B.E. MECHANICAL ENGINEERING FOURTH YEAR FIRST SEMESTER EXAM 2024

Steam Turbine (Hons.)

		_	_		
Tim	e۰	3	h	Λī	ırc

Full Marks 100

Answer any five questions

All parts of the same question must be answered together. Assume any unfurnished data suitably

Use of Thermodynamic Tables and Charts permitted

Q:1	(a) What do you understand by Willan's line?(b) Compare diagram efficiencies of simple impulse, two-row Curtis and 50% reaction stages.(c) How is the number of stages in a turbine estimated?	5 10 5
Q:2	(a) Why is a two row Curtis stage most often use as the first stage in large steam turbines?	0
	(b) The Steam velocity at inlet of a turbine having two row velocity compounded wheel is 650 m/s and the mean blade velocity is 120 m/s. The nozzle angle is 18° and the exit angle for first row of moving blades, the fixed blades and the second row of moving blades are 20°, 25° and 40° respectively. Find the blade inlet angles for each row. Find also for each row of moving blades the driving force and the axial thrust on the wheel for a mass flow rate of 1 kg/s of steam flow. Find the diagram efficiency for the wheel and the diagram power. What is the maximum possible diagram efficiency for a given inlet velocity and nozzle angle. Take blade friction factor as 0.8 for all blades.	14
Q:3	(a) Explain with neat sketch working of a pressure compounded impulse turbine.(b) State advantages of such turbine.(c) What is carry over coefficient? What is the importance of considering such a parameter?	10 5 5
Q:4	(a) What are parallel exhausts? Why are these needed? How do you calculate number of parallel exhausts for a given steam flow rate?(b) With neat sketch show a casing arrangement if the number of parallel exhausts are four	15 5
	considering Tandem compounding.	
Q:5	(a) What do you mean by governing of steam turbines?(b) With neat sketch explain different types of governing.	5 15
Q:6	(a) What do you understand by reheat factor? Why is reheat factor greater than unity?(b) Prove that internal efficiency of turbine is greater than stage efficiency.	10 10
Q:7	Write <i>short notes</i> on the followings: (a) Dummy piston, (b) Shrouding, (c) Critical speed, and (d) Turning gear.	20