B.E. MECHANICAL ENGINEERING FOURTH YEAR FIRST SEMESTER – 2024

Ref. No.: Ex/ME(M2)/PE/H/T/414G/2024

INTRODUCTION TO TURBULENT FLUID FLOW (Hons.)

Time:-Three Hours

Full Marks:-100

Answer any five Questions

Assume any data relevant to the questions if not provided

- 1. a) Show analytically that Turbulent Flow is always **three dimensional** (3-D). Show that both mean and fluctuating components of velocity follow continuity equation. (05+05=10)
 - b) Explain Large Eddies, Smallest and Intermediate eddies
 Eddies? How they are related in the generation or demolition
 processes of the turbulence? (03+03=06)
 - c) Why smallest eddies are called universal in nature? (04)
- 2. a) Explain the effects of **Diffusion** on the turbulence phenomena. (05)
 - b) What is **Vortex Stretching**? Explain in details and give an example. (15)
- 3. a) Explain with diagrams how turbulence is originated. (10)
 - b) Explain Energy Cascading in Turbulence. (10)

4.	Derive the Reynolds averaged Navier-Stokes equation for an Incompressible unsteady turbulent 3-D flow in rectangular coordinate system.	(20)
5.	Explain Prandtl's Mixing Length theory for a 2-D incompressible and steady Turbulent flow and obtain the expression for the M. Length.	
6.	Write short note on any Four. (4 x 5	=20)
	a) Auto Correlation	
	b) Isotropic and An-isotropic Turbulence	
	c) Reynolds Stresses	
	d) Laminar Sublayer	
	e) Integral scales and Kolmogorav scales.	
7.	Explain in details the characteristics of turbulence.	(20)