B. Ins. & Elec. Engineering 3rd Year 2nd Semester Examination 2024 ANALOG MOS CIRCUIT DESIGN

TIME: 3 HOURS FULL MARKS: 100

List of Course Outcomes (CO):

CO1: Classify and analyze different types of MOS amplifiers (K4, A1-recognize)

CO2: Explain and interpret the importance of differential amplifiers (K3, A1)

CO3: Describe and explain the behavior of current mirrors (K2, A1)

CO4: Explain and analyze the frequency response of MOS amplifiers (K4, A1)

Instructions to the Examinees:

- Each module is mapped with the corresponding CO
- Attempt questions from ALL the modules
- Alternative questions exist within a module, not across the modules
- Different parts of same question should be answered together
- Clearly state any assumption and derive the necessary equation(s) for calculation
- Unless otherwise stated, use the device data shown in Table I and assume $V_{DD} = 3 V$ where necessary

Table I

Symbol	Value	Unit
$V_{th,n}$	0.7	V
$V_{th,p}$	-0.8	V
γ_n	0.45	$V^{1/2}$
γ_p	0.4	$V^{1/2}$
$\mu_n C_{ox}$	50	$\mu A/V^2$
$\mu_p C_{ox}$	25	$\mu A/V^2$
λ_n	0.1	V ⁻¹
λ_p	0.2	V-1

Ref. No.: Ex/IEE/PE/B/T/324A/2024

MODULE 1

(ATTEMPT ALL QUESTIONS FROM THIS MODULE)

1. Sketch I_X and trans-conductance of the transistor as a function of V_X for <u>any one</u> of the circuits in Fig. 1 as V_X varies from 0 to V_{DD} .

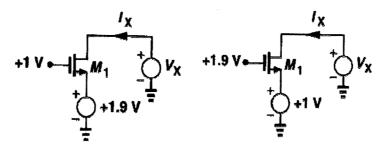


Fig. 1

10

2. Sketch v_{out} versus v_{in} for <u>any one</u> of the circuits in Fig. 2 as v_{in} varies from 0 to V_{DD} . Identify the important transition points.

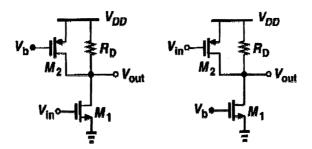


Fig. 2

10

3. Assuming all MOSFETs are in saturation, calculate the small signal voltage gain for <u>any one</u> of the circuits in Fig. 3. ($\lambda \neq 0$, $\gamma = 0$)

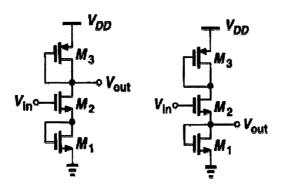


Fig. 3

Ref. No.: Ex/IEE/PE/B/T/324A/2024

4. Suppose in the source follower of Fig. 4(a), $\left(\frac{W}{L}\right)_1 = 40$, $I_1 = 200 \,\mu\text{A}$, $V_{th,0} = 0.6 \,\text{V}$, $2\phi_F = 0.6 \,\text{V}$ 0.7 V. Calculate v_{out} for $v_{in} = 1.2 \text{ V}$. If I_1 is implemented as M_2 in Fig. 4(b), find the minimum value of $\left(\frac{W}{L}\right)_2$ for which M_2 remains saturated.

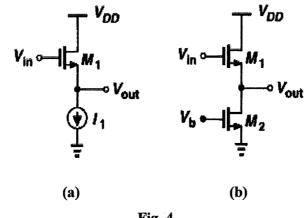


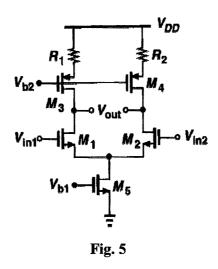
Fig. 4

10

MODULE 2

(ATTEMPT Q. No. 5 AND ANY ONE FROM THE REST)

5. A differential pair uses input NMOS devices with $\left(\frac{w}{L}\right) = 100$ and a tail current of 1 mA. What is the equilibrium overdrive voltage of each transistor? How is the tail current shared between the two sides if $V_{\text{in,1}} - V_{\text{in,2}} = 50 \text{ mV}$? What is the equivalent G_m under this condition? Assume $\left(\frac{w}{L}\right) = 100$ and tail current of 1 mA.


10

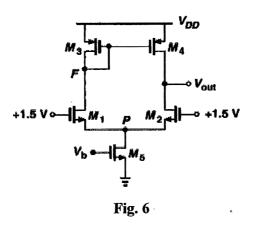
6. What is the significance of CMRR? Calculate the value of CMRR of an assymetric differential amplifier stage with non-ideal tail current source.

3+12

7. Assuming the circuit shown in Fig. 5 is symmetric, sketch V_{out} as $V_{in,1}$ and $V_{in,2}$ are (i) equal and vary from zero to V_{DD} & (ii) vary differentially from zero to V_{DD}

Ref. No.: Ex/IEE/PE/B/T/324A/2024

MODULE 3


(ATTEMPT Q. No. 8 AND ANY TWO FROM THE REST)

- 8. Select **one or more** correct option(s) from the choices given below:
 - (a) Current mirror circuits can be constructed using
 - (i) n-MOS only
 - (ii) p-MOS only
 - (iii) Both n-MOS and p-MOS in the same circuit
 - (iv) Both n-MOS and p-MOS in different circuits
 - (b) Cascode current mirror circuit is used to
 - (i) Suppress the effect of channel length modulation
 - (ii) Improve the voltage headroom
 - (iii) Minimize the requirement of MOS transistors
 - (iv) Reduce the power consumption
 - (c) Active current mirrors are those which
 - (i) Carry bias current only
 - (ii) Carry time varying current
 - (iii) Do not carry any current through it
 - (iv) None of the above

9. Assuming perfect symmetry, sketch the output voltage of the circuit in Fig. 6 as V_{DD} varies from 3 V to 0. Assume that for $V_{DD} = 3 V$, all of the devices are saturated.

15

5

10

10. Assuming all the transistors are identical, sketch V_X and V_Y as a function of V_{DD} for the circuit in Fig. 7.

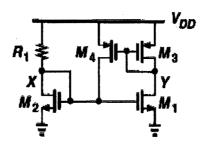
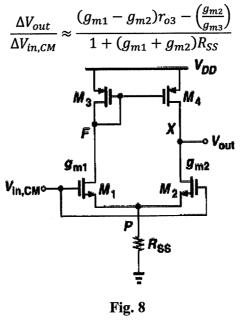



Fig. 7

10

11. Show that the common-mode gain of the circuit in Fig. 8 with g_m mismatch is approximately given by:

10

MODULE 4

12. Calculate the input impedance of <u>any one</u> of the circuits in Fig. 9.

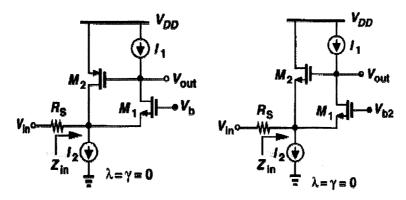


Fig. 9

____X___

10