Ref. No.: Ex/ME(M2)/BS/B/MATH/T/211/2024(S)

B.E. MECHANICAL ENGINEERING (Supplimentary) EXAMINATION 2024

Second Year First Semester Mathematics -III

Full Marks -100

Time: 3 hr

Use Separate Answer scripts for each group.

Group - A

Answer any five from the followings.

1. Solve the following differential equations:

(i)
$$(x^4y^2 - y)dx + (x^2y^4 - x)dy = 0$$

(ii) $(\frac{2x^2}{y} + \frac{x}{y})dx + 2xdy = 0$ 5 + 5

2. Find the general solution of the differential equation

$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 2y = e^x + \cos x$$

- 3. Solve the differential equation $\frac{d^2y}{dx^2} + y = cosec x$ by method of variation of parameter.
- 4. Solve the differential equation $x^2 \frac{d^2y}{dx^2} 3x \frac{dy}{dx} + 4y = 2x^2$
- 5. Find the series solution of the equation $\frac{d^2y}{dx^2} x^2 \frac{dy}{dx} y = 0$ near the ordinary point x = 0.
- 6. Solve the following differential equations where $p=\partial z/\partial x, q=\partial z/\partial y$:

(i)
$$zxp + zyq = xy$$

(ii) $xyp + y^2q = zxy - 2x^2$

7. Solve the equation using method of separation of variables $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$ over 0 < x < 3, t > 0 for the boundary conditions u(0,t) = u(3,t) = 0 and the initial condition $u(x,0) = 5 \sin 4\pi x$.

[Turn over

Group - B

Answer any 5 questions

 $10 \times 5 = 50$

1. i) Find the eigen values and corresponding eigen vectors of

$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{pmatrix}$$

ii) Diagonalize the matrix

$$\begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}$$

[4+6]

2. i) Determine the subspace of \mathbb{R}^3 spanned by vectors

$$\alpha = (1, 2, 3), \beta = (3, 1, 0)$$

Examine if,

- a) $\gamma = (2, 1, 3)$ is in the subspace
- b) $\delta = (-1, 3, 6)$ is in the subspace
- ii) Prove that the set $S = \{ (2, 1, 1), (1, 2, 1), (1, 1, 2) \}$ is a basis of \mathbb{R}^3 .

[6+4]

3. i) Is the union of two subspaces of a vector space V always a subspace of V? Justify your answer.

ii) Determine $L\{\alpha,\beta\}$ where $\alpha=(1,3,0),\ \beta=(2,1,-2)$ in \mathbb{R}^3 . Examine if $\gamma=(-1,3,2),\ \delta=(4,7,-2)$ are in $L\{\alpha,\beta\}$.

iii) For what real values of k does the set $S = \{ (k, 0, 1), (1, k + 1, 1), (1, 1, 1) \}$ from a basis of \mathbb{R}^3 . [(1+2) + (2+2) + 3]

4. i) State and prove Cauchy-Schwartz inequality.

ii) Write down the definition of unitary operators. Show that T in a unitary operator iff $T^*T = I$.

[6+4]

- 5. i) Let A be a (6 x 6), matrix over \mathbb{R} with characteristic polynomial $= (x-3)^2 (x-4)^4$ and minimal polynomial $(x-3)(x-2)^2$. What will be the possible Jordon Canonical form(s) of A?
 - ii) Let V be the vector space over \mathbb{C} of all polynomials in a variable X of degree at most 3. Let $D: V \to V$ be the linear operator given by the differentiation with respect to X. Let A be the matrix of D with respect to some basis for V. Show that A is a nilpotent matrix.

[5+5]

- 6. i) Let A be a (7 x 7), matrix over \mathbb{R} with characteristic polynomial = $(t-2)^4 (t-5)^3$ and minimal polynomial = $(t-2)^2 (t-5)^3$. What will be the possible Jordon Canonical form(s) of A?
 - ii) Let V be the vector space over \mathbb{C} of all polynomials in a variable X of degree at most 3. Let $D: V \to V$ be the linear operator given by the differentiation with respect to X. Let A be the matrix of D with respect to some basis for V. Check whether A is a diagonalizable matrix or not. [5+5]
- 7. Suppose V be the subspace of \mathbb{R}^5 with basis,

$$u_{1} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}; u_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}; u_{3} = \begin{bmatrix} 1 \\ 4 \\ -1 \\ 1 \\ -1 \end{bmatrix}; u_{4} = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$

Apply Gram-Schmidt algorithm to find the orthogonal basis for V.