Ref. No.: Ex/ME(M2)/BS/B/MATH/T/111/2024(S)

B.E. MECHANICAL ENGINEERING SUPPLEMENTARY **EXAMINATIONS - 2024**

FIRST YEAR FIRST SEMESTER

Mathematics-I

Full Marks:100 Time: Three hours

> (Notations and symbols have their usual meanings.) GROUP- A

Answer any five questions from the following.

1. (a) Test wheather the following series converges or not

(i)
$$\frac{1}{1.2} + \frac{1}{3.4} + \dots \frac{1}{2n(2n-1)}$$

(ii) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$.

(ii)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$$
.

(b) Find out all the asymptotes of the curve

$$y = \frac{x^2 - 6x + 3}{x + 3}.$$

3 + 3 + 4

2. (i) Define a monotone sequence and a bounded sequence.

(ii) Show that the sequence $\{x_n\}$, where $x_n = \frac{4n+3}{n+2}$ is a bounded monotonic increasing sequence.

(iii) Examine the convergence of following sequence $\{x_n\}$, where $x_n = \frac{(3n+1)(n-2)}{n(n+3)}$ 3 + 4 + 3

3. (i) State and prove Lagrange's Mean value theorem.

(ii) Using Mean Value Theorem prove that

$$\frac{x}{1+x} < log(1+x) < x, \text{ for all } x > 0.$$

5 + 5

4. (i)(i) Suppose a function f(x,y) defined by $f(x,y) = \frac{x^3 + y^3}{x - y}, x \neq y$ and f(x,y) = 0, x = y. Is f(x,y) continuous at (0,0)?

(ii) Using Lagrange's method of undetermind multiplier, find the extreme value of $x^2 + y^2 + z^2$ subject to the condition ax + by + cz = p.

5 + 5

5. (i) If $y = tan^{-1}x$, deduce that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0.$

- (ii) If a function f(x, y) is defined by $f(x, y) = xy \frac{x^2 y^2}{x^2 + y^2}$, when $x^2 + y^2 \neq 0$ and f(x, y) = 0, when $x^2 + y^2 = 0$, show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.
- 6. (i) State Euler's theorem of homogeneous function of two variables.
 - (ii) If $u = tan^{-1} \frac{x^3 + y^3}{x y}$ prove that $x^2 \frac{\delta^2 u}{\delta x^2} + 2xy \frac{\delta^2 u}{\delta x \delta y} + y^2 \frac{\delta^2 u}{\delta y^2} = (1 4sin^2 u) sin2u.$
 - (b) Evaluate the limit $\lim_{x\to 0} \cot x \log \frac{1+x}{1-x}$. 2+5+3
- 7. (i) If v be a function of r alone, where $r^2 = x^2 + y^2 + z^2$. Show that $\frac{\delta^2 v}{\delta x^2} + \frac{\delta^2 v}{\delta y^2} + \frac{\delta^2 v}{\delta z^2} = \frac{\delta^2 v}{\delta r^2} + \frac{2}{r} \frac{\delta v}{\delta r}.$
 - (ii) If $u = log(x^3 + y^3 + z^3 3xyz)$, then show that $\frac{\delta u}{\delta x} + \frac{\delta u}{\delta y} + \frac{\delta u}{\delta z} = \frac{3}{x + y + z}$.

5 + 5

GROUP- B

Answer Question Number 8 and any four questions from the rest.

8. Define Riemann Integration of a bounded function f(x) in [a,b].

2

- 9. (a) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of *Beta* function and hence evaluate $\int_0^1 x^5 (1-x^3)^{10} dx$.
 - (b) Evaluate $\int_0^\infty 4x^4 e^{-x^4} dx$.

7 + 5

- 10. (a) Find the approximate value of $\int_0^1 \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{3}$ Rule taking upto five decimal places.
 - (b) Suppose f(x) = x and $g(x) = e^x$, verify the first Mean Value Theorem of Integral Calculus for the interval [-1,1].

5 + 7

- 11. Examine the convergence of following integrals (any two)
 - (a) $\int_{1}^{\infty} \frac{dx}{x^{\frac{1}{3}}(1+x^{\frac{1}{2}})}$
 - (b) $\int_0^1 \frac{dx}{\sqrt{x(1-x)}}$
 - (c) $\int_{a}^{\infty} e^{-x} \frac{\sin x}{x^2} dx$, a > 0. 6 + 6

- 12. (a) Evaluate $\iint xy(x+y)dxdy$ over the area bounded by $y=x^2$ and y=x.
 - (b) Evaluate $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r^3 \sin\theta \cos\theta d\theta dr$. 6+6
- 13. (a) Determine the length of one arc of the cycloid $x = a(\theta + \sin\theta)$, $y = a(1 \cos\theta)$.
 - (b) Find the area of the loop of the curve $x(x^2 + y^2) = a(x^2 y^2)$. 6 + 6
- 14. (a) Find the surface of the solid generated by revolution of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the x-axis.
 - (b) Show that $\int_0^{\frac{\pi}{2}} \cos^4 x dx = \frac{3\pi}{16}$. 7 + 5