B.E. MECHANICAL ENGINEERING FIRST YEAR FIRST SEMESTER SUPPLEMENTARY EXAM - 2024

ELECTRONICS

Time: 3 hrs Full Marks: 100

Answer any five questions.

1.	Draw the block diagram of a zero-crossing detector and explain the functions of indiviblocks.	idual 2 0
2.	a) Explain the operation of a positive diode clipper circuit.	10
	b) Discuss cutoff, active and saturation states of a transistor.	10
3.	a) Explain with a circuit diagram the use of a zener diode as a voltage regulator.	10
	b) Draw any transistor biasing circuit, find its Q-point and plot it on the load line.	10
4.	a) Draw the circuit diagram of a half wave rectifier and explain its operation.	10
	b) An amplifier has an open-circuit voltage gain of 5, an input resistance of 1 k Ω , and an or resistance of 10 Ω . The amplifier is connected to a sinusoidal voltage source of 1V rms, whas an output resistance of 100 Ω , and to a load resistance of 50 Ω . What will be the rms valuate output voltage?	hich
5.	a) Draw the circuit diagram of a practical CE amplifier and obtain the expression for the vol	tage

gain and the input impedance.

b) Draw the circuit diagram of an OP AMP non-inverting amplifier and derive the voltage gain.	he expression for 8
6. Write notes on the following: (a) Sensors and Actuators (b) Ripple factor and Rectification efficiency (c) Op-amp voltage follower (d) Frequency response of an amplifier 	4x5=20
7. a) Obtain the truth table for the following function: $f = A + BC$	6
b) Implement the following logic function using MOS transistors: $f = AB + C$	6
c) Implement the following Boolean function using (i) only NAND gates an gates: $f = AB + C$	nd (ii) only NOR 8
8. a) Express the following function in minterm and maxterm forms.	10
f(A,B,C) = (A+B) C	
b) Simplify the following Boolean function using K-map.	10
$f(A,B,C,D)=\Sigma(0, 1, 3, 7, 8, 9, 11, 15)$	