B.E. MECHANICAL ENGINEERING 3RD YEAR 1st SEMESTER EXAMINATION, 2024

SUBJECT: Introduction to Finite Element Method

Time: Three Hours Full Marks 100

Answer any 5 questions

All questions carry equal marks. Assume appropriate values for missing data, if any.

Question 1

From minimization of potential energy (PE) derive the stiffness matrix of a 2 node, 2 degree of freedom bar element.

Write down the PE expression for a bar element taking into account thermal stress. How does it modify the force vector?

Starting from the bar element, how do you compute the stiffness matrix of a plane truss element? Mention how do you get the transformation matrix?

Question 2

Using minimization of PE derive the general expression for stiffness of a twodimensional beam element

Using the shape functions are given below derive the expression for k11.

$$\begin{split} N_{I} = & \left(I - \frac{3x^{2}}{L^{2}} + \frac{2x^{3}}{L^{3}} \right) \quad N_{2} = \left(x - \frac{2x^{2}}{L} + \frac{x^{3}}{L^{2}} \right) \\ N_{3} = & \left(\frac{3x^{2}}{L^{2}} - \frac{2x^{3}}{L^{3}} \right) \quad N_{4} = \left(\frac{x^{3}}{L^{2}} - \frac{x^{2}}{L} \right) \end{split}$$

For a three-dimensional beam element the nodes are at (0, 0, 0) and (1m, 0, 0). The 3^{rd} point is at (0.5m, 0.5m, 0.5m). Find out the transformation matrix.

Question 3

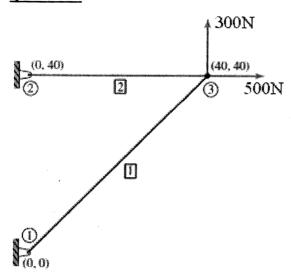


Figure Q3

Consider the truss structure shown in Figure Q3. The coordinates are given in centimeters. The modulus of elasticity and cross-sectional area are $2 \times 10^7 \, N \, / \, cm^2$ and $2 cm^2$ respectively.

The joint is pinned joint and the supports are hinges

- a) Find out the displacements at node 3
- b) Find out the stresses in the elements.

You may use the following relation:-

$$[K^e] = \frac{AE}{l} \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ & s^2 & -cs & -s^2 \\ & & c^2 & cs \\ & sym & & s^2 \end{bmatrix}$$

Question 4

- a) What do you mean by plane stress and plane strain problems? Give examples
- b) Draw a triangular 3 node CST element and show the nodal degrees of freedom.
- c) Starting from the expression of PE, derive the expression for stiffness matrix for such an element?

Take
$$N_i = \frac{1}{2\Delta}(a_i + b_i x + c_i y)$$

Where, $a_1 = x_2 y_3 - x_3 y_2$, $b_1 = y_2 - y_3$, $c_1 = x_3 - x_2$

(Multiplication of [B] and [D] matrices is not required. But form of [B] and [D] matrices should be clearly shown. For [D] matrix consider either plane stress or plane strain)

Question 5

State the process of deriving the stiffness matrix, body and surface force vectors of a 4 node isoparametric quadrilateral element.

Two 4 node quadrilateral elements in physical space are shown in Figure Q5. Find out the Jacobian matrices for both the cases at $\xi = 0$, $\eta = 0$. Write your observation using a sentence.

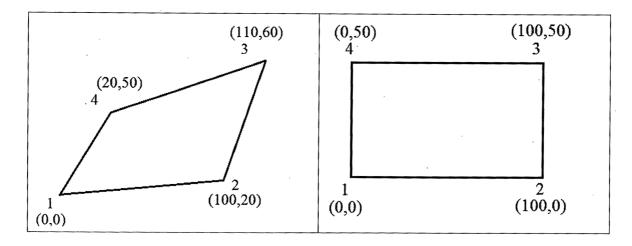


Figure Q5

Question 6

- a. Determine the shape functions of a 9 node isoparametric quadrilateral element using Lagrange interpolation function
- b. Sketch them
- c. Evaluate the integral $\int_{-1-1}^{1} \int_{1}^{1} r^3 s^3 dr ds$. Use 2 point and 3 point Gauss quadrature rule. Use the data given in Table 1. Are the results same? Explain your answer.

Table 1.Data for 2 point and 3 point Gauss quadrature rule

Number	Locations	Weights
of		
points		
2	$\pm \frac{1}{\sqrt{3}}$	1
3	±√0.6, 0	5 5 8