load of 310 N and should have a L_{10} life of 2000 hr. at 5500rpm.
 - ii). State whether the selected bearing can be used for 5 years (8 hr./day, 5 days/week, 50 weeks/year.) If not, what bearing would you recommend?
- 4. i). What is the difference between shat and axle?
 - ii). In a railway wagon, the maximum load on a pair of wheels is 100 kN: one wheel takes 70 kN the other 30 kN. The distance between the rails is 1.45 m and between the centers of the axle boxes is 1.9 m. Find the diameter if the axle at the wheel. Consider the safe stress as 77 MPa.
- 5. Write short notes on:
 - a. Polygonal effect of chain
 - b. failures of the chain
 - c. Stribeck equation
 - d. Lewis equation.

6. A pair of spur gear consist of a 24 teeth pinion, rotating at 1000 RPM and transmitting power to a 48 teeth gear. The module is 6 mm, while the face width is 60 mm. Both the gears are made of steel with an ultimate tensile strength of 450 N/mm². They are heat treated to a surface hardness of 250 BHN. Assume that velocity factor accounts for the dynamic load. Calculate Beam Strength, Wear Strength and the rated power that the gears can transmit. If service factor and factor of safety are 1.5 & 2 respectively.

Table 1	Dimensions and breaking loads of roller chains						
ISO chain number	Pitch p (mm)	Roller diameter d_1 (mm)	Width b ₁ (mm)	Transverse pitch p _i (mm)	Breaking lead for single strand chain (kN)		
06 B	9.525	6.35	5.72	10.24	10.7		
08 B	12.70	8.51	7.75	13.92	18.2		
10 B	15.875	10.16	9.65	16.59	22.7		
12 B	19,05	12,07	11.68	19.46	29.5		
16 B	25.40	15.88	17.02	31.88	65.0		
20 B	31.75	19.05	19.56	36,45	98.1		
24 B	38.10	25.40	25.40	48,36	108.9		
28 B	44,45	27.94	30.99	59.56	131.5		
32 B	50.80	29.21	30,99	58.55	172.4		
40 B	63.50	39.37	38.10	72.29	272.2		

Table 2 Po	wer rating	TOT OUTIDIO	TOROL OLIG				
Pinion speed	Power (kW)						
(r.p.m.)	06 B	08 B	10 B	12 B	16 B		
50	0.14	0.34	0.64	1.07	2.59		
100	0.25	0.64	1.18	2.01	4.83		
200	0.47	1.18	2.19	3.75	8.94		
300	0.61	1.70	3.15	5.43	13.06		
500	1.09	2.72	5.01	8.53	20.57		
700	1.48	3.66	6.71	11.63	27.73		
1000	2.03	5.09	8.97	15.65	34.89		
1400	2.73	6.81	11.67	18.15	38.47		
1800	3,44	8.10	13.03	19.85			
2000	3.80	8.67	13.49	20.57	-		

Tab	le 5				
	F_a/I	$F_r \leq e$	F_a/F	r > e	
F_a/C_0					e
1 a 1 0 0	X	Y	X	Y	
0.025	1	0	0.56	2.0	0.22
0.040	1	0	0.56	1.8	0.24
0.070	1	0	0.56	1.6	0.27
0.130	1	0	0.56	1.4	0.31
0.250	1	0	0.56	1.2	0.37
0.500	1	0	0.56	1.0	0.44

الم	oh b	nen announter a colo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
7	γ	2	Υ	2	7
15	0.289	27	0.348	55	0.415
16	0.295	28	0.352	60	0.421
17	0.302	29	0.355	65	0,425
18	0,308	30	0.358	70	0.429
19	0.314	32	0.364	75	0.433
20	0.320	33	0.367	80	0.436
21	0.326	35	0.373	90	0.442
22	0.330	37	0.380	100	0.446
23	0.333	39	0.386	150	0.458
24	0.337	40	0.389	200	0.463
25	0.340	45	0.399	300	0.471
26	0.344	50	0.408	Rack	0.484

200		Number of teeth on the driving sprocket	×2
Table 37. Service factor (Ks)	The set define book	1.5	0.85
	type of unven asso	**************************************	1.00
Type of input power Sm	poih Moderale Heavy	1:8 2:9	1.05
	shock shock	260	1.18
(i) I.C. Engine with hydraulic drive	.0 1.2 1 <i>A</i>	e di 🖶 🖹 de 📆 et de lagre e	1.26
(ii) Electric motor	o 13 i.5		1,29
		rays and the first and the same of the sam	3.41
(iii) I.C. Engine with mechanical drive 1	2 IA 17	25	3.46

Crecle	e (mierons)	
	0.80 + 0.06 0	
	1.25 + 0.10 0	
	2:00 + 0.16 Ø	
4	$3.20 + 0.25 \phi$	
5	$5.00 + 0.40 \phi$	
6	$8.90 \pm 0.63 \phi$	
7	$11.00 + 0.90 \phi$. 60
8	$16.00 + 1.25 \phi$	
	$22.00 + 1.80 \phi$	
10	$32.00 + 2.50 \phi$	
- Andrew All All All All All All All All All Al	$45.00 + 3.55 \phi$	4.
1.2	63.00 + 5.00 ¢	

Take deformation factor (C) = 11400 N/mm² in all cases.

Table 1: Lewis Form factor (Y), z = no of teeth pinion/gear